DFT and ESR spectroscopic studies of new organoelement fullerene derivatives

Lopatin M.A., Ketkov S.Yu.*, Markin G.V., Kuropatov V.A., Rychagova E.A., Kalakutskaya L.V., Domrachev G.A.

G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 603950, Nizhny Novgorod, Russia *e-mail: sketkov@iomc.ras.ru

The DFT calculations of recently synthesized fullerene polyadducts $R_n C_{60}$ $(R = Me_3Si; n = 4, 6, 8, 10, 12)$ and ESR study of new bis(toluene)tungsten fulleride have been performed. The natural charge distribution and NBO populations in the R_nC_{60} molecules were compared with those in the fullerene adducts with organic fragments (R = Me, t-Bu, CH₂Ph, CF₃) as well as with the corresponding parameters in the R-CMe₃ species. The Si(R)-C(C_{60}) and Si(R)- $C(C_{60})$ NBO population appears to be lower than the corresponding values for the Si(R)-C(CMe₃) and C(R)-C(CMe₃) bonds. The electron density distribution analyzed by the Bader's "Atom in molecules" approach also shows some $\rho(r)$ decrease for the (3,-1) critical points of the R-C bonds on going from "classical" organics to the fullerene adducts. On the other hand, analysis of natural charges reveals increased polarization of the R-C₆₀ ($R = CH_2Ph$, CMe₃, CF₃) bond as compared to R-CMe₃. These findings are indicative of the higher lability of the R-C₆₀ chemical bond. DFT calculations have been also carried out for the reduced and oxidized forms of R_nC_{60} . Both one-electron oxidation and reduction of 1.4-R₂C₆₀ results in an increase of the electron density on the C2-C12 and C3-C14 bonds and a decrease of $\rho(r)$ on the C2-C3 bond of the C₆₀ core. This agrees well with the HOMO and LUMO localization. Accordingly, the $\rho(r)$ value in the (3,-1) critical point of the R-C₆₀ bond changes stronger on going to the cation than to the anion. The formation of the $(C_{60})^{-\bullet}$ fulleride anion has been studied in the reaction of fullerene with bis(toluene)tungsten.

 C_{60} reacts with (PhMe)₂W⁰ in PhMe at 293 K to form fulleride as black crystalline sediment (fulleride I). Fulleride I is insoluble in aliphatic solvents, soluble in PhCN and THF. Its ESR in THF at 290 K shows a line with typical hyperfine structure of (Arene)₂W^{+•} and g = 1.9856, $a_{\rm H} = 4.5$ G. The visible spectroscopy of fulleride I in THF at 291 K reveals a (C_{60})^{-•} absorption band at $\lambda = 1079$ nm. The EPR spectrum of crystalline [(PhMe)₂W^{+•}][(C_{60})^{-•}] (I) at 290 K shows a single line with $\Delta H = 111.2$ G and g = 1.9882 which is intermediate between those characteristic for (Arene)₂W^{+•} and (C_{60})^{-•} because of strong exchange coupling between (PhMe)₂W^{+•} and (C_{60})^{-•}. On cooling I in the 260-200 K range the g-factor significantly shifts and the ESR spectrum of crystalline I at 120 K consists of a single line with $\Delta H = 13.7$ G and g = 1.9849 which is characteristic for non-interacting paramagnetic (PhMe)₂W^{+•}.