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1 INTRODUCTION

According to the standard r-mode theory, hot and rapidly rotating neutron stars (NSs) in low-mass X-ray binaries (LMXBs)

should be CFS-unstable with respect to emission of gravitational waves (Andersson 1998; Friedman & Morsink 1998). As a

consequence, the probability to observe them should be very small, but this conclusion contradicts observations (Ho et al.

2011). There has been proposed a number of possible solutions to this paradox (see, e.g. Andersson & Kokkotas 2001; Haskell

et al. 2012; Ho et al. 2011; Mahmoodifar & Strohmayer 2013), but it still remains an open problem. Gusakov et al. (2014a,b)

introduced a new scenario, in which the finite-temperature effects in the superfluid core of an NS lead to resonance coupling and

enhanced damping (and hence stability) of oscillation modes at certain “resonance” stellar temperatures. It was demonstrated

that NSs in LMXBs with high spin frequency may spend a substantial amount of time at these resonance temperatures, so

their interpretation does not constitute a problem.

The proposed scenario was based on a simplified phenomenological model (in particular, resonance temperatures have

never been calculated explicitly). To put in on a more solid ground, one has to calculate for realistic superfluid NS models

spectrum of rotational inertial modes (modes for which the restoring force is Coriolis force) at arbitrary temperatures in order

to find resonance temperatures at which the normal r-mode exhibits an avoided crossing with some another mode. However,

in most of works (e.g. Lindblom & Mendell 2000; Prix et al. 2002; Lee & Yoshida 2003; Andersson et al. 2009) the inertial

modes are studied only in zero-temperature limit, when all neutrons and protons are assumed to be in superfluid state.

Kantor & Gusakov (2017) considered normal and superfluid r-modes, taking into account finite-temperature effects and

stratification by muons (µ) and found avoided crossings between normal and superfluid r-mode in the next-ot leading order

in stellar rotation frequency. This work ignored the entrainment between superfluid neutrons and protons, which significantly

affects the spectrum of superfluid inertial modes (see, e.g. Lee & Yoshida 2003). Also Kantor & Gusakov (2017) focused only

on r-modes and have not studied other inertial modes, which also can interact with the normal r-mode. To fill this gap, we

calculate the spectrum of inertial modes in superfluid NSs whose cores consist of neutrons (n), protons (p) and electrons (e),

accounting for both entrainment and finite-temperature effects. We present the first results of such calculations, obtained

under assumptions of npe NS core composition and constant critical temperatures. Section 4 presents the results of these

calculations. In Section 5 we also present an approximate method that allows to calculate the superfluid r-mode analytically,

in the limit of small entrainment. In Section 6 we derive dispersion relations for inertial modes in superfluid npe matter in

short-wavelength limit, and explain some properties of these modes that can be observed in the numerical results calculated

in Section 4. Finally, we sum up in Section 7.

2 EQUATIONS GOVERNING OSCILLATIONS OF A ROTATING NS

Using the Newtonian limit of the relativistic hydrodynamics, formulated by Gusakov (2016); Gusakov & Dommes (2016), and

describing rotating superfluid mixture at a finite temperature, we consider small oscillations of a slowly rotating (with the

spin frequency Ω) NS in the Cowling approximation. Let all the quantities depend on time t as eıσt in the coordinate frame

rotating with the star (with frequency Ω). Then the linearised equations governing small oscillations of superfluid (hereafter

SFL) NSs in that frame are:

(i) Euler equation

−σ2ξξξb + 2ıσΩΩΩ× ξξξb =
δw

w2
∇∇∇P − ∇∇∇δP

w
, (1)

where w = (P+ε)/c2, P is pressure, ε is energy density, c is speed of light. Here and hereafter, δ stands for its Euler perturbation

(e.g., δP ). Finally, ξξξb is the Lagrangian displacement of baryons, it is defined as ξξξb ≡ jjjb/(ıσnb), where nb ≡ nn + np and

jjjb ≡ jjjn + jjjp are the baryon number density and baryon current density, respectively.
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(ii) Continuity equations for baryons and electrons

δnb + div(nbξξξb) = 0, δne + div(neξξξ) = 0. (2)

Here ξξξ ≡ jjje/(ıσne) is the Lagrangian displacement of the normal liquid component1, and ne is the electron number density.

Note that if neutrons are non-superfluid, then ξξξ = ξξξb and hydrodynamic equations become essentially the same as in the

normal matter even if protons are superfluid (e.g. Gusakov & Andersson 2006).

(iii) The ‘superfluid’ equation, analogue of the Euler equation for superfluid (neutron) liquid component

hσ2zzz − 2ıh1σΩΩΩ× zzz = c2ne∇∇∇∆µe (3)

where zzz ≡ ξξξb − ξξξ is the superfluid Lagrangian displacement; and ∆µe ≡ µn − µp − µe is the chemical potential imbalance

(note that in equilibrium ∆µe = 0, thus δ∆µe = ∆µe); Furthermore,

h = nbµny, h1 = µnnb

(
nb

Ynkµk
− 1

)
, y =

nbYpp

µn(YnnYpp − Y 2
np)
− 1, (4)

here µk is the chemical potential of neutrons (k = n) and protons (k = p), Yik (indices i, k run over neutrons and protons) are

elements of the entrainment matrix (see, e.g., Gusakov et al. 2014c) analog of the superfluid density for relativistic mixtures.

In Eq. (4) summation over k = n, p is assumed. Superfluid equation in the form (3) is valid only the interaction between the

neutron vortices and normal component (e.g., electrons) is weak (so-called weak-drag regime) which is a typical situation in

NS cores (see, e.g. Mendell 1991; Andersson et al. 2006).

The above equations should be supplemented by the ‘equation of state’ (EOS), δni = ∂ni
∂P

δP + ∂ni
∂∆µe

∆µe.

In the present study we are interested in the oscillations, which have the eigenfrequencies σ vanishing at Ω→ 0. Thus, up

to the terms ∼ (Ω/Ω0)2 (Ω0 is of the order of Kepler frequency), the eigenfrequency σ, the Euler perturbation of any (scalar)

thermodynamic parameter f (e.g., P , µe, nb, etc.), and the Lagrangian displacement d (e.g., ξb or z) can be presented as

(Lockitch & Friedman 1999)

σ = Ωσ0

(
1 + Ω2σ1

)
, (5)

δf = Ω2δf1exp(ıσt+ ımφ), (6)

d =
(
d0 + Ω2d1) exp(ıσt+ ımφ) (7)

where m is integer and φ is the azimuthal angle.

Here we work only to the leading order in Ω/Ω0, i.e. ignore σ1, d1 and the star oblateness (i.e. all equilibrium values

depend on the radial coordinate only). In this order system (i)-(iii) can be written in spherical coordinates as

−σ2
0ξ

0
br − 2ıσ0 sin θξ0

bφ = − ∂

∂r

δP 1

w0
+

µn

w2
0c

2

∂nb

∂∆µe
∆µ1

e
dP0

dr
, (8)

−σ0ξ
0
bθ − 2ı cos θξ0

bφ =
1

ım

∂

∂θ
sin θ

[
−σ0ξ

0
bφ + 2ı

(
ξ0
br sin θ + ξ0

bθ cos θ
)]
, (9)

−σ2
0ξ

0
bφ + 2ıσ0

(
ξ0
br sin θ + ξ0

bθ cos θ
)

= − 1

w0

ım

r sin θ
δP 1, (10)

1

nb

1

r2

∂

∂r
r2nbξ

0
br +

∂

∂θ
sin θξ0

bθ + ımξ0
bφ = 0, (11)

1

ne

1

r2

∂

∂r
r2ne

(
ξ0
br − z0

r

)
+

∂

∂θ
sin θ

(
ξ0
bθ − z0

θ

)
+ ım

(
ξ0
bφ − z0

φ

)
= 0, (12)

−σ2
0z

0
r − 2ı

h1

h
σ0 sin θz0

φ = −c
2ne

h

∂

∂r
∆µ1

e , (13)

−σ0z
0
θ − 2ı

h1

h
cos θz0

φ = − 1

ım

∂

∂θ
sin θ

[
σ0z

0
φ − 2ı

h1

h

(
z0
r sin θ + z0

θ cos θ
)]
, (14)

−σ2
0z

0
φ + 2ı

h1

h
σ0

(
z0
r sin θ + z0

θ cos θ
)

= −c
2ne

h

ım

r sin θ
∆µ1

e . (15)

Here we (i) substituted (5)–(7) into equations (1)–(3), (ii) omitted higher-order in Ω/Ω0 terms, (iii) substituted δP 1 from

φ-component of Euler equation (10) into the θ-component of Euler equation, (iv) substituted ∆µ1
e from φ-component of

superfluid equation (15) into the θ-component of superfluid equation, (v) expressed in (8) δw through δP and ∆µe (see

Kantor & Gusakov 2017, Appendix A), and (vi) divided superfluid equation by −h(r).

It is convenient to express the functions ξ0
bθ, ξ

0
bφ, z0

θ , and z0
φ in the system (8)–(15) as a sum of toroidal and poloidal

1 We assume that all non-superfluid components (electrons as well as non-superfluid neutrons and protons) move with the same velocity,

due to efficient particle collisions
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components (Saio 1982):

ξ0
bθ =

∂

∂θ
Q(r, θ) +

ımT (r, θ)

sinθ
, ξ0

bφ =
ımQ(r, θ)

sinθ
− ∂

∂θ
T (r, θ), (16)

z0
θ =

∂

∂θ
Qz(r, θ) +

ımTz(r, θ)

sinθ
, z0

φ =
ımQz(r, θ)

sinθ
− ∂

∂θ
Tz(r, θ). (17)

Then, following the same procedure as for non-superfluid stars (e.g., Lockitch & Friedman 1999), we expand all the unknown

functions into Legendre polynomial series with fixed m:

ξ0
br(r, θ) =

∑
l2

ξ0
br l2m(r)Pml2 (cos θ), (18)

zr(r, θ) =
∑
l2

z0
r l2m(r)Pml2 (cos θ), (19)

Q(r, θ) =
∑
l2

Ql2m(r)Pml2 (cos θ), (20)

Qz(r, θ) =
∑
l2

Qz l2m(r)Pml2 (cos θ), (21)

T (r, θ) =
∑
l1

Tl1m(r)Pml1 (cos θ), (22)

Tz(r, θ) =
∑
l1

Tz l1m(r)Pml1 (cos θ), (23)

δP 1(r, θ) =
∑
l2

δP 1
l2m(r)Pml2 (cos θ), (24)

∆µ1
e(r, θ) =

∑
l2

∆µ1
e l2m(r)Pml2 (cos θ), (25)

where the summation goes over l1 = m+ 2k and l2 = m+ 2k + 1 (k = 0, 1, 2, . . .) for ‘odd’ modes, and over l1 = m+ 2k + 1,

l2 = m + 2k + 2 for ‘even’ modes.2 After substituting these expansions into oscillation equations, one obtains an infinite set

of ordinary differential equations for unknown functions ξ1
br l2m

(r), z1
r l2m

(r), . . .

3 CLASSIFICATION OF ROTATIONAL MODES

We are considering rotational modes, with σ ∝ Ω at slow rotation limit (Lockitch & Friedman 1999; Yoshida & Lee 2000).

Each mode is characterized by two angular quantum numbers, l0 and m, where m is azimuthal number and l0 (in the notation

by Lindblom & Ipser 1999; Yoshida & Lee 2000) is the maximum index l of spherical harmonics associated with the dominant

expansion coefficients of the eigenfunctions. For the uniform density stars all coefficients with l > l0 are strictly zero (Lockitch

& Friedman 1999).

For a given m, there are two nodeless modes with l0−|m| = 1: the (purely toroidal) normal r-mode with σ0 = 2/(m+ 1),

and the superfluid r-mode, which in the limit Ynp = 0 is also purely toroidal and has the same frequency (Andersson & Comer

2001; Lee & Yoshida 2003; Andersson et al. 2009; Kantor & Gusakov 2017). For a given m and l0 > |m|+ 1 there are l0− |m|
normal inertial modes (i0-modes) and l0 − |m| superfluid inertial modes (is-modes). The modes where normal and superfluid

components are comoving, so that |ξb| ∼ |z|, we call ‘normal’ and denote them with superscript 0; If normal and superfluid

components are counter-moving, so that the total baryon current is almost not excited, |ξb| � |z|, the corresponding modes

are referred to as ‘superfluid’, and have superscript s. The number of radial nodes in eigenfunctions of a given mode is

determined by l0 and m (see Yoshida & Lee 2000, Table 3). For example, the dominant lowest-order toroidal eigenfunction

[Tmm(r) for i0-modes, Tzmm(r) for is-modes] has zero nodes for the r-mode (l0 − |m| = 1), one node for l0 − |m| = 3 mode,

and two nodes for l0 − |m| = 5 mode.

4 RESULTS FOR THE SPECTRUM

For the calculations we adopt the parametrization Heiselberg & Hjorth-Jensen (1999) of APR equation of state (Akmal

et al. 1998) for the npe matter in the core, and the equation of state BSk20 Potekhin et al. (2013) to describe the crust.

All calculations are performed for a NS with mass M = 1.4M� and radius R = 12.18 km. We also assume that baryon

critical temperatures are constant throughout the core: Tcn = 6 × 108 K, Tcp = 5 × 109 K (except for Fig. 2, where we set

2 Following Yoshida & Lee (2000), we call ‘even’ the modes whose scalar perturbations are symmetric with respect to the equator, and
‘odd’ – the modes with asymmetric perturbations. Odd and even modes are completely decoupled and do mix with each other.
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Tcn = 5× 109 K, Tcp = 5× 108 K). The entrainment matrix Yik is calculated in a way similar to how it was done in Kantor

& Gusakov (2011).

They key ingredients of the scenario proposed by Gusakov et al. (2014a,b) are the avoided crossings of inertial modes

with the m = 2 normal r-mode. We calculated only the modes that could interact with this mode, i.e. the odd (l0 − |m| = 1,

l0−|m| = 3, and l0−|m| = 5) m = 2 inertial modes. We do not look for the modes with eigenfrequencies that are too far from

the r-mode frequency (σ0 = 2/(m+ 1) = 2/3). In order to solve the oscillation equations (8)–(15) numerically, we disregard

all the terms with l > |m|+ 2kmax − 1 in the Legendre polynomial expansion. We set kmax = 3 to calculate l0 − |m| = 3 and

l0 − |m| = 5 modes. This value allows to reproduce the results of Yoshida & Lee (2000) for the l0 − |m| = 3 inertial modes

within the accuracy of 0.2%. For r-modes (l0 − |m| = 1), for which only l = m and l = m + 1 harmonics are significant, we

set kmax = 2.

In Fig. 1 we show the spectrum for l0 − |m| = 1, l0 − |m| = 3, and l0 − |m| = 5 inertial modes. Dashed lines denote the

i-modes calculated without entrainment (Ynp = 0), solid lines – with entrainment. The blue line is the normal m = 2 r0-mode,

σ0 = 2/3 (note that if Ynp = 0 the superfluid r-mode has the same frequency in the lowest order in Ω, see Andersson & Comer

2001; Lee & Yoshida 2003; Andersson et al. 2009; Kantor & Gusakov 2017). The dot-dashed line denotes the superfluid r-mode

calculated analytically via the approximate method described in Sec. 5. This approximate method accounts for the first-order

terms in ∆h ≡ h1/h−1 and thus its accuracy can be estimated as ∆h2. In Fig. 6 we plot the ratio h1(r)/h(r) for our NS model

at T = 107 K (dashed line) and T = 5.5× 108 K (dot-dashed line). As one can see from this Figure, ∆h at low temperatures

is much larger than at temperatures close to Tcn: ∆h & 0.2 at T = 107 K, ∆h . 0.02 at T = 5.5 × 108 K. Therefore one

can expect that at T → Tcn the rs-mode frequency will approach the value σ0 = 2/(m + 1), and the analytical method

accuracy will increase. Indeed, we observe it in Fig. 1. One can see that even at low temperatures, when the frequency of

rs-mode significantly differs from the normal r0-mode, the two methods of calculating the frequency of rs-mode give the same

result within the accuracy of 1%. For example, at T = 107 K numerical calculation for rs-mode yields σ0 = 0.8452, while the

analytical result is σ0 = 0.8476. At higher temperatures T > 3× 108 K the relative difference numerical and analytical results

does not exceed 0.01%. Note, however, that the approximate method does not provide such great accuracy for eigenfunctions

calculation (see discussion of Fig. 5 below).

The spectrum of inertial modes exhibits some interesting features: (i) At low temperatures in the absence of entrainment

the frequencies of the normal and superfluid i-modes almost coincide. (ii) While the entrainment effect almost does not affect

the normal inertial modes (i0-modes), it noticeably pushes the frequencies of superfluid modes up. We discuss this behavior

in Sec. 6. In order to illustrate the transition from the case Ynp 6= 0 to Ynp = 0, we show on Fig. 2 the spectrum for the same

modes, but employing another (non-realistic) critical temperatures: Tcp = 5 × 108 K, Tcn = 5 × 109 K. The absolute value

of Ynp decreases as the temperature goes up, and turns into zero at T = Tcp, when all protons become non-superconducting.

(iii) In contrast to the normal r0-mode, which has the same frequency in the whole temperature range in both superfluid

and non-superfluid NSs, the frequencies of the normal i0-modes at temperatures close to Tcn do not remain constant but go

down. This is not surprising, since non-superfluid stratified npe-matter of NS cores does not support inertial modes. Superfluid

is-mode frequencies, in contrast, grow at T → Tcn. In order to explain all these features, in Sec. 6 we analyze a dispersion

relation for inertial modes in short-wavelength limit (see Eqs. 71-75 and their discussion).

In Fig. 1 one can see avoided crossings of the l0 − |m| = 3 normal i0-mode and its neighbouring l0 − |m| = 5 superfluid

is-mode (see red lines) at T ∼ 108 K and at T ∼ 5.5 × 108 K: normal mode transforms into superfluid, and vice versa. We

did not find any avoided crossing between superfluid is-modes and the normal r0-mode, and, thus, the stability peaks for

the scenario proposed by Gusakov et al. (2014a,b). However, there should be an interaction between normal and superfluid

r-modes at T → Tcn, which can stabilize normal r0-mode, and result in the formation of the stability peak at T = Tcn.

Notice also that at low temperatures the frequency of l0 − |m| = 3 superfluid is-mode is rather close to the frequency of

the normal r0-mode this may also lead to the stabilizing interaction of modes at low temperatures. One has to take into

account the next-order terms in Ω to work out these interactions, which is out of scope of this paper. Here we considered only

one particular simplified model and modes with low l0. One may expect to find avoided-crossings of r0-modes under more

realistic physical assumptions. Further we are going to calculate the spectrum using realistic critical temperature profiles and

accounting for muons, which play very important role in defining oscillation spectrum (Kantor & Gusakov 2017).

In order to illustrate properties of inertial modes, we also plot their eigenfunctions. Fig. 3 shows eigenfunctions for

2 ≤ l ≤ 7 harmonics of toroidal, poloidal and radial displacements for l0 − |m| = 3 i0-mode at T = 107 K. One can see that

the baryon displacements (blue lines) are significantly larger than the superfluid ones (red lines). The each of the dominant

eigenfunctions T22(r), Q32 and ξbr 32 has one radial node,3 in accordance with Table 3 in the paper by Yoshida & Lee (2000).

The lowest harmonics for l0−|m| = 3 and l0−|m| = 5 normal and superfluid i-modes are plotted in Fig. 4. Eigenfunctions

are normalized so that ıT22(Rcc) = 1 for i0-modes, and ıTz 22(Rcc) = 1 for is-modes. One can clearly see the key difference

between the normal and superfluid modes: for normal modes (top left and top right panel) baryon displacements (blue lines)

3 Following Yoshida & Lee (2000), we include the node at the stellar surface in the count of nodes.
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barotropic nonSFL i-modes
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rs-mode
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=
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1
0
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Figure 1. Eigenfrequency σ0 versus stellar temperature T for m = 2 inertial modes. Critical temperatures are constant throughout

the core, Tcn = 6 × 108 K, Tcp = 5 × 109 K. Solid lines denote inertial modes calculated with taking into account the entrainment

effect (Ynp 6= 0), dashed lines denote the same modes calculated without the entrainment effect. Dot-dashed line denotes the superfluid
rs-mode calculated via the approximate analytical method introduced in Sec. 5. Dotted lines correspond to l0−|m| = 3 and l0−|m| = 5

normal i-modes in a non-superlfuid barotropic NS with the same EOS and mass. In all cases the m = 2 normal r-mode (blue line) has

the same frequency σ0 = 2/3.

are comparable (and even larger) with the superfluid ones (red lines), while for superfluid modes (bottom left and bottom

right panel) superfluid displacements dominate. It is also interesting that toroidal displacements are larger than poloidal for

all considered modes. The lowest-order dominant eigenfunctions (T22(r), Q32 and ξbr 32 for i0-modes, Tz 22(r), Qz 32 and zr 32

for is-modes) have one radial node for the case l0−|m| = 3 (left) and two nodes l0−|m| = 5 – again, as expected from Table 3

in the paper by Yoshida & Lee (2000). Note that, e.g. T22(r) for the l0 − |m| = 3 is-mode has more nodes than Tz 22(r) and

cannot be used for determining the value of l0.

We also compare eigenfunctions obtained via numerical calculations and via analytical method from Sec. 5 for the

superfluid rs-mode at low (T = 107 K) and high (T = 5.5 × 108 K) temperatures. The results are shown in Fig. 5. Solid

lines represent the numerical results, and dashed lines show analytical results. For T = 107 K (left panel) we plotted only

the superfluid displacements Tz 22(r), Qz 32 and zr 32 because they are much larger than the baryon ones. Since the toroidal

component is dominating, we multiplied Qz 32 and zr 32 by 10 in order to make them visible. We see that both method lead

to qualitatively similar, bu quantitatively different result: while the eigenfrequencies coincide within the accuracy of 1%,

eigenfunctions differs significantly. At T = 5.5 × 108 K (right panel), where entrainment effect is small (see Fig. 6) and the

rs-mode frequency is close to that of r0-mode, analytical method becomes more accurate. Indeed, we see that in this case

the eigenfunctions coincide much better, within the accuracy of 10%. Here we plotted the superfluid and baryon toroidal

displacements, Tz 22(r) and T22(r), since at this temperature they are much larger than all other eigenfunctions. The large

value of T22(r) indicates a possible interaction with the normal r-mode. From the analysis of Figs 1, 2 and 5 we conclude that

the approximate method of calculating the superfluid r-mode gives a very good accuracy (better than 1%) for eigenfrequencies,

but one has to keep in mind that the eigenfunctions are calculated much less accurately, especially when entrainment effect

is large (e.g. at low temperatures).
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σ
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i-modes, Ynp 6= 0
analytical rs-mode
barotropic nonSFL i-modes

i0-mode, l0 − |m| = 5

i0-mode, l0 − |m| = 3
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Figure 2. Eigenfrequency σ0 versus stellar temperature T for m = 2 inertial modes. Critical temperatures are constant throughout

the core, Tcn = 5× 109 K, Tcp = 5× 108 K. Solid lines denote inertial modes calculated with taking into account the entrainment effect

(Ynp 6= 0 at T < Tcp), Dot-dashed line denotes the superfluid rs-mode calculated via the approximate analytical method introduced in
Sec. 5. Dotted lines correspond to l0 − |m| = 3 and l0 − |m| = 5 normal i-modes in a non-superlfuid barotropic NS with the same EOS

and mass. In all cases the m = 2 normal r-mode (blue line) has the same frequency σ0 = 2/3.

ıT
,
ıT

z
,

r/R

ıT22(r)
ıTz 22(r)
ıT42(r)
ıTz 42(r)
ıT62(r)
ıTz 62(r)

i0-mode, l0 − |m| = 3

T = 107 K

Q
,
Q

z
,

r/R

Q32(r)
Qz 32(r)
Q52(r)
Qz 52(r)
Q72(r)
Qz 72(r)

i0-mode, l0 − |m| = 3

T = 107 K

ξ b
r
,
z r

r/R

ξbr32(r)
zr32(r)
ξbr52(r)
zr52(r)
ξbr72(r)
zr72(r)

i0-mode, l0 − |m| = 3

T = 107 K

Figure 3. The lowest three harmonics for toroidal (left panel), poloidal (central panel) and radial (right panel) displacements for the
m = 2, l0 − |m| = 3 normal i0-mode at T = 107 K. Blue lines denotes Lagrangian displacements for baryons, and red lines denotes

superfluid displacements. Critical temperatures are constant throughout the core, Tcn = 6× 108 K, Tcp = 5× 109 K. Vertical dots show

the crust-core interface.

5 SUPERFLUID R-MODE IN THE LIMIT OF SMALL ENTRAINMENT

In this section we provide an approximate method that allows one to calculate the superfluid r-mode in npe NS analytically

in the lowest order in Ω, accounting for entrainment effect. If there is no entrainment (Ynp = 0), then for a given m there

exist two purely toroidal rotational modes, the normal r-mode and the superfluid r-mode, both having (to the lowest order

in Ω/Ω0) the same frequency σ0 = 2/(m+ 1) (Andersson & Comer 2001; Lee & Yoshida 2003; Andersson et al. 2009; Kantor
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,
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Figure 4. Eigenfunctions for different m = 2 inertial modes at T = 107 K. Top left: l0−|m| = 3 normal i0-mode. Top right: l0−|m| = 5
normal i0-mode. Bottom left: the l0 − |m| = 3 superfluid is-mode. Bottom right: the l0 − |m| = 5 superfluid is-mode. Only lowest-order

harmonics (l = 2 for toroidal displacements T , Tz and l = 3 for poloidal and radial displacements Q, Qz , ξbr, zr) are plotted. Blue
lines denotes Lagrangian displacements for baryons, and red lines denotes superfluid displacements. Critical temperatures are constant

throughout the core, Tcn = 6× 108 K, Tcp = 5× 109 K. Vertical dots show the crust-core interface.

& Gusakov 2017). In the case of non-zero entrainment (Ynp 6= 0 and thus h1 6= h, see Eq. 4) the superfluid r-mode turns

into a mixed poloidal-toroidal mode with different frequency. Assuming that the entrainment effect is small, one can develop

a perturbation theory in ∆h ≡ h1/h − 1, and find analytically corrections to the eigenfrequency and eigenfunctions for the

superfluid r-mode in the first order in ∆h. This method is analogous to that of Kantor & Gusakov (2017), who showed that

in npe matter r-modes can be calculated analytically in the next-to-leading order in Ω, but ignoring the entrainment effect

(i.e assuming h1 = h).

Let us start with purely toroidal oscillations, for which radial displacements vanish (ξbr = zr = 0). The continuity
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Figure 5. Dominant eigenfunctions for the m = 2 superfluid r-mode, obtained by numerical calculations (solid lines) and by the

approximate analytical method (dashed lines). Left panel displays superfluid displacements Tz 22, Qz 32 (multiplied by 10), and Qz 32

(multiplied by 10) for T = 107 K. Right panel displays toroidal displacements Tz 22 and T22 for T = 5.5× 108 K. Critical temperatures
are constant throughout the core, Tcn = 6× 108 K, Tcp = 5× 109 K. Vertical dots show the crust-core interface.
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Figure 6. The ratio h1/h versus normalized radial coordinate r/R for temperatures T = 107 K (dashed line) and T = 5.5×108 K (dot-

dashed line). Critical temperatures are constant throughout the core, Tcn = 6× 108 K, Tcp = 5× 109 K. In the absence of entrainment
(Ynp = 0) h1/h ≡ 1 (solid line).
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equations (11) and (12) in this case reduce to

∂

∂θ
sin θξ0

bθ + ımξ0
bφ = 0, (26)

∂

∂θ
sin θz0

θ + ımz0
φ = 0. (27)

θ-components of Euler equation (9) and superfluid equation (14) read

−σ0ξ
0
bθ − 2ı cos θξ0

bφ =
1

ım

∂

∂θ
sin θ

(
−σ0ξ

0
bφ + 2ıξ0

bθ cos θ
)
, (28)

−σ0z
0
θ − 2ı

h1

h
cos θz0

φ = − 1

ım

∂

∂θ
sin θ

(
σ0z

0
φ − 2ı

h1

h
z0
θ cos θ

)
. (29)

The solution to the system of equations (26) and (28) is

σ0 =
2m

l(l + 1)
, ξ0

bθ =
ım

sinθ
Tlm(r)Pml (cos θ), ξ0

bφ = −Tlm(r)
d

dθ
Pml (cos θ), (30)

which is the well-known normal r-mode. One can check that only the solution with l = m satisfies equations (8) and (10).

The second pair of equations, (27) and (29), describe the superfluid r-mode,

σ0 =
2m

l(l + 1)

h1(r)

h(r)
, z0

θ =
ım

sinθ
Tz lm(r)Pml (cos θ), z0

φ = −Tz lm(r)
d

dθ
Pml (cos θ). (31)

If h1 = h, then σ0 = 2m
l(l+1)

is the global oscillation frequency and the superfluid r-mode is indeed purely toroidal (and, as

for the normal r-mode, only l = m solution exist). However, if the entrainment effect is present, h1(r)/h(r) in general case

varies throughout the star. This means that the purely toroidal superfluid mode cannot exist, and an admixture of poloidal

component is required.

Now let us write a perturbation theory in ∆h ≡ h1/h− 1. Below we denote the zeroth-order in ∆h quantities with index

(0), and the first-order in ∆h quantities – with index (1).

In this notation, the eigenfrequency σ0 and eigenfunctions can be written in series in ∆h as

σ0 = σ0(0) + σ0(1) +O(∆h2) =
2

m+ 1
+ σ0(1) +O(∆h2), (32)

ξ0
br = ξ

0(1)
br +O(∆h2), T = T (0) + T (1) +O(∆h2), Q = Q(1) +O(∆h2), (33)

z0
r = z0(1)

r +O(∆h2), Tz = T (0)
z + T (1)

z +O(∆h2), Qz = Q(1)
z +O(∆h2), (34)

δP = δP 1(0) + δP 1(1) +O(∆h2), (35)

∆µ1
e = ∆µ1(0)

e + ∆µ1(1)
e +O(∆h2). (36)

Since in absence of entrainment the superfluid r-mode is purely toroidal, radial and poloidal displacements in the zeroth order

vanish, ξ
0(0)
br = z

0(0)
r = Q(0) = Q

(0)
z = 0.

5.1 Zero-order solution

In zeroth order in ∆h (i.e. without the entrainment effect) one has to find the eigenfrequency σ0(0) and four eigenfunctions

T (0), T
(0)
z , δP 1(0),∆µ

1(0)
e . As discussed above (see Eqs. 30 and 31), the frequency equals to

σ0(0) =
2

m+ 1
, (37)

and the toroidal displacements are proportional to the l = m Legendre polynomial,

T (0) = T (0)
mm(r)Pmm (cos θ), T (0)

z = T (0)
zmm(r)Pmm (cos θ). (38)

One can obtain from Eqs. (8), (10), (13), and (15) that the perturbations δP 1(0) and ∆µ
1(0)
e are proportional to the l = m+ 1

Legendre polynomial,

δP 1(0) = δP
1(0)
m+1,m(r)Pmm+1(cos θ), ∆µ1(0)

e = ∆µ
1(0)
em+1,m(r)Pmm+1(cos θ), (39)

while the coefficients δP
1(0)
m+1,m(r), ∆µ

1(0)
em+1,m(r) are expressed through T

(0)
mm(r) and T

(0)
zmm(r) respectively:

δP
1(0)
m+1,m(r) =

ıσ0(0)(σ0(0) − 2)

2m+ 1
w0T

(0)
mm(r), (40)

∆µ
1(0)
em+1,m(r) =

ıσ0(0)(σ0(0) − 2)

2m+ 1

h

c2ne
T (0)
zmm(r). (41)

After substituting the expressions for ∆µ
1(0)
e and δP 1(0) into Eqs. (13) and (8), one can finally obtain the solution for
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T
(0)
zmm(r) and T

(0)
mm(r) (see Kantor & Gusakov 2017, Appendix B),

T (0)
zmm(r) = C1

ne(r)

h(r)
rm, (42)

T (0)
mm(r) = rm

(
C0 + C1

∫ r

0

µn(r1)

c4w0(r1)

dP0(r1)

dr1

∂nb

∂∆µe
(r1)dr1

)
. (43)

The integration constants C0 and C1 have to be determined from the first-order equations.

5.2 First-order solution

To find the eigenfrequency correction σ0(1) and the constants C0 and C1, it is sufficient to consider only continuity equations

(11)–(12) as well as θ-components of the Euler equation (9) and the superfluid equation (14).

θ-component of the Euler equation in first order in ∆h [i.e. ignoring quadratically small terms like σ0(1)ξ
0(1)
bθ ] reads

−σ0(1)ξ
0(0)
bθ − σ0(0)ξ

0(1)
bθ − 2ı cos θξ

0(1)
bφ =

1

ım

∂

∂θ
sin θ

[
−σ0(1)ξ

0(0)
bφ − σ0(0)ξ

0(1)
bφ + 2ı

(
ξ

0(1)
br sin θ + ξ

0(1)
bθ cos θ

)]
. (44)

Substituting relations (16), (18), (20), (22) into Eq. (44) divided by sin θ and equating coefficients at the terms proportional

to Pmm , one can express Q
(1)
m+1,m(r) through ξ

0(1)
brm+1,m(r) and T

(0)
mm(r).

Similarly, using θ-component of the superfluid equation

−σ0(1)z
0(0)
θ − σ0(0)z

0(1)
θ − 2ı∆h cos θz

0(0)
φ − 2ı cos θz

0(1)
φ = − 1

ım

∂

∂θ
sin θ

[
σ0z

0(1)
φ − 2ı

(
z0(1)
r sin θ + z

0(1)
θ cos θ

)
− 2ı∆hz

0(0)
θ cos θ

]
,

(45)

one can obtain an algebraic relation between Q
(1)
zm+1,m(r), z

0(1)
rm+1,m(r) and T

(0)
zmm(r).

Now, taking the coefficient at Pmm+1 in the continuity equation for baryons

1

nb

1

r2

∂

∂r
r2nbξ

0(1)
br +

1

r sin θ

[
∂

∂θ
sin θ

∂Q(1)

∂θ
− m2Q(1)

sin θ

]
= 0, (46)

expressing Q
(1)
m+1,m through T

(0)
mm and ξ

0(1)
br,m+1,m, and substituting expression for T

(0)
mm (43), we get a first-order inhomogeneous

ODE for ξbr,m+1,m:

d

dr
ξ

0(1)
br,m+1,m +A(r)ξ

0(1)
br,m+1,m + σ0(1)C0B10(r) + σ0(1)C1B11(r) = 0, (47)

where A(r), B10(r), B11(r) are known functions of r. The solution to this equation is

ξ
0(1)
br,m+1,m(r) = H(r)

[
ξ0 + σ0(1)C0

∫ r

0

B10(x)

H(x)
dx+ σ0(1)C1

∫ r

0

B11(x)

H(x)
dx

]
, H(r) ≡ exp

(
−
∫
A(r)dr

)
=

1

nb(r)rm+3
. (48)

Since ξ
0(1)
br,m+1,m(r) should be finite at r → 0 the integration constant ξ0 = 0.

Following the same procedure for electron continuity equation, we obtain the expression z
0(1)
r,m+1,m(r),

z
0(1)
r,m+1,m(r) = Hz(r)

[
z0 + C1

∫ r

rsfl1

Bz01(x)

Hz(x)
dx+ σ0(1)C0

∫ r

rsfl1

Bz10(x)

Hz(x)
dx+ σ0(1)C1

∫ r

rsfl1

Bz11(x)

Hz(x)
dx

]
, (49)

Hz(r) ≡ exp

(
−
∫
Az(r)dr

)
=

1

ne(r)rm+3
, (50)

where rsfl1 is the inner boundary of superfluid region. If rsfl1 = 0, then the integration constant z0 = 0, because zr should be

finite at r = 0; otherwise z0 = 0 too because of the boundary condition zr = 0 at the boundary of superfluid region.

The finiteness of ξbr at the stellar surface r = R and vanishing of zr at the outer superfluid boundary r = rsfl2 imply

σ0(1)C0

∫ R

0

B10(x)

H(x)
dx+ σ0(1)C1

∫ R

0

B11(x)

H(x)
dx = 0, (51)

C1

∫ rsfl2

rsfl1

Bz01(x)

Hz(x)
dx+ σ0(1)C0

∫ rsfl2

rsfl1

Bz10(x)

Hz(x)
dx+ σ0(1)C1

∫ rsfl2

rsfl1

Bz11(x)

Hz(x)
dx = 0. (52)

The system (51)–(52) has two independent solutions.4 The first solution is σ0(1) = C1 = 0; it is the normal r-mode,

σ0 = σ0(0) =
2

m+ 1
, T (0)

mm = C0r
m, T (0)

zmm = 0. (53)

The second one, having σ0(1) 6= 0 and C1 6= 0, is the superfluid r-mode.

We compared this analytical solution with the numerical one (see Section 4) and found that the difference between them

does not exceed 1% even at low temperatures, where ∆h is relatively large, ∆h ∼ 0.2− 0.25.

4 The constant C0 can be set to arbitrary value (e.g. C0 = 1) by choosing an appropriate normalization for eigenfunctions.
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The next step is to combine two approximate method and calculate r-modes accounting for both entrainment and next-

to-leading-order in Ω terms. Entrainment may significantly shift resonance temperatures, where an avoided crossing of normal

and superfluid r-mode occurs, and thus affect the shape of r-mode instability window.

6 WKB ANALYSIS FOR INERTIAL MODES

In this section we obtain a dispersion relation for inertial modes in superfluid npe matter, and analyze it in different limiting

cases in order to explain behaviour of the modes at low and high temperatures.

Let us find the dispersion relation for inertial modes defined by equations (8)–(15) in a short wavelength limit, where

derivatives of any perturbation δA can be replaced as ∂
∂r δA→ −ıkδA, where k is the wave vector.

Continuity equation for baryons (11) in this limit reads:

−ıkξ0
b = 0. (54)

Here we omitted the term ξ0
brd(lnnb)/dr in comparison to −ıkξ0

b, since the wavelength is assumed to be much smaller than

the density scale height, k−1 � |d lnnb/dr|−1.

Subtracting continuity equation for electrons (12) from Eq. (11), one obtains

−ıkz0 − ξ0
br
d lnxe

dr
= 0, xe ≡ ne

nb
. (55)

Euler equation (8)–(10) and superfluid equation (13)–(15) read:

−σ2
0ξ

0
br − 2ıσ0 sin θξ0

bφ = ıkr
δP 1

w0
+

µn

w2
0c

2

∂nb

∂∆µe
∆µ1

e
dP0

dr
, (56)

−σ2
0ξ

0
bθ − 2ıσ0 cos θξ0

bφ = ıkθ
δP 1

w0
, (57)

−σ2
0ξ

0
bφ + 2ıσ0

(
ξ0
br sin θ + ξ0

bθ cos θ
)

= ıkφ
δP 1

w0
, (58)

−σ2
0z

0
r − 2ı

h1

h
σ0 sin θz0

φ = ıkr
c2ne

h
∆µ1

e , (59)

−σ2
0z

0
θ − 2ıσ0

h1

h
cos θz0

φ = ıkθ
c2ne

h
∆µ1

e , (60)

−σ2
0z

0
φ + 2ı

h1

h
σ0

(
z0
r sin θ + z0

θ cos θ
)

= ıkφ
c2ne

h
∆µ1

e . (61)

Equations (54)–(61) can be written in a form A · x = 0, where x =
(
δP 1,∆µ1

e , ξ
0
br, ξ

0
bθ, ξ

0
bφ, z

0
r , z

0
θ , z

0
φ

)
, and A is a 8× 8

matrix. Dispersion relation between the frequency σ = σ0Ω and the wave vector k can be found by solving the equation

det A = 0, which reduces to a biquadratic equation on σ0,

Aσ4
0 +Bσ2

0 + C = 0, (62)

where the coefficients A,B,C are defined as

A = k4 − y

n2
e

∂nb

∂∆µe

dP0

dr

dxe

dr

(
k2 − k2

r

)
, (63)

B = −4k2 (Ωk)2

Ω2

[(
h1

h

)2

+ 1

]
+ 4

(
h1

h

)2
y

n2
e

∂nb

∂∆µe

dP0

dr

dxe

dr
(k2 − k2

r), (64)

C = 16

(
h1

h

)2
(Ωk)4

Ω4
. (65)

To get a further insight into a problem, let us introduce the following quantities: equilibrium speed of sound ceq, adiabatic

speed of sound cfr and the coupling parameter s, which are defined as

c2eq ≡ c2
dP/dr

µndnb/dr
, c2fr ≡ c2

1

µn

(
∂P

∂nb

)
xe

, s ≡
ne (∂P/∂ne)nb

nb (∂P/∂nb)xe
. (66)

The derivative ∂nb
∂∆µe

can be expressed in terms of these variables as(
∂nb

∂∆µe

)
P

=
nbne

sw0

(
1

c2eq

− 1

c2fr

)
. (67)

Also, using the hydrostatic equilibrium condition, we express gradients of equilibrium quantities (P0 and xe0) through gravi-

tational acceleration g as

dP0

dr
= −w0g,

dxe

dr
= g

xe
s

(
1

c2eq

− 1

c2fr

)
. (68)

MNRAS 000, 000–000 (0000)



12 V. A. Dommes, E. M. Kantor, M. E. Gusakov

Further, let us introduce the Brunt-Väisälä frequency N ≡ g
(
1/c2eq − 1/c2fr

)1/2
, which enters the dispersion relation for

g-modes (Reisenegger & Goldreich 1992), and the ‘superfluid’ speed cSFL ≡ sceqcfr/
√
y(c2fr − c2eq). The latter quantity in the

limit y → ∞ (or, equivalently, T → Tcn), equals to the superfluid sound speed (see e.g. Andersson & Comer 2001; Gusakov

& Andersson 2006).

Using the above definitions, coefficients A and B from Eqs. (63)–(64) can be presented as

A = k4 +
N 2(k2 − k2

r)

c2SFL

, (69)

B = −4k2 (Ωk)2

Ω2

[(
h1

h

)2

+ 1

]
− 4
N 2(k2 − k2

r)

c2SFL

. (70)

Now, if we substitute A, B and C into a dispersion relation σ2 = Ω2(−B±
√
B2 − 4AC)/(2A), the result will be rather lengthy.

To make it more clear, let us note that at low temperatures the ratio N/(cSFLk) is small, N/(cSFLk)� 1. For example, for a

wavenumber k = 10−5 cm−1 and a NS model used in Section 4 at distance from center r = R/2 and temperature T = 107 K

this ratio equals N/(cSFLk) = 0.013. 5

In this limit the dispersion relation has the following form,

σ2 = 4
(Ωk)2

k2
− 4

N 2

c2SFLk
2

(k2 − k2
r)

k4

(
h1
h

)2
Ω2k2 − (Ωk)2(
h1
h

)2 − 1
+O

( N 4

c4SFLk
4

)
, (71)

σ2 = 4

(
h1

h

)2
(Ωk)2

k2
+ 4

N 2

c2SFLk
2

(k2 − k2
r)

k4

(
h1

h

)4
Ω2k2 − (Ωk)2(

h1
h

)2 − 1
+O

( N 4

c4SFLk
4

)
. (72)

The first relation (71) describes normal i0-modes. In barotropic matter, where N = 0, they have a standard dispersion

relation σ2 = 4(Ωk)2/k2 (Landau & Lifshitz 1987). The second relation (72) describes superfluid is-modes, for which the

leading term differs from that of i0-modes by the factor (h1/h)2. One can conclude that, as the entrainment effect decreases,

frequencies of a given superfluid is-mode approaches the frequency of its normal (i0-mode) counterpart. Indeed, we observe

such behaviour for is-modes in Fig. 2 at T < Tcp. Note, however, that the relations (71)–(72) are invalid if there is no

entrainment at all (Ynp = 0 and therefore h1 = h), since they contain terms that are proportional to
[
(h1/h)2 − 1

]−1
. The

asymptotic expansion for the case h1 = h reads

σ2 = 4
(Ωk)2

k2
± 4

N
cSFLk

√
(k2 − k2

r)

k3
(Ωk)

√
Ω2k2 − (Ωk)2 +O

( N 2

c2SFLk
2

)
, (73)

where the ‘+’ sign refers to is-mode, and the ‘−‘ sign refers to the i0-mode. The frequencies of normal and superfluid i-modes

coincide up to the first order in N/(cSFLk); indeed, one can see in Fig. 1, that the frequencies of l0 −m = 3 and l0 −m = 5

is-modes in the case Ynp = 0 are very close to the corresponding i0-modes at low temperatures T � Tcn. Fig. 2 also illustrates

this point: when protons become non-superfluid (at T > Tcp), the entrainment effect vanishes and, while temperature is still

much less than Tcn, is-modes and i0-modes with same l0 are close to each other.

Now let us examine the behaviour of inertial modes in the limit of high temperatures T → Tcn. Since the quantity y in

this limit tends to infinity, y →∞, the ‘superfluid‘ speed tends to zero, cSFL → 0. The Brunt-Väisälä frequency, on the other

hand, does not depend on temperature. Thus, the ratio N/(cSFLk) can approach arbitrarily large values, and asymptotic

expansions (71)-(73) are invalid. In the limit cSFLk/N � 1 asymptotic expansion for the dispersion relation reads

σ2 = 4
c2SFLk

2

N 2

(Ωk)4

Ω2k2 (k2 − k2
r)

+O

(
c4SFLk

4

N 4

)
, (74)

σ2 = 4

(
h1

h

)2

Ω2 − 4
c2SFLk

2

N 2

[
Ω2k2 − (Ωk)2

] [
(h1
h

)2Ω2k2 − (Ωk)2
]

Ω2k2 (k2 − k2
r)

+O

(
c4SFLk

4

N 4

)
. (75)

Here we see that normal and superfluid modes, described by equations (74) and (75) respectively, exhibit qualitatively different

properties at T → Tcn: i0-mode frequencies vanish6, whereas is-mode frequencies have finite values. One can clearly observe

such behaviour in Fig. 1 and Fig. 2.

To sum up, in this section we obtained dispersion relations for normal and superfluid inertial modes in superfluid npe

matter in a short wavelength limit. We analyzed this relations in two opposite limiting cases. The first case, cSFLk/N � 1,

5 We remind the reader that the wavenumber k is assumed to be large; in particular, it is much greater than the inverse stellar radius,

k � 1/R = 8.2× 10−7 cm−1.
6 We remind the reader that we are considering only pure i-modes with σ ∝ Ω at low rotation frequencies; in barotropic (N = 0) star

normal inertial modes survive at T > Tcn, since they always have frequency σ2 = 4(Ωk)2/k2, (see Eqs. 71 and 73 with N = 0). In

non-superfluid non-barotropic stars inertial modes (except for the single r-mode) do not exist, since in the limit Ω → 0 they turn into
g-modes (Unno et al. 1989). Therefore it is not surprising that i0-modes at T → Tcn.

That is why σ → 0 at T → Tcn in Eq. (74).

MNRAS 000, 000–000 (0000)



Temperature-dependent oscillation modes in rotating superfluid neutron stars 13

describes behaviour of inertial modes at low temperatures T � Tcn. The corresponding relations are presented by Eqs. (71)-

(72) (if the entrainment effect is present, h1 6= h) and Eq. (73) (if h1 = h). These relations explain why the frequencies of

superfluid is-modes are close to frequencies of the corresponding normal i0-modes if the entrainment effect is small or absent.

The second case, cSFLk/N � 1, corresponds to the limit T → Tcn, in which i0-mode frequencies (Eq. 74) tend to zero, while

is-mode frequencies (Eq. 75) remain finite. These conclusions are consistent with the properties of inertial modes spectrum

calculated in Section 4 (see Fig. 1 and Fig. 2).

7 SUMMARY

We calculated the spectrum of l0 − |m| = 1, l0 − |m| = 3, and l0 − |m| = 5 inertial modes for m = 2 in slowly rotating

superfluid npe NSs, working in the leading order in rotation and including for the first time both effects of entrainment and

finite temperatures. We present in Section 4 the first results of such calculations. We worked in Newtonian limit (but with

relativistic EOS and equilibrium configuration) and assumed that critical temperatures for baryon superfluidity are constant

throughout the core.

The main goal of the calculations is to find possible avoided-crossings in the plane ‘mode frequency - stellar temperature’

between the normal r0-mode and superfluid inertial modes, is-modes. At stellar temperatures corresponding to avoided-

crossings, eigenfunctions of r0-mode and is-mode mix with each other. It stabilizes the r0-mode and provides an explanation

of hot and rapidly rotating NSs in LMXBs Gusakov et al. (2014a,b). In our simplified physical model we did not find any

avoided-crossing of r0-mode with superfluid modes in the leading order in rotation frequency. However, we obtained that at

temperatures close to the critical temperature of neutrons one should expect stabilizing interaction of r0-mode with superfluid

rs-mode independently of the details of the physical model employed. Moreover, in our particular model we found that at

low temperatures l0 − |m| = 3 is-mode has frequency rather close to the r0-mode frequency and may also stabilize r0-mode.

Further we are going to calculate the spectrum within more accurate models, taking into account muons and realistic critical

temperature profiles.

To simplify calculations we have developed an approximate method for calculation of rs-mode eigenfrequency. In absence

of entrainment normal and superfluid r-modes are purely toroidal and have the same frequency in the leading order in Ω

(Andersson & Comer 2001; Lee & Yoshida 2003; Andersson et al. 2009; Kantor & Gusakov 2017), but next-order approximation

removes this degeneracy, and these modes exhibit avoided crossings at certain resonance temperatures (Kantor & Gusakov

2017). However, the entrainment effect significantly shifts the frequency of supefluid r-mode (see Figs. 1–2), and has to be

taken into account. In the present paper we calculated superfluid r-mode analytically in the limit of small entrainment (see

Section 5), assuming npe core composition and working in the leading order in Ω only. We found a good agreement with the

results obtained from the numerical code. This analytical method is similar that of Kantor & Gusakov (2017). In future works

we are going to combine both methods, accounting for both first-order entrainment and next-to-leading order in Ω effects.

This will allow to calculate avoided crossings between normal and superfluid r-modes (and, thus, r-mode instability windows)

under more realistic assumptions.

Also in Section 6 we present and discuss dispersion relations for normal and superfluid inertial modes in superfluid npe

matter in a short wavelength limit. With a help of these relations we explain some properties of inertial modes in the limits of

both low (T � Tcn) and high (T → Tcn) temperatures, that can be observed in the numerical results calculated in Section 4.
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