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We calculate the bulk viscosity due to nonequilibrium weak processes in superfluid nucleon-hyperon

matter of neutron stars. For that, the dissipative relativistic hydrodynamics, formulated eariler [M. E.

Gusakov, Phys. Rev. D 76, 083001 (2007).] for superfluid mixtures, is extended to the case when both

nucleons and hyperons are superfluid. It is demonstrated that in the most general case (when neutrons,

protons, �, and �� hyperons are superfluid), nonequilibrium weak processes generate 16 bulk viscosity

coefficients, with only three of them being independent. In addition, we correct an inaccuracy in a widely

used formula for the bulk viscosity of nonsuperfluid nucleon-hyperon matter.
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I. INTRODUCTION

It is well-known (see, e.g., [1–4]), that neutron stars can
be unstable with respect to the emission of gravitational
waves. The matter in a pulsating neutron star is not (even
locally) in chemical equilibrium. The relaxation towards
chemical equilibrium is accompanied by the dissipation of
pulsation energy. This process is one of the most important
dissipative processes, suppressing the growth of
gravitational-wave instability. It can be described by the
introduction of an effective bulk viscosity in the hydro-
dynamic equations (see, e.g., [5]).

The bulk viscosity due to nonequilibrium weak pro-
cesses in neutron stars was calculated by a number of
authors (for a review see, e.g., [6]). It strongly depends
on the composition of stellar matter. In this paper, we
consider the matter of inner layers of neutron stars, com-
posed of electrons, muons, neutrons, protons, �, and ��
hyperons (nucleon-hyperon matter). A calculation of the
bulk viscosity for nucleon-hyperon matter is complicated
by the fact that baryons in such matter can be superfluid [7–
10].

The bulk viscosity of superfluid matter was calculated in
a number of papers (see, e.g., [11–16]). In these papers,
only one bulk viscosity coefficient was studied, analogous
to that in nonsuperfluid hydrodynamics. The effects of
superfluidity were taken into account only in calculating
the reaction rates. However, it is known that there are
several bulk viscosity coefficients in hydrodynamics of
superfluid liquid [5,17–19].

In a recent paper [17], four bulk viscosity coefficients
were calculated for the matter composed of superfluid
neutrons, superfluid protons, and electrons. It was shown
that taking into account three additional bulk viscosity
coefficients results in a significant decrease of character-
istic damping times of sound modes (approximately, by a
factor of 3).

In this paper, we extend the results of Ref. [17] to the
case of nucleon-hyperon matter. In particular, we demon-
strate how the dissipative hydrodynamics [17] should be

modified to describe a possible presence of superfluid
hyperons. Next, we show that in the most general case,
when baryons of any species are superfluid, nonequilib-
rium processes of mutual transformations of particles gen-
erate sixteen bulk viscosity coefficients, only three of them
being independent. In addition, we correct an inaccuracy in
the expression for the bulk viscosity of nonsuperfluid
nucleon-hyperon matter made in Ref. [14] and spread
widely in the literature (see, e.g., [20–25]). We calculate
the bulk viscosity correctly and compare our results with
those of Ref. [14].
The paper is organized as follows. In Sec. II, we calcu-

late the bulk viscosity of nonsuperfluid nucleon-hyperon
matter. In Sec. III, we calculate and analyze all sixteen bulk
viscosity coefficients describing dissipation in superfluid
nucleon-hyperon mixtures; the relations between these
coefficients are also discussed. Section IV presents a
summary.

II. BULK VISCOSITY OF NONSUPERFLUID
HYPERON MATTER

In this section, we derive an expression for the bulk
viscosity due to nonequilibrium processes of particle trans-
formations in a dense nonsuperfluid matter composed of
electrons (e), muons (�), neutrons (n), protons (p), and
hyperons (� and �� hyperons). Here and below, the
variation �A of some physical quantity A is defined as
the difference A� A0, where A0 is the value of A in
thermodynamic equilibrium (when matter is unperturbed).
The most effective weak processes in nucleon-hyperon

matter are the following nonleptonic reactions
[13,14,26,27]

nþ n $ pþ ��; (1)

nþ p $ pþ�; (2)

nþ n $ nþ�; (3)
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nþ� $ �þ�: (4)

The full thermodynamic equilibrium implies the equilib-
rium with respect to these reactions,

2�n0 ��p0 ���0 ¼ 0; (5)

�n0 ���0 ¼ 0: (6)

Here�i0 are the chemical potentials of particle species i ¼
n, p, �, � taken at equilibrium (correspondingly, �i are
the chemical potentials in the perturbed matter). Notice
that the equilibrium conditions for reactions (2)–(4),
coincide.

Leptonic reactions (e.g, direct and modified Urca pro-
cesses with electrons or muons) are much slower in com-
parison to the reactions (1)–(4). For ‘‘typical’’ perturbation
frequencies (e.g., 103–104 s�1 for radial modes or for r
modes of rapidly rotating neutron stars) the leptonic reac-
tions cannot influence substantially the chemical compo-
sition of perturbed matter. Hence, the main contribution to
the bulk viscosity comes from the nonleptonic reactions
(1)–(4). In addition to the processes described above, there
is a fast nonleptonic reaction due to the strong interaction
of baryons

nþ� $ pþ ��: (7)

In accordance with Ref. [14], we assume that the perturbed
matter is always in equilibrium with respect to this reac-
tion,

��fast � �n þ�� ��p ��� ¼ 0: (8)

Let us obtain the expression for the bulk viscosity of non-
superfluid nucleon-hyperon matter. For that, we consider a
pulsating nucleon-hyperon matter, slightly perturbed from
an equilibrium state (so that one can use the linear pertur-
bation theory). If the reactions (1)–(4) are forbidden, then
pulsations are reversible and there is no energy dissipation
[notice that, the reaction (7) is open]. We denote the
pressure in this case by Peq. The presence of the reactions

(1)–(4) in the pulsating matter leads to a difference be-
tween the real pressure P and Peq. We define the bulk

viscosity � by the formula

P� Peq � ��divðuÞ; (9)

where u is the hydrodynamic velocity of pulsations. Notice
that this definition differs from the usually accepted one
(see, e.g., Ref. [14]). Usually, instead of Peq in formula (9)

it is common to substitute the pressure which would be
established in the pulsating matter assuming that there is an
equilibrium with respect to all the reactions (i.e., the re-
actions are very fast). Both these approaches are possible.

Generally, the pressure P and the other thermodynamic
quantities depend on six parameters, for example, the
number densities nj, where j ¼ n, p, �, �, e, � (one

can neglect the dependence on temperature in strongly

degenerate neutron-star matter, see, e.g.,
Refs. [17,28,29]). However, these parameters are not all
independent because in the nucleon-hyperon matter two
conditions should be satisfied: the equilibrium condition
(8) with respect to the reaction (7) and the condition of
quasineutrality,

np ¼ ne þ n� þ n�: (10)

Taking into account that the reactions (1)–(4) and (7)
conserve the number of leptons and the leptonic processes
are neglected, we obtain that the relative number densities
of leptons xe � ne=nb and x� � n�=nb (nb � nn þ np þ
n� þ n� is the baryon number density) remain constant
during the pulsations,

�xe ¼ �x� ¼ 0: (11)

This result is valid only for nonsuperfluid matter and
follows from the continuity equations for baryons, elec-
trons, and muons,

@�nb
@t

þ divðnbuÞ ¼ 0; (12)

@�ne
@t

þ divðneuÞ ¼ 0; (13)

@�n�

@t
þ divðn�uÞ ¼ 0: (14)

If baryons of any species n, p, �, and/or � are superfluid,
then the continuity equation for baryons (12) should be
modified (see Sec. III) and Eq. (11) does not hold.
In view of Eqs. (8) and (10), pressure is a function of

only four independent variables, say, nb, nH, xe, and x�
(nH � n� þ n� is the hyperon number density).
Expanding Pðnb; nH; xe; x�Þ in the Taylor series near the

equilibrium state, one obtains for the variation of pressure
�P,

�P ¼ @Pðnb; nH; xe; x�Þ
@nb

�nb þ
@Pðnb; nH; xe; x�Þ

@nH
�nH;

(15)

where we used Eq. (11). The variations �nb and �nH can
be found from the continuity equations for baryons (12)
and hyperons,

@�nH
@t

þ divðnHuÞ ¼ ��1 þ ��2 þ��3 þ ��4: (16)

Here ��1, ��2, ��3, and ��4 are the net numbers of
hyperons generated in a unit volume per unit time in
reactions (1)–(4), respectively. If deviation from the equi-
librium state is small, the sources��l (l ¼ 1; . . . ; 4) can be
expressed as (see, e.g, [11–13])

��l ¼ �l��l; (17)

where �l are the ‘‘reaction rates,’’ some functions of num-
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ber densities and temperature; ��1 � 2�n ��p ���,

��2 ¼ ��3 ¼ ��4 � �n ��� are the chemical poten-
tial disbalances for the reactions (1)–(4), respectively.
Taking into account the equilibrium condition (8) for the
fast reaction (7), one has: ��1 ¼ ��2 ¼ ��3 ¼ ��4 �
��.

Notice that there is no source in Eq. (16) owing to the
fast reaction (7), because this reaction does not change the
number of hyperons. The choice of another variable in-
stead of nH (for example, the neutron number density nn)
would make it necessary to take into account the source
due to the reaction (7). In the paper of Lindblom and Owen
[14] (and in the subsequent papers [20–25]) the number
density of neutrons was chosen as such variable, but the
source of neutrons owing to the fast reaction (7) was
neglected. This leads to an error in the expression for the
bulk viscosity.

In fact, one could think that the source of neutrons due to
the fast reaction (7) equals zero, because the matter, as we
mentioned before, is in equilibrium with respect to this
reaction. However, this is not quite true, because even
small (negligible in all other situations) deviation from
the equilibrium ��fast ¼ �n þ�� ��p ��� multi-

plied by the large reaction rate �fast results in a finite
(nonzero) source ��fast ¼ �fast��fast. This fact was em-
phasized by Jones [26].

Now let us assume that the perturbation of matter is
periodic, so that all the thermodynamic quantities oscillate
near their equilibrium values with the frequency !. Then

one finds from the continuity equations (12) and (16)

�nb ¼ � nb
i!

divðuÞ; (18)

�nH ¼ � 1

i!
½nHdivðuÞ � ����; (19)

where � � �1 þ �2 þ �3 þ �4. As in the case of the pres-
sure, the chemical potential disbalance �� in Eq. (19) is a
function of nb, nH, xe, and x�. In analogy with Eq. (15) for

�P, it can be expanded near the equilibrium state and
written as

�� ¼ @��ðnb; nH; xe; x�Þ
@nb

�nb

þ @��ðnb; nH; xe; x�Þ
@nH

�nH: (20)

Here we take into account that �� ¼ 0 in the full equilib-
rium and that the relative number densities xe and x� do

not change in the course of pulsations [see Eq. (11)].
Now, solving the system of equations (18)–(20) and

substituting the expressions for �nb and �nH into
Eq. (15), we derive

P� Peq ¼ divðuÞ @Pðnb; xH; xe; x�Þ
@xH

�

!2

� @��ðnb; xH; xe; x�Þ
@nb

�
�
i�

!nb

@��ðnb; xH; xe; x�Þ
@xH

þ 1

��1
: (21)

Here the independent variables are nb, xH � nH=nb, xe,
and x�. It is easy to express the bulk viscosity � from this

equation. We are mainly interested in the real part of �
because it is Reð�Þ that is responsible for the energy dis-
sipation (see, e.g., [11]). In this sense it is probably more
appropriate to define Reð�Þ as the ‘‘real’’ bulk viscosity. It
equals

Re� ¼ �n2b
�

@Pðnb; xH; xe; x�Þ
@xH

@��ðnb; xH; xe; x�Þ
@nb

�
�
@��ðnb; xH; xe; x�Þ

@xH

��2 1

1þ!2�2
; (22)

where � � nb=�½@��ðnb; xH; xe; x�Þ=@xH��1.

For comparison, we present here the result of Lindblom
and Owen [14] [notice that, these authors neglected the
reactions (3) and (4), thus assuming that �3 ¼ �4 ¼ 0]

FIG. 1. Bulk viscosity � versus baryon number density nb at
T ¼ 3� 109 K and ! ¼ 104 s�1 for nonsuperfluid matter.
Solid, long-dashed, and dot-dashed lines show our results and
the results of Ref. [13,14], respectively. Vertical dashes indicate
the thresholds for (from left to right): appearance of muons;
direct Urca processes involving electrons and muons, respec-
tively; appearance of� and �� hyperons, respectively. The inset
demonstrates the difference between our calculations and those
of Refs. [13,14] in more detail.

BULK VISCOSITY OF SUPERFLUID HYPERON . . . PHYSICAL REVIEW D 78, 083006 (2008)

083006-3



Re�L ¼ � n2b
2�1 þ �2

@Pðnb; xn; xe; x�Þ
@xn

� @��ðnb; xn; xe; x�Þ
@nb

�
@��ðnb; xn; xe; x�Þ

@xn

��2

� 1

1þ!2�2L
; (23)

where �L � nb=ð2�1 þ �2Þ ½@��ðnb; xn; xe; x�Þ=@xn��1;

xn � nn=nb.
The bulk viscosity (22) depends on the reaction rates �1,

�2, �3, and �4. Some of them were calculated in a number
of papers [13,14,20,26,27]. Different authors present dif-
ferent results for the rates; the discussion of advantages and
disadvantages of their calculations can also be found in
those papers. Unfortunately, to date, there are no strict
calculations of the reaction rates. It is reasonable to think
that all the rates are of the same order of magnitude.

The dependence of the bulk viscosity on the baryon
number density for the temperature T ¼ 3� 109 K and
the oscillation frequency ! ¼ 104 s�1 is presented in
Fig. 1. While calculating the bulk viscosity, we used the
third equation of state of Glendenning [30].

The solid line illustrates our results for the bulk viscosity
obtained from Eq. (22). We employed the reaction rates
from Ref. [14] and, following that paper, we put the rates of
the reactions (3) and (4) equal zero, �3 ¼ �4 ¼ 0. The dot-
dashed line is the bulk viscosity calculated as described in
Ref. [14] [see also formula (23)]. We remind the reader that
in that paper the relative number density of neutrons xn was
chosen as one of the independent variables. However, the
source of neutrons due to the fast reaction (7) was erro-
neously neglected. As one can see, this mistake does not
influence the results significantly [typically, by
�ð10–30Þ%]. By the long dashes we show the results of
Ref. [13]. In Ref. [13], only one hyperon reaction was
taken into account, namely, the reaction (1). As in
Ref. [14], the source due to the fast reaction (7) was
neglected and, in addition, the equilibrium condition (8)
with respect to this reaction was ignored. Moreover, the
authors of Ref. [13] used the nonrelativistic approximation
when calculating the rate of the reaction (1). This assump-
tion is not well justified for the baryon number densities in
the range nb * ð0:3–0:6Þ fm�3 because of the strong de-
pendence of the reaction rates on nb (see, e.g., Ref. [14]).

III. BULK VISCOSITY OF SUPERFLUID
NUCLEON-HYPERON MATTER

In this section, unless it is otherwise stated, the sub-
scripts i and k refer to baryons (i, k ¼ n, p, �, �). The
summation is assumed over repeated baryon indices i and
k. The subscript l refers to leptons (l ¼ e,�); the subscript
j runs over all particle species (j ¼ n, p, �, �, e, �).

A. The relativistic hydrodynamics of superfluid
nucleon-hyperon mixture

In Ref. [17], the dissipative relativistic hydrodynamics
of superfluid mixtures was formulated for npematter. Here
we extend this hydrodynamics to the case of superfluid
nucleon-hyperon matter composed of superfluid protons,
neutrons, � and �� hyperons, as well as normal electrons
and muons.
The general formulas [Eqs. (26–34) of Ref. [17]] de-

scribing the relativistic hydrodynamics of superfluid mix-
ture remain valid with the notion that now the subscripts i
and k refer not only to superfluid nucleons (i, k ¼ n, p) but
also to superfluid hyperons (i, k ¼ n, p, �, �). For in-
stance, the continuity equations for particle species j are
written as

@�j
�
ðjÞ ¼ 0; (24)

with

j�ðiÞ ¼ niu
� þ Yikw

�
ðkÞ; j�ðlÞ ¼ nlu

�: (25)

Energy-momentum conservation law has the form

@�T
�� ¼ 0; (26)

where

T�� ¼ ðPþ "Þu�u� þ P��� þ Yik½w�
ðiÞw

�
ðkÞ þ�iw

�
ðkÞu

�

þ�kw
�
ðiÞu

�� þ ��� (27)

and ��� is the dissipative correction to the energy-
momentum tensor which will be specified below. It satis-
fies the constraint

u�u��
�� ¼ 0: (28)

The hydrodynamic equations must be supplemented by the
second law of thermodynamics

d" ¼ TdSþ�idni þ�edne þ��dn�

þ Yik

2
d½w�

ðiÞwðkÞ��: (29)

Using the quasineutrality condition (10) and the condition
of equilibrium (8) with respect to the fast reaction (7),
Eq. (29) can be rewritten as

d" ¼ TdSþ�ndnb � ��dnH � ð�n ��p ��eÞdne
� ð�n ��p ���Þdn� þ Yik

2
d½w�

ðiÞwðkÞ��; (30)

where we remind the reader of the notation �� � �n �
��. In full thermodynamic equilibrium the third, fourth,
and fifth terms are zero because of Eqs. (5) and (6), and of
the beta-equilibrium conditions,�n ¼ �p þ�e and�n ¼
�p þ�� (see, e.g., Refs. [11,12]).

In Eqs. (24)–(30) Yik is a 4� 4 symmetric matrix which
is related in the nonrelativistic limit to the entrainment
matrix �ik by the equality [17,31] Yik ¼ �ik=ðmimkÞ,
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where mi is the mass of a free baryon of species i (the
matrix �ik is a natural generalization of the superfluid
density to the case of superfluid mixtures, see, e.g.,
Refs. [32–34]). To the best of our knowledge, the matrix
Yik has not been calculated for a nucleon-hyperon matter.
Furthermore, " is the energy density; �j is the relativistic

chemical potential of particle species j; and S is the
entropy density. The pressure P in Eq. (27) is defined in
the same way as for ordinary (nonsuperfluid) matter
[17,31],

P ¼ �"þ�ini þ�ene þ��n� þ TS: (31)

Next, ��� ¼ diagð�1;þ1;þ1;þ1Þ in Eq. (27) is the spe-
cial relativistic metric; u� is the four velocity of normal
(nonsuperfluid) liquid component normalized so that
u�u

� ¼ �1 (we assume that all nonsuperfluid compo-

nents move with the same velocity u�). The four-vectors
w

�
ðiÞ satisfy the condition

u�w
�
ðiÞ ¼ 0 (32)

and describe motion of superfluid components. To take into
account the potentiality of superfluid motion, a four vector
w

�
ðiÞ should be expressed through some scalar functions 	i

and written as (see Ref. [17])

w
�
ðiÞ ¼ @�	i � qiA

� � ð�i þ ßiÞu�: (33)

Here the scalar 	i is related to the wave function phase of
the Cooper-pair condensate �i by the equality r	i ¼
@r�i=2; A

� is the four potential of the electromagnetic
field; qi is the electric charge of particle species i; ßi is a
small dissipative correction to be determined below.

Note that one can avoid the introduction of new func-
tions	i in the hydrodynamics of superfluid mixtures if one
formulates the potentiality condition (33) in the equivalent
way

@�½w�
ðiÞ þ qiA

� þ ð�i þ ßiÞu��
¼ @�½w�

ðiÞ þ qiA
� þ ð�i þ ßiÞu��: (34)

Below we will use the latter formulation because it is more
suitable for our purpose. In this approach, four vectors w�

ðiÞ
are treated as independent hydrodynamic variables.

The hydrodynamics discussed above would be incom-
plete without an indication of what we mean by a comoving
frame, that is the frame where we measure (and define) all
the thermodynamic quantities. As was demonstrated in
Ref. [17], the condition (32) dictates that the comoving is
the frame where the four velocity u� equals u� ¼
ð1; 0; 0; 0Þ. In this frame, the basic thermodynamic quanti-
ties ", nj, and wðiÞ (or r	i) are defined by [see Eqs. (25),

(27), (28), and (32)]

j0j ¼ nj; (35)

ji ¼ YikwðkÞ ¼ Yikr	k; (36)

T00 ¼ ": (37)

All other thermodynamic quantities can be considered as
their functions or, equivalently, the functions of ", nj, and

w�
ðiÞwðkÞ�.
In analogy with Ref. [17], from Eqs. (24), (26), and (29),

one can derive the entropy generation equation, which
defines the dissipative corrections ��� and ßi,

@�S
� ¼ �ßi

T
@�½Yikw

�
ðkÞ� � ���@�

�
u�
T

�
þ Yikw

�
ðkÞ

ßi
T2

@�T

þ u�Yikw
�
ðkÞ

ßi
T
@�u�: (38)

Here S� is the entropy current density,

S� ¼ Su� � u�
T
��� � ßi

T
Yikw

�
ðkÞ; (39)

satisfying the natural constraint u�S
� ¼ �S. The last two

terms in Eq. (38) are small and can be omitted in the
majority of applications (for more details, see the discus-
sion in Ref. [17]).
Using the requirement that the entropy does not de-

crease, one can obtain for the dissipative corrections [ne-
glecting the last two terms in the right-hand side of
Eq. (38)]

��� ¼ �
ðH��u� þH��u�Þð@�T þ Tu�@�u�Þ

� �H��H��

�
@�u� þ @�u� � 2

3
���@"u

"

�

� �1iH
��@�½Yikw

�
ðkÞ� � �2H

��@�u
�; (40)

ßn ¼ ��3i@�½Yikw
�
ðkÞ� � �4n@�u

�; (41)

ß� ¼ ��5i@�½Yikw
�
ðkÞ� � �4�@�u

�; (42)

ß� ¼ ��6i@�½Yikw
�
ðkÞ� � �4�@�u

�; (43)

ßp ¼ ��7i@�½Yikw
�
ðkÞ� � �4p@�u

�: (44)

Here 
 and � are the thermal conductivity and shear
viscosity coefficients, respectively; H�� � ��� þ u�u�

is the projection matrix; �1i, �2, �3i, �4i, �5i, �6i, and �7i

are 25 bulk viscosity coefficients (i ¼ n, p, �, �). We
would like to emphasize that the dissipative corrections
(40)–(44) are incomplete in a sense that they (i) do not
include various terms related to particle diffusion;
(ii) neglect (typically) small terms, explicitly depending
on w�

ðiÞ. For example, we neglect the terms of the form

w�
ðiÞ@�T and u�w�

ðiÞ@�u
� in the expressions for ßk and �

��,

respectively. The similar approximation is very well-
known in the nonrelativistic theory of superfluids (see,
e.g., the textbook of Landau and Lifshitz [5], Sec. 140 or
Ref. [17]). An inclusion of all these dissipative terms
would lead to a number of kinetic coefficients much larger
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than 27. Since in this paper we are mainly interested in the
bulk viscosity coefficients, we restrict ourselves to a sim-
plified form (40)–(44) of dissipative corrections.

The number of bulk viscosity coefficients can be re-
duced. Notice that, from the quasineutrality condition
(10) and the continuity equations (24), it follows that

@�½Ypkw
�
ðkÞ� ¼ @�½Y�kw

�
ðkÞ�: (45)

A similar condition for superfluid npe matter was derived
in Ref. [17] [see Eq. (41) of that reference]. Owing to the
condition (45), there is no need to introduce the bulk
viscosity coefficients both for protons and for �� hyper-
ons. For example, it is sufficient to introduce the quantity
�1�p � �1p þ �1� instead of �1p and �1�. Because of the

same reason, we are not interested in the quantities ß� and
ßp taken separately. Instead, we will introduce the sum

ß�p � ß� þ ßp [notice that, ß�p is the quantity that ap-

pears in the entropy generation equation (38)]. As a result,
the corrections ��� and ßq take the form

��� ¼ �
ðH��u� þH��u�Þð@�T þ Tu�@�u�Þ

� �H��H��

�
@�u� þ @�u� � 2

3
���@"u

"

�

� �1qH
��@�½Yqkw

�
ðkÞ� � �2H

��@�u
�; (46)

ßn ¼ ��3q@�½Yqkw
�
ðkÞ� � �4n@�u

�; (47)

ß� ¼ ��5q@�½Yqkw
�
ðkÞ� � �4�@�u

�; (48)

ß�p ¼ ��6q@�½Yqkw
�
ðkÞ� � �4�p@�u

�: (49)

Here and below, the subscript q takes on the values n, �,
and �p. The expression @�½Y�pkw

�
ðkÞ� in Eqs. (46)–(49)

means @�½Y�kw
�
ðkÞ� or, equivalently, @�½Ypkw

�
ðkÞ�.

As follows from the above equations, we have actually
16 (rather than 25) bulk viscosity coefficients which can
contribute to the dissipation of mechanical energy in su-
perfluid nucleon-hyperon matter. Using the Onsager sym-
metry principle, we obtain

�3� ¼ �5n; �3�p ¼ �6n; �4n ¼ �1n;

�5�p ¼ �6�; �4� ¼ �1�; �4�p ¼ �1�p:
(50)

Thus, generally, only ten of them are independent.

B. Calculation of the bulk viscosity coefficients for
superfluid nucleon-hyperon matter

Let us calculate these phenomenological coefficients
assuming they are due to nonequilibrium processes (1)–
(4). As in Sec. II, we assume that the matter is slightly
perturbed out of equilibrium state and pulsates with the
frequency !. Since the deviation from the equilibrium is
small the hydrodynamic equations can be linearized.

Because of the same reason, the dependence of various
thermodynamic quantities (e.g., the pressure P) on the
scalars w

�
ðiÞwðkÞ� can be neglected. We assume that the

four vectors w
�
ðiÞ characterizing the superfluid flow of par-

ticle species i ¼ n, p, �, or � equal zero in the unper-
turbed matter. Thus, by perturbing the system, we produce
some small w

�
ðiÞ so that the scalars w

�
ðiÞwðkÞ� will be of the

second-order smallness and can be omitted in the linear
approximation.
We start from the nondissipative relativistic hydrody-

namics of superfluid nucleon-hyperon mixture. In this
case, the energy-momentum tensor is given by Eq. (27),
where the dissipative correction ��� should be set to zero.
Similarly, the expressions for w�

ðiÞ are given by Eq. (34)

with ßi ¼ 0. The nonequilibrium processes (1)–(4) lead to
the appearance of the sources in the right-hand side of the
continuity equations (24) which, as we will demonstrate
below, generate the ‘‘effective’’ dissipative corrections ���

and ßq.

To calculate �1q and �2, it is convenient to expand the

energy-momentum tensor of the pulsating matter (27)
(with ��� ¼ 0) in the comoving frame [where u� ¼
ð1; 0; 0; 0Þ] near the equilibrium, as it was done in Ref. [17],

T00 ¼ "0 þ �"; T0m ¼ Tm0 ¼ �i0Yikw
m
ðkÞ;

Tnm ¼ ðP0 þ �PÞ�nm:
(51)

Here we restrict ourselves to the linear perturbation terms.
The spatial indices n and m vary over 1, 2, and 3; "0, �i0,
and P0 are the corresponding thermodynamic quantities
calculated at equilibrium (in the absence of pulsations).
Now our aim is to extract from the tensor (51) various

terms which are generated by the nonequilibrium processes
(1)–(4) and contribute to dissipation. Then, we will write
these terms in the form of a separate dissipative tensor
���
bulk.

As follows from Eq. (30), in the linear approximation �"
remains the same as in the absence of dissipation, �" ¼
�n�nb [this is because the dissipative processes (1)–(4)
conserve the number of baryons, hence �nb is independent
of the reaction rates �l, l ¼ 1, 2, 3, or 4]. Thus, the
component �00bulk of the tensor ���

bulk is zero. Similarly,

�m0
bulk ¼ �0mbulk ¼ 0. On the contrary, the variation �P of

the pressure contains a dissipative part (we denote it by
�Pdis). According to Refs. [11,14] and Sec. II, it is given by

�Pdis ¼ Reð�PÞ; (52)

so that the tensor �
��
bulk can be presented in the form (in the

comoving frame)

�00bulk ¼ 0; �0mbulk ¼ �m0
bulk ¼ 0; �nmbulk ¼ �Pdis�nm:

(53)

Let us determine �Pdis. For that purpose, we present the
pressure P as a function of nb, nH, n�n � n� þ nn, and
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y � xe=x�. All other number densities can be expressed

through nb, nH, n�n, and y with the help of Eqs. (8) and
(10). Notice that we choose n�n and y instead of the
variables xe and x� of Sec. II. The variables xe and x�
are less convenient here because Eq. (11) does not hold in
the case of superfluid matter. Expanding the pressure
Pðnb; nH; n�n; yÞ near the equilibrium state, we write

�Pdis ¼ @P

@nb
Reð�nbÞ þ @P

@nH
Reð�nHÞ þ @P

@n�n
Reð�n�nÞ

þ @P

@y
Reð�yÞ: (54)

It is straightforward to show that

�y ¼ 0; (55)

as a consequence of the continuity equations (13) and (14)
for electrons and muons. The variations of other variables,
nb, nH, and n�n, can be found from corresponding con-
tinuity equations. Using Eq. (24) and the fact that the
variations depend on time t as expði!tÞ, we obtain in the
comoving frame

i!�nb þ divðJbÞ ¼ 0; (56)

i!�nH þ divðJHÞ ¼ ��; (57)

i!�n�n þ divðJ�nÞ ¼ ���: (58)

Here �� � ��1 þ��2 þ ��3 þ��4 ¼ ���, and

��ðnb; nH; n�nÞ ¼ @��

@nb
�nb þ @��

@nH
�nH þ @��

@n�n
�n�n:

(59)

In Eqs. (56)–(58) Jb�nbuþ
P

iYikwðkÞ, JH �
nHuþ Y�kwðkÞ þ Y�kwðkÞ, J�n�n�nuþY�kwðkÞþ
YnkwðkÞ, u and wðiÞ are the spatial components of the four

velocity u� and four vector w�
ðiÞ, respectively. The solution

to the above system of equations gives

Re ð�nbÞ ¼ 0; (60)

Re ð�n�nÞ ¼ �Reð�nHÞ; (61)

Re ð�nHÞ ¼ k

�
@��

@nb
divðJbÞ þ @��

@nH
divðJHÞ

þ @��

@n�n
divðJ�nÞ

�
; (62)

where we use the notations 1=k � �ð@��=@nH�
@��=@n�nÞ2ð1þ!2�2Þ, � � 1=�ð@��=@nH �
@��=@n�nÞ�1. Now, using Eq. (54) for �Pdis and
Eqs. (60)–(62), we can find the dissipative tensor ���

bulk in

the comoving frame [see Eq. (53)]. Then it can be easily
rewritten in an arbitrary frame. The result is

�
��
bulk ¼ H��k

�
@P

@nH
� @P

@n�n

���
nb

@��

@nb
þ nH

@��

@nH

þ n�n
@��

@n�n

�
@�u

� þ
�
@��

@nb
þ @��

@n�n

�
@�ðYnkw

�
ðkÞÞ

þ
�
2
@��

@nb
þ @��

@nH
þ @��

@n�n

�
@�ðY�pkw

�
ðkÞÞ

þ
�
@��

@nb
þ @��

@nH

�
@�ðY�kw

�
ðkÞÞ

�
: (63)

A comparison of ���
bulk with the phenomenological dissipa-

tive tensor ��� [see Eq. (46)] allows us to identify the bulk
viscosity coefficients �1n, �1�, �1�p, and �2, generated by

nonequilibrium processes (1)–(4)

�1n ¼ �k

�
@P

@nH
� @P

@n�n

��
@��

@nb
þ @��

@n�n

�
; (64)

�1� ¼ �k

�
@P

@nH
� @P

@n�n

��
@��

@nb
þ @��

@nH

�
; (65)

�1�p ¼�k

�
@P

@nH
� @P

@n�n

��
2
@��

@nb
þ @��

@nH
þ @��

@n�n

�
; (66)

�2 ¼ �k

�
@P

@nH
� @P

@n�n

��
nb

@��

@nb
þ nH

@��

@nH

þ n�n
@��

@n�n

�
: (67)

It can be shown that the expression for �2 formally co-
incides with Eq. (22) for the bulk viscosity of normal
matter [however, these formulas give different numerical
results because the reaction rates �l (l ¼ 1; . . . ; 4) differ for
superfluid and normal matter].
To prove this, we can rewrite Eq. (67) using nb, xH, xe,

and x� as independent variables instead of nb, nH, n�n, and

y. The following equalities will be helpful (f is an arbitrary
function)

1

nb

@fðnb; xH; xe; x�Þ
@xH

¼ @fðnb; nH; n�n; yÞ
@nH

� @fðnb; nH; n�n; yÞ
@n�n

; (68)

nb
@fðnb; xH; xe; x�Þ

@nb
¼ nb

@fðnb; nH; n�n; yÞ
@nb

þ nH
@fðnb; nH; n�n; yÞ

@nH

þ n�n
@fðnb; nH; n�n; yÞ

@n�n
: (69)

To calculate other bulk viscosity coefficients let us apply
the same consideration to Eq. (34) for w�

ðiÞ. As a result, we
obtain (in the comoving frame) the expression for the
dissipative component ßi generated by nonequilibrium
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processes (1)–(4)

ßi ¼ ��idis

¼ @�i

@nb
Reð�nbÞ þ @�i

@nH
Reð�nHÞ þ @�i

@n�n
Reð�n�nÞ:

(70)

Here ��idis is the dissipative term in the Taylor expansion
of the chemical potential �i near the equilibrium state
(similar to �Pdis); Reð�nbÞ, Reð�nHÞ, and Reð�n�nÞ are
taken from Eqs. (60)–(62). In a fully covariant form, ßq is

given by Eqs. (47)–(49) with the bulk viscosity coefficients

�3n ¼ �k

�
@�n

@nH
� @�n

@n�n

��
@��

@nb
þ @��

@n�n

�
; (71)

�3� ¼ �k

�
@�n

@nH
� @�n

@n�n

��
@��

@nb
þ @��

@nH

�
; (72)

�3�p ¼�k

�
@�n

@nH
� @�n

@n�n

��
2
@��

@nb
þ @��

@nH
þ @��

@n�n

�
; (73)

�4n ¼ �k

�
@�n

@nH
� @�n

@n�n

��
nb

@��

@nb
þ nH

@��

@nH

þ n�n
@��

@n�n

�
; (74)

�4� ¼ �k

�
@��

@nH
� @��

@n�n

��
nb

@��

@nb
þ nH

@��

@nH

þ n�n
@��

@n�n

�
; (75)

�4�p ¼ �k

�
@ð�p þ��Þ

@nH
� @ð�p þ��Þ

@n�n

�

�
�
nb

@��

@nb
þ nH

@��

@nH
þ n�n

@��

@n�n

�
; (76)

�5n ¼ �k

�
@��

@nH
� @��

@n�n

��
@��

@nb
þ @��

@n�n

�
; (77)

�5� ¼ �k

�
@��

@nH
� @��

@n�n

��
@��

@nb
þ @��

@nH

�
; (78)

�5�p¼�k

�
@��

@nH
� @��

@n�n

��
2
@��

@nb
þ@��

@nH
þ @��

@n�n

�
; (79)

�6n ¼ �k

�
@ð�p þ��Þ

@nH
� @ð�p þ��Þ

@n�n

��
@��

@nb
þ @��

@n�n

�
;

(80)

�6� ¼ �k

�
@ð�p þ��Þ

@nH
� @ð�p þ��Þ

@n�n

��
@��

@nb
þ @��

@nH

�
;

(81)

�6�p ¼ �k

�
@ð�p þ��Þ

@nH
� @ð�p þ��Þ

@n�n

��
2
@��

@nb

þ @��

@nH
þ @��

@n�n

�
: (82)

In Eqs. (71)–(82), we assumed that the thermodynamic
quantities are functions of nb, nH, n�n, and y. One can
easily check that all of the six Onsager relations (50) are
satisfied. Moreover, it turns out that the bulk viscosities
(64)–(67) and (71)–(82) obey a number of additional con-
straints (q ¼ n, �, �p)

�6q ¼ �3q þ �5q; �4�p ¼ �4n þ �4�; (83)

�2
1n ¼ �2�3n; �2

1� ¼ �2�5�; �2
1�p ¼ �2�6�p; (84)

�1n�1� ¼ �2�5n; �1�p�1� ¼ �2�6�;

�1n�1�p ¼ �2�6n

(85)

so that we have only three independent bulk viscosity
coefficients, say �2, �1n, and �1�. All other coefficients
can be expressed through these three. The coefficients �2,
�1n, and �1� are compared in Fig. 2. Because the dimen-
sions of the coefficients �1i (i ¼ n,�) and �2 are different,
we show the dimensionless combinations �1ini=�2 as func-
tions of the baryon number density nb.
What is the nature of the relations (83)–(85)? The rela-

tions (83) follow from the equilibrium condition (8) with
respect to the fast reaction (7). This condition is valid even
if we allow for the dissipative processes (1)–(4).
Consequently, we can write

Re ð��Þ þ Reð�pÞ ¼ Reð�nÞ þ Reð��Þ (86)

or, in view of Eq. (70) [we remind that Reð�iÞ � �idis,
ß�p � ß� þ ßp],

ß�p ¼ ßn þ ß�: (87)

Then, substituting Eqs. (47)–(49) into Eq. (87) and equat-

FIG. 2. Dimensionless parameters �1ini=�2 (i ¼ n, �) versus
nb in superfluid nucleon-hyperon matter.
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ing prefactors in front of the same four divergences, we
obtain the relations (83).

It is convenient to note that the constraint (87) leads to a
simple equation interrelating four vectors w�

ðiÞ. It holds true
only if the bulk viscosities are generated by the nonequi-
librium reactions. To derive this equation, we sum up the
potentiality conditions (34) (with proper signs) for all
baryon species. Then, using Eqs. (8) and (87), we get

@�½w�
ðnÞ þ w�

ð�Þ � w�
ð�Þ � w�

ðpÞ�
¼ @�½w�

ðnÞ þ w�
ð�Þ � w�

ð�Þ � w�
ðpÞ�: (88)

In view of this equation and Eq. (45), there are only 4�
2 ¼ 2 independent four-vectors w

�
ðiÞ in the system.

Now let us explain why the bulk viscosities satisfy
Eqs. (84) and (85). For that purpose, we consider the
entropy generation equation. Neglecting all the dissipative
processes except for the nonequilibrium reactions (1)–(4)
(e.g., neglecting the thermal conductivity and shear vis-
cosity), we can obtain from the hydrodynamics discussed
in this section,

T@�S
� ¼ ���� ¼ ���2: (89)

A similar expression is valid for npe matter [see Eq. (79)
of Ref. [17]]. The chemical potential disbalance �� is
given by Eq. (59). Substituting into Eq. (59) variations
�nb, �nH, and �n�n calculated from the continuity equa-
tions (56)–(58), we find

�� ¼ 1

�ð@��=@nH � @��=@n�nÞ � i!

�
@��

@nb
divðJbÞ

þ @��

@nH
divðJHÞ þ @��

@n�n
divðJ�nÞ

�
: (90)

It follows from Eq. (90), that for any given u� it is always
possible to choose four vectors w�

ðiÞ in such a way that

�� ¼ 0 at some point and in some particular moment
(even if some baryon species are nonsuperfluid). In other
words, this means that we can vanish the entropy genera-
tion rate (89) at this point.

On the other hand, the entropy generation equation in
terms of the effective bulk viscosities takes the form [see
Eqs. (38) and (40)–(44)]

T@�S
� ¼ f�1q@�½Yqkw

�
ðkÞ� þ �2@�u

�g@�u�
þ f�3q@�½Yqkw

�
ðkÞ� þ �4n@�u

�g@�½Ynkw
�
ðkÞ�

þ f�5q@�½Yqkw
�
ðkÞ� þ �4�@�u

�g@�½Y�kw
�
ðkÞ�

þ f�6q@�½Yqkw
�
ðkÞ� þ �4�p@�u

�g@�½Y�pkw
�
ðkÞ�:
(91)

The right-hand side of this equation satisfies two condi-
tions. First, it is a positive-definite quadratic form (entropy
cannot decrease). Second, according to Eqs. (89) and (90),
one can vanish it by an appropriate choice of u� andw�

ðiÞ (at

some particular moment and at some point). There is a
mathematical theorem that these two conditions are con-
sistent with each other if and only if the determinant of the
matrix composed of coefficients of the quadratic form
vanishes. This result is independent of an actual number
of superfluid baryon species. That is, the determinant will
be zero in the case when all four baryon species are
superfluid as well as in the case when some of them are
normal (for example, nucleons are normal, hyperons are
superfluid, or neutrons are superfluid, while other particles
are normal). As a consequence, we arrive at the six addi-
tional constraints (84) and (85) on the bulk viscosity
coefficients.
In this section, we have assumed that baryons of all

species are superfluid. However, the hydrodynamics for-
mulated here can be easily extended to the situation when
some baryon species are normal. In this case, one should
vanish matrix elements Yik related to these baryon species.
For example, if neutrons are nonsuperfluid, then Ynk ¼
Ykn � 0.

IV. SUMMARY

In this paper, we have analyzed the bulk viscosity due to
nonequilibrium particle transformations in superfluid
nucleon-hyperon matter of neutron stars. Our approach is
similar to that used in Ref. [17] for the case of superfluid
npe matter.
Our main results are as follows:
(i) We have demonstrated that the expression for the

bulk viscosity of normal (nonsuperfluid) nucleon-
hyperon matter, widely used in the literature, is
inaccurate. We have presented the correct derivation
of the bulk viscosity and compared it with the results
of Ref. [14]. Numerically, both formulas give almost
similar results (within a few tens of percent).

(ii) We have extended the hydrodynamics of superfluid
mixtures reported in Refs. [17,31] to allow for a
possible presence of superfluid hyperons. We have
determined the general form of dissipative terms
entering the equations of this hydrodynamics and
showed that generally (when all baryon species are
superfluid), it contains 16 bulk viscosity coefficients.

(iii) We have calculated and analyzed the 16 bulk viscos-
ity coefficients assuming they are generated by non-
equilibrium reactions (1)–(4) of particle mutual
transformations. We have shown that only three of
them are independent. All other 13 bulk viscosities
can be expressed through these three using Eqs. (50)
and (83)–(85). In addition, we have demonstrated
that Eq. (67) for the bulk viscosity coefficient �2

formally coincides with Eq. (22) for that in normal
matter [however, the reaction rates �l (l ¼ 1; . . . ; 4)
are affected by superfluidity].

Our results can be important for the studies of dynamical
instabilities in pulsating superfluid neutron stars, especially
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for the studies of the r mode instability. They can also be
important for modeling of the thermal evolution of pulsat-
ing neutron stars and for analyzing rotochemical and grav-
itochemical heating of millisecond pulsars with superfluid
nucleon-hyperon cores (for nonsuperfluid npe matter of
neutron stars, this problem was considered in Refs. [28,35–
37]).

Let us notice that to start such an analysis one needs to
know the matrix Yik, which is the most important ingre-
dient in the hydrodynamics of superfluid nucleon-hyperon
mixture. To our best knowledge, it has not been considered
in the literature so far. We are planning to fill this gap and
present its extensive calculations in a subsequent
publication.
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