Лекция 7.

Компактные звёзды в двойных системах

- 1. Основные типы двойных систем с компактными звёздами
- 2. Мягкие рентгеновские транзиенты: глубокий прогрев коры
- 3. Рентгеновские пульсары
- 4. Рентгеновские барстеры
- 5. Определение массы компактной звезды по её движению в двойной системе

Мягкие рентгеновские транзиенты: глубокий прогрев коры

Haensel & Zdunik, Astron. Astrophys. 227, 431 (1990)

В целом: 1,45 МэВ/нуклон

30		FO 12			
1.980×10^{30}	9.075×10^{11}	$^{52}S \rightarrow ^{40}Si + 6n - 2e^- + 2\nu_e$	0.07	0.13	0.09
2.253×10^{30}	1.131×10^{12}	$^{46}\mathrm{Si} \rightarrow ^{40}\mathrm{Mg} + 6n - 2e^- + 2\nu_e$	0.18	0.14	0.10
2.637×10^{30}	1.455×10^{12}	$^{40}\mathrm{Mg} \rightarrow ^{34}\mathrm{Ne} + 6n - 2e^- + 2\nu_e$	0.39	0.16	0.12
3.204×10^{30}	1.951×10^{12}	34 Ne $+^{34}$ Ne \rightarrow^{68} Ca			
		68 Ca \rightarrow 62 Ar + $6n - 2e^- + 2\nu_e$	0.39	0.09	0.40
3.216×10^{30}	2.134×10^{12}	$^{62}\mathrm{Ar} \rightarrow ^{56}\mathrm{S} + 6n - 2e^- + 2\nu_e$	0.45	0.09	0.05
3.825×10^{30}	2.634×10^{12}	${}^{56}S \rightarrow {}^{50}Si + 6n - 2e^- + 2\nu_e$	0.50	0.09	0.06
4.699×10^{30}	3.338×10^{12}	$^{50}\mathrm{Si} \rightarrow ^{44}\mathrm{Mg} + 6n - 2e^- + 2\nu_e$	0.55	0.09	0.07
6.043×10^{30}	4.379×10^{12}	$^{44}Mg \rightarrow ^{36}Ne + 8n - 2e^- + 2\nu_e$			
		36 Ne $+^{36}$ Ne \rightarrow^{72} Ca			
		72 Ca \rightarrow^{66} Ar + $6n - 2e^- + 2\nu_e$	0.61	0.14	0.28
7.233×10^{30}	5.839×10^{12}	$^{66}\mathrm{Ar} \rightarrow ^{60}\mathrm{S} + 6n - 2e^- + 2\nu_e$	0.70	0.04	0.02
9.238×10^{30}	7.041×10^{12}	$^{60}S \rightarrow ^{54}Si + 6n - 2e^- + 2\nu_e$	0.73	0.04	0.02
1.228×10^{31}	8.980×10^{12}	$^{54}\mathrm{Si} \rightarrow ^{48}\mathrm{Mg} + 6n - 2e^- + 2\nu_e$	0.76	0.04	0.03
1.602×10^{31}	1.127×10^{13}	$^{48}Mg + ^{48}Mg \rightarrow ^{96}Cr$	0.79	0.004	0.11
1.613×10^{31}	1.137×10^{13}	$^{96}\mathrm{Cr} \rightarrow^{88}\mathrm{Ti} + 8n - 2e^- + 2\nu_e$	0.80	0.02	0.01

Мягкие рентгеновские транзиенты: кривые подогрева

Yakovlev, Levenfish, Haensel, Astron. Astrophys. 407, 265 (2003)

Source	$\dot{M},~{ m M}_\odot~{ m yr}^{-1}$	$L_{\gamma}^{\infty}, {\rm erg} \; {\rm s}^{-1}$	$T_s^{\infty}, \mathrm{eV}$	R^{∞}, km	Reference		
Aql X-1	1.0×10^{-10}	5.3×10^{33}	113	15.9	Rutledge et al. (2002b) :	Table 6, fit 10	
Cen X-4	1.4×10^{-10}	3.1×10^{32}	76*)	12.9	Rutledge et al. (2001) :	Table 4	
4U 1608 - 522	4.2×10^{-10}	4.1×10^{33}	$170^{*)}$	9.4	Rutledge et al. (1999) :	Table 2	
KS 1731–260	$5.1 imes 10^{-9}$	$4.3 imes 10^{33}$	110	15	Wijnands et al. (2002) :	Table 1, fit 2	
SAX J1808.4–3658	5.0×10^{-12}	$\lesssim 1.0 \times 10^{31}$	_	_	Campana et al. (2002) :	Sect. 2.2	

Table 4. Parameters of NSs in SXRTs

*) nonredshifted

Мягкие рентгеновские транзиенты: остывание коры

Теоретические кривые остывания коры для разных моделей нейтронных звёзд [Shternin *et al. Mon. Not. R. astron. Soc.* **382**, L43 (2007)] в сравнении с наблюдениями мягкого рентгеновского транзиента KS 1731–260 [Cackett *et al. Astrophys. J.* 722, L137 (2010)]. *Модели*: 1а – M = 1,6 M_{Sun}, $T_0 = 0,8$ MK, $E_{44} = 2,6$; 1с – M = 1,6 M_{Sun}, $T_0 = 0,67$ MK, $E_{44} = 2,4$; 2с – M = 1,4 M_{Sun}, $T_0 = 0,63$ MK, $E_{44} = 2,4$ (модель 1а предполагает наличие аккрецированной оболочки и умеренной сверхтекучести нейтронов в коре; модель1с' – дополнительная к приведённым в статье Shternin et al. 2007).

Аккреция из полости Роша

Аккреция из звёздного ветра

Вещество будет аккрецировать на звезду: если его скорость меньше второй космической на наименьшем расстоянии.

 $V_{\rm w}$ = скорость ветра

 $V_{\rm x}$ = скорость компактного объекта

 $R_{\rm c}$ = скорость захвата

Обзор: Bildsten et al., Astrophys. J. Suppl. Ser. 113, 367 (1997)

Обзор: Bildsten et al., Astrophys. J. Suppl. Ser. 113, 367 (1997)

Излучение аккреционной колонки

$$L_{\rm acc} = \frac{GM_{\rm X}\dot{M}}{R_{\rm X}} \simeq 1.2 \times 10^{36} \text{ ergs s}^{-1} \left(\frac{\dot{M}}{10^{-10} M_{\odot} \text{ yr}^{-1}}\right) \left(\frac{M_{\rm X}}{1.4 M_{\odot}}\right) \left(\frac{10 \text{ km}}{R_{\rm X}}\right)$$

Баланс магнитного давления и давления падающего вещества

$$p_{mag} = \frac{B^2}{8\pi} = p_{ram} = \rho v^2$$

Радиус магнитосферы
$$r_{\rm m} \sim 4 \times 10^8 \, {\rm cm} \left(\frac{\mu}{10^{30} \, {\rm G} \, {\rm cm}^3} \right)^{4/7}$$

 $\mu \sim BR^3$

$$N \approx \dot{M} \sqrt{GM_{\rm X}r_{m}} - \text{крутящий момент сил}$$

Радиус коротации $r_{\rm co} = \left(\frac{GM_{\rm X}P_{\rm spin}^{2}}{4\pi^{2}}\right)^{1/3} \simeq 1.7 \times 10^{8} \text{ cm} \left(\frac{P_{\rm spin}}{1 \text{ s}}\right)^{2/3} \left(\frac{M_{\rm X}}{1.4 M_{\odot}}\right)^{1/3}$
 $r_{m} < r_{\rm co} \Rightarrow N_{0} \equiv \dot{M} \sqrt{GM_{\rm X}r_{\rm co}}$
Более сложная (более полная) модель:
 $N = \left(\dot{M} \sqrt{GMr_{m}} + \frac{\mu^{2}}{9r_{m}^{3}}\right) n(\omega) - \frac{\dot{E}_{dipole}}{2\pi v_{s}}$

Пример численного моделирования [Romanova et al., *Astrophys. J.* **610**, 920 (2004)]

Рентгеновские миллисекундные пульсары

Пример: 4U 1728-34

Рентгеновские миллисекундные пульсары

Зависимость амплитуды от энергии

Рентгеновские вспышки нейтронных звезд в маломассивных рентгеновских двойных системах (LMXBs) благодаря взрывному термоядерному горению легких элементов (H, He, C) в нападавшем на нейтронную звезду веществе

Продолжительность – от 10 (большинство) до 1000 секунд

Могут достигать Эддингтоновской светимости (вспышки с расширением фотосферы)

Примеры вспышек (IGR J17254-3257)

Обзор: Suleimanov et al., Eur. Phys. J. A 52, 20 (2016)

Пример: эволюция спектральной жёсткости при длинной вспышке барстера GX 17+2 [Kuulkers et al., *Astron. Astrophys.* **382**, 503 (2002)]

Рентгеновские вспышки с большой светимостью (выше эддингтоновскогопредела) вызывают расширение фотосферы R=R(t) с последущимоседаниемк обычному радиусу $R=R_0$ и к переходу на стадию спокойного остывания. В **простейших** моделях предполагается, что в момент окончания оседания ($t=t_0$, "touchdown point") поток излучения поверхности всё ещё эддингтоновский:

$$\begin{split} L_{\rm Edd} &= 4\pi c (1+z_{\rm g}) \, \frac{GMm_{\rm p}}{\sigma_{\rm T}} \approx \, 1,26 \times 10^{38} \, (1+z_{\rm g}) \, \frac{M}{M_{\odot}} \, \, \text{эрг c}^{-1} \\ \sigma_{\rm T} &= \frac{8\pi}{3} \left(\frac{e^2}{m_{\rm e}c^2} \right)^2 \qquad (+ \, \text{поправки на отдачу для } T_{\rm eff} > 10^7 \, \text{K}) \end{split}$$

На дальнейшей стадии спокойного остывания ($t > t_0$) отношение

$$L / \sigma_{\rm SB} T_{\rm eff}^{4} = (R/D)^2$$

остаётся примерно постоянным. При этом

$$T_{\rm eff} = f_{\rm c} T_{\rm bb},$$

где f_c – «цветовая поправка» (color correction factor, модельно зависим). Решая систему уравнений, можно одновременно определить *M* и *R* (пока что с большими неопределённостями).

Более надёжный метод – аппроксимация наблюдаемых зависимостей $f_c(L)$, а также L(t) для длинных вспышек при помощи теоретических моделей фотосфер [Сулейманов, Ревнивцев и др., *Astrophys. J.* 742, 122 (2011); Zamfir, Cumming, Galloway, *Astrophys. J.* 749, 69 (2012)]

Более надёжный метод – аппроксимация наблюдаемых зависимостей $f_c(L)$, а также L(t) для длинных вспышек при помощи теоретических моделей фотосфер [Сулейманов, Ревнивцев и др., *Astrophys. J.* 742, 122 (2011); Zamfir, Cumming, Galloway, *Astrophys. J.* 749, 69 (2012)]

Теоретические подгонки кривой блеска барстера GS 1826–24 [Zamfir et al., *Astrophys. J.* **749**, 69 (2012)].

Модельная зависимость результатов

Ограничения на массу и радиус нейтронной звезды в барстере 4U 1724–307 при разных предположениях о составе фотосферы [Suleimanov et al., *Astrophys. J.* **742**, 122 (2011)].

Кеплеровские орбиты

$$m_1 = m_s, m_2 = m_c, a_1, a_2, e$$

 $M_T = m_1 + m_2, a = a_1 + a_2,$
 $a_1 = am_2/M_T, a_2 = am_1/M_T$

m

100

Орбитальный период: $P_{\rm b} = 2\pi/\Omega_{\rm b}$

 α

$$s = r_2 - r_1 \qquad \mu \equiv \frac{m_1 m_2}{m_1 + m_2}$$
$$- \frac{GM_T\mu}{s^3} s = \mu \frac{d^2s}{dt^2}$$

$$\Rightarrow$$
 III закон Кеплера: $P_b^2 = 4\pi^2 a^3 / (GM_T)$

$$\Rightarrow \qquad GP_{\rm b}^2 \frac{m_2^3}{(m_1 + m_2)^2} = 4\pi^2 a_1^3$$

Из наблюдений определяются $P_{\rm b}$ и $(a_1 \sin i)$.

$$\Rightarrow \qquad \frac{m_2^3 \sin^3 i}{(m_1 + m_2)^2} = \frac{4\pi^2}{G P_b^2} (a_1 \sin i)^3$$

$$f_1 \equiv \frac{m_2^3 \sin^3 i}{(m_1 + m_2)^2}$$

Пример 1: наблюдение движения звезды: параметры орбиты

Пример 2: движение точечных масс $m_1 = 2m_2$: (a) – определение радиус-векторов, (b) – движение в системе центра масс, (с) – движение m_2 относительно m_1).