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a b s t r a c t

Near the surface of any neutron star there is a thin heat blanketing envelope that
produces substantial thermal insulation of warm neutron star interiors and that relates
the internal temperature of the star to its effective surface temperature. Physical
processes in the blanketing envelopes are reasonably clear but the chemical composition
is not. The latter circumstance complicates inferring physical parameters of matter in the
stellar interiors from observations of the thermal surface radiation of the stars and urges
one to elaborate the models of blanketing envelopes. We outline physical properties of
these envelopes, particularly, the equation of state, thermal conduction, ion diffusion and
others. Various models of heat blankets are reviewed, such as composed of separate
layers of different elements, or containing diffusive binary ion mixtures in or out of
diffusion equilibrium. The effects of strong magnetic fields in the envelopes are outlined
as well as the effects of high temperatures which induce strong neutrino emission in
the envelopes themselves. Finally, we discuss how the properties of the heat blankets
affect thermal evolution of neutron stars and the ability to infer important information
on internal structure of neutron stars from observations.
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. Introduction: Neutron stars, their superdense matter and thermal insulation

Neutron stars (e.g., Shapiro and Teukolsky 1983, Haensel et al. 2007) are the most compact stellar objects, with typical
asses M ∼ (1− 2)M⊙, where M⊙ is the solar mass, and radii R ∼ (10− 15) km. Their mean mass density ρ is a few ρ0,

where ρ0 ≈ 2.8×1014 g cm−3 is the density of standard saturated nuclear matter. The central density of massive neutron
stars exceeds ρ0 by about one order of magnitude. Neutron stars are born in supernova explosions and demonstrate a
wealth of manifestations observed by the methods of multiwavelength astronomy (from radio to gamma rays) and by
gravitational observatories; they are also expected to be observed by neutrino observatories.

According to current theories (e.g., Haensel et al. 2007), a neutron star can roughly be divided into a relatively light
and thin crust (about 1% by mass and 10% by radius) and a massive and bulky core. The core is thought to be liquid; it
contains strongly degenerate nucleons, electrons, muons, and (possibly) other particles like hyperons and/or deconfined
quarks, which are distributed uniformly on the microscopic scale. In contrast, the crust contains aggregates of nucleons
of microscopic scale (nuclei). The ‘‘crust’’ in the broad sense consists of liquid ‘‘ocean’’, solid layers (the crust in the
proper sense), and possibly layers of non-spherical nuclei that behave like liquid crystals (so called ‘‘pasta phases’’, which
constitute a ‘‘mantle’’ of the star). The crust is divided into the ‘‘outer crust’’, where the nuclei are immersed in the fluid
of electrons, and the ‘‘inner crust’’, which additionally contains the fluid of free neutrons (and possibly free protons in the
deepest layers).

Since the core contains superdense matter, it is the most mysterious and interesting part of neutron stars; the
composition, equation of state and many other properties of this matter are poorly known. Their study is of fundamental
importance for astrophysics and other branches of physics including nuclear physics, physics of elementary particles, and
condensed matter physics. The basic problems are that (i) it is difficult to explore the superdense matter in terrestrial
laboratories; (ii) its properties cannot be calculated reliably because of the absence of practical theory for describing
strong interactions of baryons with account of many-body effects. Some properties of superdense matter can be studied
in collider experiments on heavy ions collisions, on neutron skin measurements and in some other ways (e.g., Lattimer and
Prakash 2016, Mondal et al. 2016, Oertel et al. 2017), but these data are incomplete. Very dense matter (ρ ≳ 104ρ0), which
can appear after the deconfinement of quarks, can be analyzed by the methods of perturbative quantum chromodynamics
(e.g., Haensel et al. 2007, Machleidt and Entem 2011). However, the matter of the most interesting, intermediate density,
ρ ∼ (3 − 10) ρ0, cannot be accurately studied in laboratory experiment and theory but it can be investigated using
observations of neutron stars.

The outer crust extends from the stellar surface to the neutron drip density ρnd ≈ 4 × 1011 g cm−3; its mass is
∼ 10−5 M⊙. The inner crust extends from ρnd to the crust/core interface at ρcc ≈ (1 − 2) × 1014 g cm−3. The electrons
are mainly degenerate except for the very surface layer. At densities ρ ≪ 106 g cm−3 they are non-relativistic; at higher
ρ they become relativistic, and the atomic nuclei become progressively more neutron-rich. The free neutrons and the
nucleons within the nuclei can be in superfluid state.

The astrophysical methods to explore the nature of superdense matter in neutron stars are complex. Generally, they
consist of modeling various processes accessible in observations of neutron stars. Then one can compare theoretical
models with observations and select those models which are most suitable. In particular, one can model thermal evolution
of neutron stars with different microphysics of matter and confront such models with the measurements of surface
temperatures and ages of neutron stars (as reviewed by Yakovlev and Pethick 2004, Page 2009, Tsuruta 2009, Potekhin
et al. 2015b, Geppert 2017). This method has been used for many decades and faces many difficulties. We will focus
on one important obstacle associated with our poor knowledge of chemical composition of heat blanketing envelopes of
neutron stars.

A heat blanketing (thermally insulating) envelope is situated under the stellar atmosphere and is thin; its mass is
≲ 10−6M⊙. The surface temperature of the star (Ts), that can be measured, is typically much smaller than the internal
temperature (Tb). The relation between Ts and Tb is a complex problem, because the composition of the heat blankets
is often unknown. By varying the composition one can obtain different temperatures Tb at a fixed temperature Ts, with
different conclusions on properties of superdense matter. In addition, the composition of the heat blanket may vary in time
owing to accretion, diffusion and nuclear burning. These effects are not easy to study, particularly, because the plasma of
ions can be strongly non-ideal.

Therefore, to explore properties of superdense matter inside neutron stars one needs a reliable theory of heat
blanketing envelopes. While the main features of superdense matter are still basically unclear, the properties of heat
blankets are based on a much more elaborated physics of not very dense plasma. However, the problem of heat blankets
creates a really serious obstacle to investigate the superdense matter. Our aim is to describe the current status of the
problem.

In Section 2 we outline the basic equations of neutron star structure and evolution. Section 3 describes the main
properties of the heat blankets. In Section 4 we consider a simple semi-analytic model by Ventura and Potekhin (2001)
of a non-magnetic heat blanket which explains its main features without detailed numerical computations. Then we
discuss (Section 5) the properties of non-magnetic blanketing envelopes constructed by Potekhin et al. (1997); they consist
either of iron, or of the layers of lighter elements (hydrogen, helium, carbon) and possibly the layer of iron at the bottom.
Section 6 is focused on diffusion of ions in the surface layers of neutron stars. In Section 7 we describe diffusive blanketing
envelopes of non-magnetic neutron stars; these envelopes have been computed for binary ionic mixtures (H–He, He–C, C–

Fe). Section 8 is devoted to the envelopes of magnetized stars. Unlike the non-magnetic envelopes, where the temperature

3



M.V. Beznogov, A.Y. Potekhin and D.G. Yakovlev Physics Reports 919 (2021) 1–68

d
r
m
i
S
c
a
r

2

w
n
S

2

e
G

w
p
(
c

p
g
m

T

A

T
a
ω

w
c
m
d

istribution is isotropic (spherically symmetric), the temperature distribution in this case can be highly anisotropic in
esponse to anisotropic character of heat transport in a magnetic field. In the end of this section we outline also other
odels of heat blankets — for hot stars and magnetars (where the neutrino emission can be important in the blanket

tself); for accreting neutron stars, where nuclear burning in the blanket can be significant; and for some other cases. In
ections 9 and 10 we present some illustrative examples how the blankets may affect neutron star evolution. Finally, we
onclude in Section 11. Some aspects of the heat-blanket theory are applicable also for white dwarfs. In Appendices A
nd B we present, respectively, analytic fitting formulas for the diffusion coefficient in a binary ion mixture and for the
elations between the surface and internal temperatures for binary heat-blanketing envelopes.

. Equations of neutron star structure and thermal evolution

Let us present general equations of neutron star structure and thermal evolution. To shorten this introductory task we
ill restrict ourselves to spherically symmetric stars with spherically symmetric temperature distribution inside them,
eglecting the effects of magnetic fields and rotation. The effects of strong magnetic fields will be briefly discussed in
ection 8.

.1. Hydrostatic equilibrium

Neutron stars are relativistic objects and should be studied using General Relativity. The importance of relativistic
ffects is characterized by the parameter rg/R, where R is the stellar radius, rg = 2GM/c2 is the gravitational radius, and
the gravitational constant. Typically, rg/R ∼ 0.2–0.4 for neutron stars, and rg/R ≪ 1 for all other stars.
The metric within or around a stationary and spherically symmetric star is (e.g., Haensel et al. 2007)

ds2 = c2 dt2 exp(2Φ) − exp(2λ) dr2 − r2 (dθ2 + sin2 θ dφ2), (2.1)

here t is a time-like coordinate (Schwarzschild time for a distant observer), r is a radial coordinate, θ and φ are the
olar angle and azimuth, respectively, while Φ = Φ(r) and λ = λ(r) are two metric functions of r . The angular geometry
with respect to θ and φ) is the same as in flat space–time because of spherical symmetry, but space–time is generally
urved along r and t ‘‘directions’’. In flat space–time, we would have Φ = λ = 0.
It is well known that r in Eq. (2.1) is the circumferential radius which determines proper length of the circle, 2πr;

roper area of a spherical surface at given r is 4πr2. The proper radial length from the stellar center, l =
∫ r
0 exp λ dr , is

enerally different from r . Hence λ(r) determines curvature in the radial direction. It is related to the gravitational mass
(r) contained inside a sphere with radial coordinate r ,

exp λ =

(
1 −

2Gm
rc2

)−1/2

. (2.2)

he gravitational mass is smaller than the baryon mass (‘‘rest mass’’) due to gravitational mass defect.
A proper radial length element dl and a proper volume dV between close spherical shells are

dl =
dr√

1 − 2Gm/(c2r)
, dV =

4πr2 dr√
1 − 2Gm/(c2r)

. (2.3)

proper time interval in a local rest-frame is

dτ = dt expΦ(r). (2.4)

herefore, Φ(r) determines gravitational dilatation of time and gravitational redshift of signals. If a local source produces
periodic signal of frequency ω0 at r = r0, a distant observer (r → ∞, Φ → 0) will detect a signal of frequency
∞ = ω0 expΦ(r0).
The equations of hydrostatic structure of the star follow directly from Einstein equations,

dP
dr

= −
Gρm
r2

(
1 +

P
ρc2

)(
1 +

4πPr3

mc2

)(
1 −

2Gm
c2r

)−1

, (2.5)

dm
dr

= 4πr2ρ, (2.6)

dΦ
dr

= −
1
ρc2

dP
dr

(
1 +

P
ρc2

)−1

, (2.7)

here P is the pressure and E ≡ ρc2 is the energy density of the stellar matter. The quantity ρ, introduced instead of E , is
alled the mass density of the matter. It includes baryon mass density and mass defects produced by microscopic particle
otion, by strong, weak and electromagnetic interactions, but not by the gravitational interaction. The mass density in
ense neutron star cores is noticeably different from the traditional baryon mass density.
4
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Eq. (2.5) is the Tolman–Oppenheimer–Volkoff equation of hydrostatic equilibrium (Tolman, 1939; Oppenheimer and
olkoff, 1939), Eq. (2.6) describes mass balance, while Eq. (2.7) is a relativistic version of the equation for the dimensionless
ravitational potential Φ(r). These equations should be supplemented by the equation of state (EoS) that relates pressure
o density and temperature, P = P(ρ, T ). In the layers where free leptons or nucleons are strongly degenerate, the EoS is
lmost independent of temperature. Then in the above equations one can use a barotropic EoS, that is P = P(ρ). Recalling
hat a neutron star is composed mostly of strongly degenerate matter, we can conclude that the neutron star structure is
argely independent of its thermal state. Temperature effects on hydrostatic structure are important only near the surface
in the atmosphere and the heat blanketing envelope).

Eq. (2.5) can be rewritten in the Newtonian form
dP
dl

= −gρ, (2.8)

here

g =
Gm exp λ

r2

(
1 +

P
ρc2

)(
1 +

4πPr3

mc2

)
(2.9)

s a local gravitational acceleration.
Outside the star one has P = 0 and ρ = 0, so that m(r) = M is constant, which is the total gravitational mass of the

tar. In this case, exp(2Φ) = exp(−2λ) = 1− rg/r meaning the Schwarzschild metric outside the star, with rg = 2GM/c2
eing the Schwarzschild radius. At r ≫ rg, the Schwarzschild space–time becomes asymptotically flat. Finally, for a non-
elativistic star (P ≪ ρc2, Pr3 ≪ mc2, rg ≪ R) Eqs. (2.5)–(2.7) reduce to the Newtonian equations of stellar equilibrium,
here Φc2 plays role of the Newtonian gravitational potential.

.2. Thermal structure and evolution

The thermal structure of a neutron star is characterized by the internal distribution of local temperature T = T (r, t). In
ontrast to the hydrostatic structure that undergoes almost no evolution, the thermal structure may strongly evolve and
ffect observational manifestations of neutron stars. Let us consider not too hot (and not too young) stars, with internal
emperatures T ≲ 1010 K (of age ≳ 1 min); they are fully transparent for neutrinos (e.g., Pons et al. 1999).

Generally, the thermal evolution is governed by heat conduction within the star, with subsequent thermal emission
rom the surface, and also by neutrino cooling from the bulk of the star and possibly by some reheating from inside or
rom the surface.

General relativistic equations of thermal evolution of a spherically symmetric star were derived by Thorne (1966, 1977).
asically, one needs to solve the two equations, of thermal balance and thermal transport.
The thermal balance equation can be written as (Richardson et al., 1982),

1
4πr2e2Φ+λ

∂

∂r

(
e2ΦLr

)
= −Qν + Qh −

T
eΦ

∂S
∂t
, (2.10)

here Qν is the neutrino cooling rate per unit volume, Qh is the heating power per unit volume (if any), S is the entropy
er unit volume, and Lr is the ‘‘local luminosity’’ (non-neutrino energy transported through a sphere of radial coordinate
per unit time); all these quantities depend on r and t . The thermal flux density associated with Lr is F = Lr/(4πr2).

t may be convenient to include the entropy changes related to structural modifications (such as phase transitions) into
h. Then T∂S/∂t = C∂T/∂t , where C is the heat capacity per unit volume at constant pressure. The heat capacities at
onstant volume and constant pressure are almost equal in the strongly degenerate matter, that is almost everywhere
hroughout the star (e.g., Haensel et al. 2007); therefore we will not distinguish between them. The quantities C , Qν , and
h have to be determined from microscopic thermodynamic and kinetic theories and from a model of internal heating
if available). In the absence of the latter (Qh = 0), one deals with free (passive) cooling of the star. Typical microscopic
cales (mean free paths, etc.) are much smaller than space-curvature scales. If so, thermodynamic and kinetic quantities
an be calculated neglecting the effects of General Relativity.
The heat transport equation depends on the heat transport mechanism. A stationary heat conduction through non-

oving matter in the local reference frame is governed by equation

κ̂∇T = F (2.11)

here κ̂ is the conductivity tensor and F is the heat flux density. If the matter is isotropic, then the conductivity tensor
an be replaced by scalar κ . We will assume it to be the case, unless the opposite is stated.
If the transport is dominated by convection, then in the simplest approximation (e.g. Schwarzschild, 1958; Kippenhahn

t al., 2012)
∂T
∂ l

=
∂P
∂ l

T
P

∇ad, (2.12)

here

∇ad =

(
∂P
)

(2.13)

∂T S

5
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s the adiabatic temperature gradient. The medium is stable against convection, if ∇rad < ∇ad, where

∇rad =
FP
κgρT

(2.14)

is the ‘‘radiative temperature gradient’’, equal to the value that (∂ ln T/∂r)/(∂ ln P/∂r) = d ln T/d ln P would have
ccording to Eqs. (2.8) and (2.11), were the convection absent.
In the strongly degenerate matter, as mentioned above, P is almost independent of T . Therefore, in the strongly

degenerate layers of a neutron star, ∇ad is high and the convection is suppressed. The convection may operate in surface
layers, where the matter is less degenerate (or non-degenerate), but its effects on observables seem minor (e.g., Zavlin
et al. 1996; see also Section 5). Hereafter we will focus on thermal conduction.

Using the equations of hydrostatic structure (Section 2.1) and the heat transport equations in the local reference frame
(Thorne, 1977), one can rewrite a generally relativistic Fourier equation of thermal conduction in a neutron star as

Lr
4πκr2

= −e−Φ−λ ∂

∂r

(
TeΦ

)
. (2.15)

hermal conduction is mainly provided by degenerate fermions (electrons, muons, neutrons) almost everywhere in the
tar excluding a very surface layer, where it becomes radiative (as reviewed, e.g., by Potekhin et al. 2015b).
Therefore, one has to solve Eqs. (2.10) and (2.15) to determine Lr (r, t) and T (r, t). These equations should be

upplemented by the initial and boundary conditions which depend on a specific problem. For an initially hot and
assively cooling neutron star the initial temperature profile T (r, 0) can be taken rather arbitrary; the initial temperature
istribution relaxes on a timescale of several months and does not affect further cooling (the memory loss effect; see
ection 10.3 for a brief discussion of the cooling of neo-neutron stars at shorter timescales). At the stellar center T (0, t)

should be finite and Lr (0, t) = 0. The boundary conditions at the surface are discussed in Section 3.
Instead of T (r, t) it is often convenient to introduce the redshifted internal temperature T̃ (r, t) which stops to depend

on r in an isothermal layer,

T̃ (r, t) = T (r, t) eΦ(r)
→ independent of r in an isothermal layer. (2.16)

Observables. By solving a thermal evolution problem one calculates the effective surface temperature Ts of the star and
the photon surface luminosity Lγ = 4πσSBR2T 4

s (t) in a locally-flat reference frame at the neutron star surface, σSB being
the Stefan–Boltzmann constant. A distant observer would register the ‘‘apparent’’ (redshifted) luminosity L∞

γ , ‘‘apparent’’
effective surface temperature T∞

s , and ‘‘apparent’’ radius R∞,

L∞

γ = Lγ (1 − rg/R) = 4πσSB(T∞

s )4R2
∞
, (2.17)

T∞

s = Ts
√
1 − rg/R, R∞ = R/

√
1 − rg/R. (2.18)

alculated quantities can be compared with observations. Typically, T∞
s /Ts = R/R∞ ∼ 0.8.

. Basic concepts of heat-blanketing envelopes

.1. Outlook

eat blanket and internal region. Direct calculation of T (r, t) from the stellar surface to the center is possible but time-
consuming. To facilitate calculations, one usually divides the problem artificially into two parts by analyzing heat transport
in the outer heat-blanketing envelope (Rb ≤ r ≤ R) and in the interior (r < Rb; the choice of the boundary radius Rb
is addressed below). The full set of the dynamical equations for T (r, t) is solved in the internal region, while the heat
blanket is studied separately in a quasi-stationary and plane-parallel approximation and serves as a boundary condition
for the internal solution. Here we focus on heat blankets.

Heat blanket: Formal definition. Mathematical and physical blankets. The blanketing envelope is the layer under the
atmosphere (under the radiative surface discussed later in this section) down to some boundary. The choice of this
boundary, characterized by radius Rb, corresponding mass density ρb, or depth zb, is conditional. It is chosen so as to
optimize computations and is subject to several requirements. The blanketing envelope should be thin (as compared to
R) and contain negligibly small mass; there should be no large sources of energy generation or sink there; it should serve as
a good thermal insulator of the internal region; its thermal relaxation time should be sufficiently short to treat the blanket
quasi-stationary. As a rule, these requirements are satisfied by placing the bottom boundary at the density ρb = ρ(Rb)
etween 108 g cm−3 and 1011 g cm−3. Usually, following Gudmundsson et al. (1983), one sets ρb ∼ 1010 g cm−3 (a few

hundred meters under the surface). A division into the interior and an envelope is often used in stellar modeling (not only
for neutron stars, but also, for example, for white dwarfs – e.g., Koester et al. 2020). Some requirements can be relaxed
as we discuss later.

In some cases it is possible to choose ρb in such a way that the entire internal region be almost isothermal for the
range of Ts of study. Then the main temperature gradient occurs within the heat blanket, and the modeling of the thermal
evolution within the internal region is greatly simplified because of Eq. (2.16). In principle, one can introduce physical heat
6
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lanketing envelopes as insulating layers containing strongest temperature gradients. However the bottom density of such
nvelopes would be very sensitive to Ts, as will be discussed in Section 7.2. The smaller Ts, the thinner this physical heat
lanket would be, which is inconvenient for computations. Therefore, the artificial ‘‘computational’’ heat blankets with
ixed ρb are usually wider than their physical counterparts.

.2. Basic equations of heat blankets

Since a heat blanketing envelope is thin and light, the space–time curvature in the envelope is nearly constant, so that
he metric functions are almost the same as at the surface (at r = R),

exp λs = exp(−Φs) =
1√

1 − rg/R
. (3.1)

herefore, the space–time is nearly flat there, although the time and length scales are different than those for a distant
bserver. It is convenient to introduce the proper depth z = (R − r) eλs from the surface (Section 6.9 of Haensel et al.
007). Eq. (2.5) of hydrostatic equilibrium in the envelope reduces to

dP
dz

= gsρ, (3.2)

here

gs =
GMeλs

R2 (3.3)

s the surface gravity.
Let the thermal relaxation in the blanket be sufficiently fast, so that the heat transport problem can be treated as

uasi-stationary, assuming that T (r) is explicitly independent of time (although it can depend on t parametrically). Then
he heat flux density through the blanketing envelope obeys Eq. (2.11), which in the absence of anisotropy becomes

κ
dT
dz

= Fr . (3.4)

ere, Fr = Lr/(4πr2) is the thermal flux density in the radial (outward) direction in the local reference frame. In the
tationary envelope (i.e., ∂S/∂t = 0), according to the energy conservation law,

dFr
dz

= Qν − Qh. (3.5)

n the absence of any significant local energy sources and sinks Qν − Qh = 0. In this case, Lr and Fr are nearly constant,
o that

Lr ≈ 4πR2Fr ≈ 4πR2σSBT 4
s ≡ Lγ . (3.6)

Supplemented by the EoS and by an appropriate thermal conductivity, Eqs. (3.2), (3.4), and (3.5) can be solved to
etermine ρ(z) and T (z). The most important output would be temperature Tb and radial heat flux Fb at the bottom of
he heat blanket; they depend on Ts. By varying Ts, one can obtain the dependences Fb(Tb), one of the basic ingredients
or the theory of neutron star evolution. They are used in boundary conditions at r = Rb,

T (Rb) = Tb, Fr (Rb) = Fb, (3.7)

or solving the thermal evolution Eqs. (2.10) and (2.15) in the neutron star interiors (r < Rb). In the absence of internal
nergy sources and sinks in the envelope, Eq. (3.5) gives Fr = constant. This is the most common case, valid for not too
ot neutron stars. Then the relation Fb(Tb) is equivalent to the relation Ts(Tb), which is obtained by solving Eqs. (3.2) and
3.4) with Fr = Fb = σSBT 4

s .
The most attractive feature of the heat-blanket problem is its self-similarity. The structure of the blanket is largely

ndependent of the internal structure of the star, particularly, of specific values of mass and radius and of the EoS of
nternal layers. The only global parameter of the star which a heat blanket ‘‘respects’’ is the surface gravity gs. One can
onstruct a model of the heat blanketing envelope for some assumed value of gs and then rescale it for other values. We
ill discuss this throughout the text.
Instead of the conductivity κ , one often introduces the opacity K ,

K =
16σSBT 3

3κρ
. (3.8)

eat is transported through the envelope mainly by radiation and electrons,

κ = κr + κe, K−1
= K−1

r + K−1
e , (3.9)

where κr, κe and Kr, Ke denote the radiation and electron-conduction components of the conductivity and opacity,
respectively. Specifically, Kr is the Rosseland mean opacity (e.g., Mihalas, 1978). Typically, the radiative conduction
dominates (κr > κe) in the outermost non-degenerate layers of the envelope, whereas the electron conduction dominates
(κ > κ ) in the deeper layers of degenerate electrons.
e r

7
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adiative boundary. Above the heat blanketing envelope, there is a very thin neutron star atmosphere that is usually
eglected in calculations of such global parameters of neutron stars as total mass and radius. It is the place where the
pectrum of thermal radiation, emergent from stellar interiors, is formed. The optical depth τ is expressed through the
eometrical depth z as

τ (z) =

∫ z

−∞

K
(
ρ(z ′), T (z ′)

)
ρ(z ′) dz ′. (3.10)

With increasing z within the heat blanket, τ (z) becomes very large.
The radiative boundary (radiative surface) is defined by the condition T = Ts. In the Milne–Eddington approximation

to the radiative transfer problem (e.g., Mihalas 1978), it is placed at the Rosseland optical depth τ =
2
3 . Using this

pproximation and assuming K to be constant, from Eq. (3.10) one obtains a simple relation

KsPs =
2
3
gs, (3.11)

where Ks = K (ρs, Ts) and Ps are, respectively, the radiative-surface opacity and pressure to be determined.
In reality, K is not constant. However, it varies along the thermal profile in the radiative zone much slower than P .

This makes Eq. (3.11) a good approximation, as we shall see in Section 4.1.

3.3. The matter of heat blankets

3.3.1. Electrons and ions
The mass density ρ in a heat blanketing envelope varies in a wide range, from ∼ 0.1 g cm−3 at the radiative boundary

to ∼ 1010 g cm−3 at the bottom of the envelope. This is a plasma of electrons and ions whose properties are reviewed,
for instance, in Haensel et al. (2007). Near the stellar surface, depending on the temperature, density, and composition,
the plasma can be partially ionized; its two (electron and ion) components can be non-ideal. Deeper in the heat blanket,
the ions become fully ionized and the electrons constitute a nearly ideal gas. With increasing ρ, the electrons become
degenerate, and at ρ ≳ 106 g cm−3 they become relativistic. When the electrons are nearly free, they form a slightly
compressible negative charge background in which the ions move. The ions constitute the so called Coulomb ion plasma
which can be in gaseous, liquid or solid (crystalline or amorphous) state. The ion plasma can be one-component or contain
ions of different species, j = 1, 2, . . . Let Aj be the relative atomic weight and Zj the charge number of the ion species j.
The condition for electric neutrality of the plasma implies

ne =

∑
j

Zjnj, (3.12)

where ne is the number density of electrons and nj is the number density of ions j. The total number density of the ions
is ni =

∑
j nj. The mass density of the matter is mostly contained in the ions, ρ ≈

∑
j mjnj, where mj = Ajmu, with mu

being the atomic mass unit. On the other hand, the pressure in heat blankets is mainly provided by the electrons. In what
follows (unless the contrary is indicated), we assume full ionization.

A state of free electrons is conveniently characterized by the parameters

pF = h̄(3π2ne)1/3, xr =
pF
mec

≈ 1.0088
(
ρ6 Z̄
Ā

)1/3

, (3.13)

here pF is a measure of ne which has the meaning of electron Fermi momentum if the electrons are strongly degenerate;
r is the relativity parameter of degenerate electrons, ρ6 = ρ/106 g cm−3; Z̄ and Ā are, respectively, the averaged values
f Zj and Aj. The averaging is defined as f̄ =

∑
j xjfj for any quantity f , where xj = nj/ni is the number fraction of ion

pecies j. In these notations, the electron degeneracy temperature is

TF =
c
kB

(√
m2

ec2 + p2F − mec
)

= Tr

(√
1 + x2r − 1

)
, Tr =

mec2

kB
≈ 5.930 × 109 K, (3.14)

B being the Boltzmann constant.
In a multicomponent ion plasma it is convenient to introduce the Coulomb coupling parameter for each ion species

e.g., Haensel et al. 2007),

Γj =
Z2
j e

2

ajkBT
=

Z
5
3
j e2

aekBT
, (3.15)

where e is elementary charge, ae = (4πne/3 )− 1/3 is the electron sphere radius, and aj = aeZ
1/3
j is the ion sphere radius

for ions of species j. The charge of nearly free electrons within any ion sphere compensates the ion charge. The parameter
Γj characterizes the ratio of electrostatic energy of an ion sphere to the thermal energy kBT . If Γj ≪ 1 the Coulomb
coupling of given ions is weak, while at Γ ≫ 1 it is strong.
j

8
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It is also instructive to introduce the mean Coulomb coupling parameter for all ions (e.g., Haensel et al. 2007),

Γ̄ = Γ0Z
5
3 Z̄

1
3 , (3.16)

here

Γ0 =
e2

aikBT
(3.17)

is a convenient notation, with ai being a mean ion sphere radius (a typical inter-ion distance) defined as

ai =

(
3

4πni

) 1
3

. (3.18)

At low enough densities and high temperatures, where Γ̄ ≪ 1, the entire ion plasma is weakly coupled (resembles
mixture of ideal gases). In the opposite case of Γ̄ ≫ 1 the ions are strongly coupled by Coulomb forces. The ions

orm a Coulomb liquid at those temperatures at which 1 ≲ Γ̄ ≲ Γm, where Γm corresponds to the melting temperature
m. At T < Tm (Γ̄ > Γm) the liquid solidifies into a crystal; the gas–liquid transformation at Γ̄ ∼ 1 can be smooth
without phase transition). In the presence of ions with strongly different charges, the so called superionic structures are
lso possible, where the ions with a larger Z form a lattice, but the ions with a smaller Z do not (e.g., Redmer et al. 2011,
nd references therein). If all the ions are of one and the same type, they are described by the single parameter Γ . In
he so called ‘‘rigid electron background’’ model, Γm ≈ 175 (Potekhin and Chabrier, 2000). This model can be sufficient
or strongly degenerate electrons, although even for them the allowance for electron polarization can shift Γm value by
ens percent (Potekhin and Chabrier, 2013). Quantum effects of ion motion can substantially affect crystallization of the
lasma composed of light elements; they can even preclude the crystallization for H or He (e.g., Chabrier 1993, Jones and
eperley 1996, Baiko and Yakovlev 2019).
Many features of melting/crystallization for several ion species are still unclear. When the star cools, the layer of liquid

nd gaseous ions (the ocean) becomes thinner and shrinks to the surface.
Thermodynamic properties of the Coulomb plasma of ions, its electric and thermal conductivities and diffusion

oefficients have been studied in many works. The details on the EoS and thermodynamic properties can be found, e.g., in
he papers by Hansen et al. (1975, 1977), Potekhin and Chabrier (2000, 2010), as well as in a review article by Baus and
ansen (1980) and in the monograph by Haensel et al. (2007). Transport properties of Coulomb plasmas are reviewed,
or instance, by Potekhin et al. (2015b). In a multicomponent ion plasma it is important to know the diffusion coefficients
s we discuss in Section 6.

.3.2. Chemical composition
The composition of the heat blankets is generally unknown because it cannot be observed directly being hidden for

n observer by a neutron star atmosphere. The composition may depend on the formation and evolution of the star.
Initially, it has been assumed that the envelopes as well as the atmospheres of neutron stars consist of heavy elements

such as iron) because the envelopes are formed in very young and hot stars where light elements are burnt out in
hermonuclear reactions.

However, detailed studies of radiation spectra from neutron stars revealed that although some spectra are, indeed, well
escribed by the black-body model (or similar models of atmospheres composed of iron) but other spectra are better
escribed by hydrogen or carbon atmosphere models (see Potekhin et al. 2020, and references therein). For example,
pectra of neutron stars in supernova remnants Cassiopeia A (Ho and Heinke, 2009), HESS J1731-347 (Klochkov et al.,
013), and G15.9+00.2 (Klochkov et al., 2016) are well described by carbon atmosphere models.
The compositions of underlying envelopes can also be different. The envelopes may be affected by the fallback of matter

nto the stellar surface after a supernova explosion, by accretion of hydrogen and/or helium from interstellar medium
r a companion star (if the neutron star enters or entered a binary system, Blaes et al. 1992), by diffusion and nuclear
urning of the matter in the envelope, and by other effects. For instance, helium can be accreted directly or produced as
result of hydrogen burning after accretion of hydrogen (e.g. Chiu and Salpeter, 1964; Rosen, 1968; Chang and Bildsten,
003; Wijngaarden et al., 2019). Some transiently accreting neutron stars in low-mass X-ray binaries in quiescent states
when accretion stops) contain hydrogen or helium layers as a leftover of active accretion stages (e.g., see Brown et al.
002). Accordingly, it is instructive to study different envelope models and their observational manifestations.
On the other hand, the chemical composition of heat blankets cannot be absolutely arbitrary. There are important

onstraints which have to be respected in theoretical models. The main constraint is imposed by gravitational strat-
fication (Alcock and Illarionov, 1980; Hameury et al., 1983). There is a strong tendency for such a stratification in
eutron stars because of the very high gravity. Lighter elements tend to be on top while heavier elements on bottom (see
ection 6). However, there could be processes working in the opposite direction (for instance, ion diffusion). In addition,
hermonuclear processes in the envelopes of accreting neutron stars can instantaneously create complex ion mixtures
see, e.g., Meisel et al., 2018, for review and references).

Finally, the densities and temperatures, at which light elements can survive in a heat blanket, are naturally restricted
y nuclear physics, particularly, by explosive or stable nuclear burning as well as by electron captures. The density–
emperature ranges where different elements survive for a sufficiently long time are not very certain and depend on
9
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any factors, such as nuclear composition of the matter, internal temperature of the star, dynamics of mass accretion
ate if the star is accreting. The heavier the element, the wider its ρ − T range. Very roughly, hydrogen can survive at
emperatures T ≲ (4–7)×107 K and densities ρ ≲ (106–107) g cm−3, helium (4He) at T ≲ (1–3)×108 K and ρ ≲ (108–109)
cm−3, carbon (12C) at T ≲ (3–7) × 108 K and ρ ≲ 109–1010 g cm−3 (e.g., Ergma 1986, Kippenhahn et al. 2012; see also,

e.g., Piersanti et al. 2014 for accreted helium, and Potekhin and Chabrier 2012 for carbon envelopes). In the absence of
light elements, a heat blanket could be mostly composed of iron. Comprehensive reviews on nuclear burning in surface
layers of neutron stars have been given by Galloway and Keek (2021) and by Meisel et al. (2018). In what follows, unless
the contrary is indicated, we will mainly consider the 1H, 4He, 12C, and 26Fe isotopes, and we will drop isotopic indices, for
brevity. Naturally, there could be many other elements and/or isotopes in the blanketing envelopes which can be included
into consideration if necessary.

3.4. Mass distribution in heat blankets

A density profile within a heat blanket is governed by Eq. (3.2). For simplicity, let the temperature effects be negligible
(T → 0), and the pressure be provided by strongly degenerate electrons up to the surface z = 0. We assume further
that the ratio of the mean charge and mass numbers, Z̄ and Ā, is fixed. Then Eq. (3.2) can be integrated with the result
(e.g., Haensel et al. 2007, Section 6.9)

x3r =

[
z
z0

(
2 +

z
z0

)]3/2
, z0 =

mec2Z̄
mugsĀ

=
49.3Z̄
gs14 Ā

m, (3.19)

where gs14 is the surface gravity gs in units of 1014 cm s−2, and xr is given by Eq. (3.13). Since x3r ≈ ρ6Z̄/Ā is determined
by the density ρ, Eq. (3.19) gives the density profile ρ(z) as a function of depth z, z0 being a depth at which the electrons
become relativistic (ρ6 ∼ 1). One has ρ ∝ z3/2 in the layer of non-relativistic degenerate electrons and ρ ∝ z3 in the
deeper layers where the degenerate electrons are relativistic. Eq. (3.19) demonstrates self-similarity of the structure of
outer layers of neutron stars advertised in Section 3.2. Note that the equation is inaccurate in a thin outermost layer of
the star where the electrons are non-degenerate and the ions are not fully ionized. It is qualitatively correct to the bottom
of the outer crust, but becomes invalid in the inner crust where free neutrons appear and contribute to the pressure.

Mass as a function of z. Integrating Eq. (2.6) from the surface to a given depth z using our plane-parallel approximation,
one derives a simple expression for the gravitational mass ∆M(z) = m(R) − m(r) contained in the surface layer of depth
z (e.g., Gudmundsson et al. 1983),

∆M(z)
M

=
4πGP(z)

g2
s

. (3.20)

herefore,∆M(z)/M is determined by the pressure at a given depth. This is another indication of self-similarity. In contrast
o Eq. (3.19), this expression is valid for any model of the pressure. It is convenient to introduce the parameter

η ≡ g2
s14
∆M
M

≈
P(z)

1.193 × 1034 dyn cm−2 , (3.21)

and use ρ(z) instead of z. Also, one often uses the column depth from the surface,

y = ∆M/(4πR2). (3.22)

At high depths z, where the electrons are strongly degenerate, the pressure can be approximately (within several
ercent) represented by the pressure of the ideal Fermi gas of completely degenerate electrons. In this approximation,
ne has

η = 1.51 × 10−11
{
xrγr

(
2
3
x2r − 1

)
+ ln (xr + γr)

}
, (3.23)

here γr ≡
√
1 + x2r is the electron Lorentz factor at the Fermi surface. In the non-relativistic limit (xr ≪ 1), the expression

n curly brackets turns into 8x5r /15; in the opposite limit (xr ≫ 1), it tends to 2x4r /3.
For example, we can consider so called canonical neutron star model with M = 1.4M⊙, R = 10 km (gs14=2.43)

and the envelopes composed of the iron. Degenerate electrons become relativistic (ρ ∼ 106 g cm−3) at z0 ∼ 10 m,
∆M ∼ 5 × 10−13 M⊙ and the column density y ∼ 108 g cm−2. The heat blanketing envelope with ρb = 1010 g cm−3

would have the depth zb ≈ 160 m, the mass ∆Mb ≈ 1.9 × 10−7 M⊙ and yb ≈ 3 × 1013 g cm−2. If we assumed ρb = 109

g cm−3, we would have zb ≈ 75 m, ∆Mb ∼ 8.8 × 10−9 M⊙ and yb = 1.4 × 1012 g cm−2. The bottom of the outer crust
(ρdrip ≈ 4.3 × 1011 g cm−3) would be reached at zdrip ≈ 560 m, ∆Mdrip ≈ 2.9 × 10−5 M⊙ and ydrip = 4.6 × 1015 g cm−2.
The latter example is a rough estimate because, actually, iron cannot survive to the neutron drip.

Using self-similarity relations one can easily rescale these results to other values of M and R. For instance, one can take
the same M but larger R = 12 km (gs14 = 1.59). Since ∆M ∝ M/g2

s , at ρb = 1010 g cm−3 one has ∆Mb ≈ 4.4× 10−7 M⊙.
At this density the electron gas is ultrarelativistic and z ∝ z ρ1/3

∝ 1/g . Then z ≈ 240 m and y ≈ 4.9 × 1013 g cm−2.
0 s b b

10
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. Analytic models of non-magnetic envelopes

Analytic models of blanketing envelopes have been developed by Urpin and Yakovlev (1979), Hernquist and Applegate
1984), Ventura and Potekhin (2001). Below we present a similar analysis following mainly Ventura and Potekhin (2001).
ontrary to the problem of density distribution in an envelope (Section 3.4), which has an exact and simple analytic
olution (3.19), the problem of temperature distribution is more complicated and, strictly speaking, cannot be solved in
closed analytic form. Accurate solutions can be obtained numerically as discussed in the next sections. In the present
ection, we will not try to be as accurate as possible, but propose a simplified analytic treatment of the temperature
istribution which clarifies the main features of the problem. We will focus on non-magnetic spherically symmetric
nvelopes. Strongly magnetized envelopes will be analyzed in Section 8.2.
One can subdivide the heat blanket into two parts, the outer layer, where the heat is mostly carried by photons,

nd the deeper layer, where the electron transport dominates. We will assume, for simplicity, that the electrons are
on-degenerate in the former and degenerate in the latter layers and we will check this assumption.

.1. Radiative layer

Our consideration of the non-degenerate layer of a neutron star is very close to the classical theory of non-degenerate
nvelopes of white dwarfs (e.g., Schwarzschild 1958). Combining Eqs. (3.2) and (3.4), we obtain

dT
dP

=
Fr

gsκρ
, (4.1)

here F is the thermal flux density (see Section 2.2), and κ is the radiative conductivity, which will be taken in the form

κr = κ0Tβ/ρα, (4.2)

ith constant α, β , and κ0. This relation approximates radiative conduction with the opacity given by the Kramers’
ormula, K ∝ ρ/T 3.5, for α = 2 and β = 6.5. In a fully ionized, non-relativistic and non-degenerate plasma, composed
f electrons and ions with relative atomic weight A and mass number Z , where the opacity is provided by the free-free
ransitions,

Kr ≈ 75 ḡeff (Z3/A2) ρ T−3.5
6 cm2 g−1, (4.3)

κr ≈ 4 × 1012 T 6.5
6 A2

ρ2Z3ḡeff
erg cm−1 s−1 K−1. (4.4)

ere, ρ is measured in g cm−3, T6 = T/106 K, and ḡeff ∼ 1 is an effective Gaunt factor, a slowly varying function
of plasma parameters (e.g., Schwarzschild 1958, Mihalas 1978); it has much in common to a Coulomb logarithm for
electron–ion collisions. For a colder plasma composed of heavy elements, where bound-free transitions dominate over
free-free ones, the Kramers’ formula remains approximately valid, but the thermal conductivity κ is about two orders
f magnitude lower. We will not analyze this case, but the reader can easily study it by taking formally ḡeff ∼ 102.
ccording to Ventura and Potekhin (2001), Eq. (4.3) gives an order-of-magnitude approximation (within ≈ 0.5 in log κ)
o the realistic Opacity Library (opal) opacities for hydrogen at T6 ∼ 10−1

− 100.5 and ρ ∼ (10−2
− 101) T 3

6 g cm−3, if
we formally put ḡeff ≈ ρ−0.2 (where ρ is again in g cm−3). An analogous order-of-magnitude approximation to the opal
opacities for iron at T6 ∼ 1 − 101.5 and ρ ∼ (10−4

− 10−1) T 3
6 g cm−3 is given by Eq. (4.3) with ḡeff ≈ 70 ρ−0.2. Note that

corresponding approximations for κr also belong to the class of functions (4.2), but with α = 1.8.
Since the plasma is fully ionized, the pressure is produced by ideal gases of electrons and ions, P = (1+Z)ρ kBT/(Amu),

where mu is again the atomic mass unit. Combining this expression with Eqs. (4.1) and (4.2), we obtain

dT
dP

=
Fr

gsκ0

Pα−1

Tα+β−1

(
Amu

(Z + 1)kB

)α−1

. (4.5)

ow let us employ the zero-order boundary condition P(0) = T (0) = 0 at the surface z = 0 (Section 2.2) and integrate
Eq. (4.5) within the star. We get

Tβ =
α + β

α

Fr
gsκ0

(1 + Z)kB
Amu

ρα. (4.6)

sing Eq. (4.2) and setting α = 2 and β = 6.5, we have

κ =
α + β

α

Fr
gs

(1 + Z)kB
Amu

≈ 2.0 × 1014 1 + Z
A

T 4
s6

gs14

erg
cm s K

. (4.7)

herefore, T (z) increases within the non-degenerate layer in such a way that the thermal conductivity remains constant.
ombining this equation with the conduction equation Fr = κ dT/dz, we immediately obtain the linear growth of the

temperature with depth z,

T (z) =
Fr z ≈ 2.84 × 105 gs14

A
zcm K, (4.8)
κ 1 + Z
11
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here zcm is the depth z measured in centimeters. The constant thermal conductivity and the linear growth of T are
well-known features of non-degenerate stellar envelopes.

Inserting Eq. (4.8) into Eq. (4.6) we obtain the density profile in the non-degenerate envelope,

ρ ≈ 0.0024
g3.75
s14

T 2
s6

(
A

1 + Z

)3.75 ( A2

Z3ḡeff

)1/2

z3.25cm g cm−3. (4.9)

herefore, ρ ∝ z3.25 and P ∝ z4.25. The density dependence of the temperature is thus

T6 ≈ (50 ḡeff q)2/13 (ρZ/A)4/13, (4.10)

here

q ≡ [Z (1 + Z)/A] T 4
s6/gs14. (4.11)

adiative surface. Now we can check the accuracy of the approximation (3.11) for the radiative surface. From Eqs. (3.8),
4.2), and (4.6), we see that K ∝ Pγ , where γ = (3α − β)/(α + β). Substituting this expression for K in Eq. (3.10), we
btain the relation τ = KP/[g(γ + 1)]. At τ = 2/3 it reproduces Eq. (3.11) with the left-hand side multiplied by (γ + 1).
he latter factor is nearly 1, because γ is small. For instance, γ = −1/17 at α = 2 and β = 6.5.
Using Eq. (4.3) and the ideal gas EoS P = (ρ/mu) [(Z + 1)/A] kBT , we obtain

ρs ≈ 0.1
A
Z

(
A gs14

Z (Z + 1) ḡeff

)1/2

T 5/4
s6 g cm−3. (4.12)

ubstituting ḡeff ≈ 1 for hydrogen and ḡeff ≈ 200 for iron, we obtain, respectively, ρs ∼ 0.07
√
gs14 T

5/4
s6 g cm−3 and

ρs ∼ 0.004
√
gs14 T

5/4
s6 g cm−3.

Degeneracy onset. The solution given by Eq. (4.10) can be extended to a depth where the electrons become degenerate
(T ∼ TF, Eq. (3.14)). Let us estimate this depth from the condition kBTF = p2F/2me, because the electrons are still
on-relativistic. We will label the quantities at this depth by the subscript ‘‘F’’. We obtain

zF ≃
30
gs14

1 + Z
A

(ḡeffq)2/7 cm, ρF ≃ 150
A
Z
(ḡeffq)3/7 g cm−3, (4.13)

TF ≃ 8.5 × 106 (ḡeffq)2/7 K, xrF ≃ 0.053 (ḡeffq)1/7, (4.14)

here q is defined by Eq. (4.11) and xrF is the electron relativistic parameter (3.13) at z = zF. Even for very high effective
urface temperatures Ts ∼ 107 K, we have xrF ≲ 1, i.e., the electrons are indeed non-relativistic at the degeneracy boundary.
he thickness of the non-degenerate surface layer in such a hot star reaches several meters. With decreasing Ts, the
uantities zF, ρF and TF decrease, i.e., the degeneracy boundary shifts to the stellar surface. In a middle-aged neutron star,
he typical surface temperature is Ts ∼ 106 K, and the depth zF is several decimeters, while in an old and cold star, with
F ∼ 105 K, zF is a few centimeters only.

.2. Electron-conduction layer

The electron conductivity has been reviewed, for instance, by Potekhin et al. (2015b). In the case of non-degenerate
lectrons, the conductivity can be found, e.g., by the method of Braginskii (1958), which yields

κnd
e ≈ 5 × 1010 (FZ/Λ) Z−1 T 5/2

6 erg cm−1 s−1 K−1, (4.15)

here FZ is a slow function of Z: for example, F26 = 1.34 and F1 = 0.36, whereas the Coulomb logarithm Λ is ∼ 1 near
he onset of degeneracy and logarithmically increases with decreasing density.

In degenerate matter (at z > zF), the electron thermal conductivity is mostly limited by electron–ion scattering. For
his conduction mechanism (e.g., Potekhin et al. 2015b, and references therein),

κe =
πk2BTmec3x3r
12Ze4Λγ 2

r
≈ 2.3 × 1015 T6

ΛZ
x3r
γ 2
r

erg cm−1 s−1 K−1, (4.16)

where xr is the relativity parameter (3.13) and γ 2
r = 1 + x2r . The Coulomb logarithm Λ is close to unity in the liquid

Coulomb plasma (Λ ∼ 1 at T > Tm) and decreases to small values in the crystalline matter (Λ ∼ T/Tm at T < Tm;
see Potekhin et al. 1999). Eq. (4.16) transforms into (4.15) if the dimensionless Fermi momentum xr is replaced by an
appropriate thermal average, xr →

√
kBT/(mec2).

ensitivity strip. Gudmundsson et al. (1983) performed extensive numerical tests which revealed that the accurate
nowledge of the thermal conductivity is particularly important in a certain ‘‘sensitivity strip’’ in the (ρ, T ) plane. The
12
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b/Ts ratio changes appreciably if κ is modified, say, by a factor 2 within this strip, while comparable changes of κ outside
he strip would leave the ratio almost unaffected. The strip lies near the transition zone between the electron conduction
nd radiative conduction. It is explained by the fact that, as we see from Eqs. (4.4) and (4.16), κr decreases while κe
ncreases with increasing density at a constant temperature. Hence their crossover region presents a bottleneck for the
eat leakage from the stellar interior.
The ‘‘turning’’ line in the (ρ, T ) plane, where κr = κe, is easily determined from Eqs. (4.4) and (4.16),

ρ ≈ 12 (A/Z) ḡ−1/3
eff T 11/6

6 g cm−3, (4.17)

here we set (Λγ 2
r )

1/3
≈ 1, for an estimate. Using Eq. (4.6), we can explicitly relate the temperature Tt and the relativity

actor xrt at the point, where the radiative conduction turns to the electron one,

Tt ≈ 2.3 × 107 ḡ2/17
eff q6/17 K, xrt ≈ 0.157 ḡ−2/51

eff q11/51. (4.18)

ctually there is a turning zone rather than the turning point, where both thermal conductivities are equally important.
n addition, the extrapolation of Eq. (4.10) to the turning point is, strictly speaking, not justified, because the electron gas
ecomes degenerate, xrt > xrF, for typical parameters. Nevertheless, since xrt and xrF are not very different, the segment of
he temperature profile, where our assumptions are violated, is relatively small, so that Eq. (4.18) provides a reasonable
pproximation. This is confirmed by a direct comparison with numerical results (Potekhin et al., 1997), which reveals a
iscrepancy of a few tens percent at T ≳ 105.5 K.

.2.1. Electron conduction solution
An analytic temperature profile in the degenerate layers of a neutron star envelope was first calculated by Urpin and

akovlev (1979). The solution was based on the electron conductivity in the form of Eq. (4.16). The hydrostatic equilibrium
f the degenerate surface layers is determined by Eq. (3.19). Using Eqs. (3.4) and (4.16), one obtains

T
dT
dxr

=
12
π

FZ2e4Λ
muk2BAcgs

γr

x2r
= (1.56 × 107 K)2

Z2ΛT 4
s6

Ags14

γr

2x2r
. (4.19)

Treating Λ, A, and Z as constants, we can integrate this equation from xrt inside the star and obtain

T 2(z) = T 2
t + (1.56 × 107 K)2

Z2ΛT 4
s6

Ags14
[f (xr) − f (xrt)] , (4.20)

where f (x) ≡ ln
(
x +

√
1 + x2

)
−
√
1 + 1/x2.

Eq. (4.20) describes the thermal structure of the degenerate envelope. It shows that the largest temperature growth
nside the degenerate envelope takes place at lowest densities after the turning point, as stated in the discussion of the
ensitivity strip. This is because the thermal conductivity κ increases with growing density, making the temperature
rofile flatter. Taking the decrease of the Coulomb logarithm with the density growth into account, one can show that in
he deep layers the temperature tends to some constant value T (z) = Tb which we treat as the temperature at the heat
lanket bottom.

.3. Internal temperature versus surface temperature

Let us use the above solution to evaluate Tb. Typically xrt ≪ 1, but at the inner boundary xr = xb ≫ 1. Under these
onditions Eq. (4.20) gives

T 2
b ≈ T 2

t + (1.56 × 107 K)2
Z2ΛT 4

s6

Ags14xrt

[
1 + xrt ln(2xb)

]
Λ. (4.21)

The term in the square brackets slowly grows with increasing density, whereas Λ slowly decreases. For a rough estimate
we neglect their product and, using Eq. (4.18), obtain

Tb =
(
T 2
t + T 2

∆

)1/2
, T∆ ≈ 4 × 107

(
Z2 T 4

s6

A gs14

)20/51

K, (4.22)

here we have also neglected some other factors close to unity, such as [Z/(Z + 1)]0.1 and ḡ1/51
eff . More accurate

nalytic approximations for Tb are obtained by fitting the results of numerical calculations; they are described below
see Section 5.5 and Appendix B).

We see that the internal temperature Tb is determined by the two temperatures, Tt and T∆; they describe the thermal
nsulating properties of the radiation- and electron-conduction layers, respectively. The temperature growth takes place
n the very surface layers of the neutron star. Were the stellar interiors in thermal equilibrium, the internal temperature
ould actually be equal to Tb [corrected due to gravitational redshift, Eq. (2.16)] everywhere in the internal region.
We also see that, for a typical surface temperature Ts ∼ 106 K, T∆ is larger than Tt, i.e., the main thermal insulation is

produced by the layers of degenerate electrons. The second expression in Eq. (4.22), being applied to iron matter, gives
13
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Fig. 1. Temperature profiles inside non-accreted (left panel) and accreted (right panel) neutron-star envelopes at two effective temperatures,
log Ts [K] = 5.9 and 6.5 (marked near the curves). Solid curves show numerical solution (Shibanov et al., 1998); dashed curves are analytic
pproximations (4.10) and (4.20). Straight lines marked ‘‘s’’, ‘‘F’’, and ‘‘t’’ give the values of ρ and T at which the various temperature profiles cross
he radiative surface [Eq. (4.12)], the onset of electron degeneracy [Eq. (4.14)], and the turning point [Eq. (4.18)], respectively. The melting line of
ron crystal is also shown.
ource: Adopted from Ventura and Potekhin (2001).

b ≈ 1.06×108 (T 4
s6/gs14)

0.39 K. This formula is wonderfully close to Eq. (5.1) below, which was obtained by Gudmundsson
t al. (1983) by fitting numerical Tb values.
However, the T∆/Tt ratio decreases with decreasing Ts. Therefore, the thermal insulation of the non-degenerate layer

ecomes more important for a colder neutron star.
Fig. 1 illustrates the accuracy and limitations of the analytic solution. The solid lines show the temperature profiles for

he canonical neutron star. The profiles are obtained numerically as described in Section 5. The dashed curves depict the
nalytic approximations. The left panel corresponds to an envelope composed of iron, while the right panel refers to an
ccreted envelope (with the outermost shell composed of hydrogen, and the deeper shells composed of heavier elements,
e, C, Fe, see Section 5.4). This shell structure is responsible for the complex shape of the upper profile. The straight
ines show the points at which the temperature profiles at various heat fluxes cross the radiative surface, the region of
egeneracy onset, the turning point κe = κr, and (on the left panel) the bottom of the ocean (the ion crystallization point).
he crystallization line is absent on the right panel, because freezing of hydrogen and helium is suppressed by relatively
arge zero-point vibrations of these light ions (e.g., Haensel et al. 2007, Section 2.3.4).

One can see that our analytic solutions correctly reproduce the thermal structure of the envelope. Moreover, they
rovide a reasonable estimate of the temperature at a given density. At low density ρ ≲ ρs, the calculated profiles deviate
rom the analytic approximation, because the atmosphere becomes optically thin and isothermal.

Let us mention another important feature of our simplified solution. Assuming A/Z = constant and varying chemical
omposition of the blanketing envelope, we approximately have Tb ∝ Z0.4. Thus, for a given Ts, the stellar interior would
be cooler, if the star possessed an envelope made of light elements (Chabrier et al., 1997). This result is mostly explained
by the Z-dependence of the thermal conductivity of degenerate electrons (e.g., Potekhin et al., 1999). This conductivity
increases with lowering Z , which reduces the temperature gradient and the internal temperature of the star.

How well should we know the thermal conductivity? The answer was given by Gudmundsson et al. (1983) and Hernquist
and Applegate (1984). We can come to the same conclusion by analyzing Eq. (4.22). The uncertainty of our knowledge
of the radiative thermal conductivity can be included into the Gaunt factor ḡeff. We have dropped this factor from Eq.
(4.22) because it weakly affects the temperature profiles, as can be seen from Eq. (4.18). This is a consequence of the
strong temperature dependence of the radiative thermal conductivity, Eq. (4.2). Even a large variation of κr is easily
compensated by a small variation of T . The results are more sensitive to the thermal conductivity of degenerate electrons
in the sensitivity strip at not too strong degeneracy. This sensitivity strip coincides usually with the condition that the
ions constitute a strongly coupled liquid (the ion coupling parameter Γ ranges from ∼ 1 to ∼ 100).
14
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.3.1. Time resolution of heat blanketing models
Since the heat blanketing models are constructed as quasi-stationary, the time resolution of the surface temperature

ariations, Ts(t), calculated by a cooling code, is restricted. One cannot rely on the variations which are shorter than the
eat diffusion time through a heat blanket.
A proper estimate of time over which a thermal perturbation propagates in the heat blanketing envelope from a depth

2 to a depth z1 is

tth ∼
1√

1 − rg/R

[
1
2

∫ z2

z1

√
C
κ

dz

]2

, (4.23)

where C is the heat capacity per unit volume and κ is the thermal conductivity. The factor in front of the square bracket
describes gravitational dilatation of time interval for a distant observer, and the integral itself should be taken over a given
non-perturbed thermal track. This estimate is a natural consequence of the expression known from the classical studies
of thermal diffusion in stellar interiors (Henyey and L’Ecuyer, 1969). Let us estimate tth for a thermal wave propagating
from a given depth z2 = z to the surface z1 = 0. For this purpose we assume that the main contribution into the integral
comes from degenerate layers with the electron thermal conductivity κ given by Eq. (4.16) and the heat capacity C ≈ 3kBni
appropriate to a strongly coupled classical ion liquid or solid. In this case C/κ ≈ 0.106Λγ 2

r /T6 s cm−2. Let the thermal
wave be generated in the deep layer of the blanketing envelope where the electrons are ultrarelativistic (xr ≫ 1) and
the temperature is close to the internal temperature. The integration over z can be replaced by the integration over xr in
the same manner as in the derivation of Eq. (4.19). Assuming further that the main contribution into tth comes from the
layers, where T ≈ Tb, xr ≫ 1, and the Coulomb logarithm Λ is constant, we obtain

tth ∼
2Λ x4r

Tb6
√
1 − rg/R

(
Z

Ags14

)2

days. (4.24)

Taking the canonical neutron star model with an iron heat blanket and setting Λ = 1, we arrive at tth ∼ 0.1 x4r /Tb6 days.
or example, if Tb ≈ 8.6× 107 K (appropriate for the surface temperature Ts = 106 K), then a thermal wave generated at
= 108 g cm−3 will travel to the surface in tth ∼ 12 hr, while a wave generated at ρ = 1010 g cm−3 will travel in tth ∼ 8
onths (also see Section 7.2). The bottom of the heat-blanketing envelope is usually taken at ρ ∼ 1010 g cm−3, and the
nvelope solution derived in the stationary approximation is implanted in the codes which simulate neutron-star cooling
Section 3). One should not trust surface temperature variations over time scales of a few months or shorter obtained
sing these cooling codes.
In a cold neutron star, the relaxation time can be determined by the scattering of electrons off impurities rather than by

he electron–ion scattering (see, e.g., Appendix A.4 of Potekhin et al. 2015b). Numerical calculations of tth in the neutron
tar crusts were performed, for instance, by Brown et al. (1998), Rutledge et al. (2000), Ushomirsky and Rutledge (2001),
rown and Cumming (2009), Page and Reddy (2013), Yakovlev et al. (2021) for the problem of thermal relaxation of
ransiently accreting neutron stars in low-mass X-ray binaries. Generation of thermal disturbances in the inner neutron
tar crust and their emergence to the surface was studied also for glitching neutron stars (e.g., Hirano et al. 1997).

.4. Heat blankets of white dwarfs

White dwarf stars are ‘‘close relatives’’ of neutron stars. They consist of a massive and bulky core of degenerate
lectrons surrounded by a light and relatively thin non-degenerate envelope (e.g., Shapiro and Teukolsky 1983). White
warf masses are comparable with neutron star ones but white dwarf radii are about three orders of magnitude larger.
White dwarfs, like neutron stars, possess heat blanketing envelopes which keep their interiors sufficiently warm for a

ong time, comparable with cosmological time-scales. Heat blankets of white dwarfs and neutron stars are described by
early the same physics, although the surface gravity of white dwarfs is smaller by about six orders of magnitude and the
omposition of heat blankets may be different. Approximate analytic consideration of neutron star blankets in Section 4
s equally applicable to white dwarf blankets.

Analytic description of white dwarf thermal structure was developed in a seminal paper by Mestel (1952) (nicely
ummarized by Van Horn 1971). According to Mestel (1952), the white dwarf heat blanket essentially coincides with
he non-degenerate envelope. It was believed that high thermal conductivity of degenerate electrons should make the
hite dwarf core isothermal. In our notations, Mestel’s version of Eq. (4.22) is Tb = Tt (neglecting the contribution T∆ of
egenerate electrons). Note that, according to our Eq. (4.18), Tt ∝ T 24/17

s while Mestel obtained Tb ∝ T 8/7
s . The difference

n power-law indices is insignificant and stems from the fact that we estimate Tt at the turning line [Eq. (4.17)], whereas
estel did so at the degeneracy line [Eq. (4.14)].
Thus the Mestel’s formula underestimates Tb for a given Ts, and the underestimate can be substantial. Anyway, people

o not like analytic formulas nowadays, and use computers instead. As a rule, the white dwarf evolution is computed
umerically (e.g., Koester and Chanmugam 1992, Althaus et al. 2010, and references therein) throughout entire stars,
ithout separate treatment of heat blankets. Nevertheless, analytic formulas are useful for insight and for benchmarking
umerical calculations. As will be seen in the next section, the relative importance of thermal insulation of degenerate
ayers in a cooling star becomes lower and the turning point shifts to the degeneracy line. This effect is more pronounced
n cooling white dwarfs than in cooling neutron stars. Therefore, as a white dwarf cools down, the Mestel’s approximation
ecomes more accurate.
15
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. Basic non-magnetic heat blanketing envelopes

Now we turn to accurate calculations of the structure of non-magnetic heat blankets of neutron stars. Magnetic
nvelopes will be analyzed in Section 8.

.1. Historical remarks

Calculations of Tb–Ts relations are being done since the beginning of cooling simulations of neutron stars. Initially,
these relations were rather approximate, because of large theoretical uncertainties of EoS and thermal conductivity in
heat blankets. The first solid reliable relation was obtained in a classical paper by Gudmundsson et al. (1983), who carried
out a comprehensive study of blanketing envelopes composed of iron using the best physical input available at that time.
These authors considered the range of surface temperatures 5.25 ≤ log Ts [K] ≤ 6.75 and fitted their numerical results
y a remarkably simple formula,

Tb = 1.288 × 108 (T 4
s6/gs14)

0.455 K. (5.1)

simplified derivation of a similar expression was given in Section 4.3.
Eq. (5.1) has been used in numerous calculations. It appears to be sufficiently accurate for not too cold and not too hot

ron blankets.
At the next step the problem was reconsidered by PCY97 (Potekhin et al., 1997), who extended the results of Gud-

undsson et al. (1983) in two respects. First, they studied the blanketing envelopes composed not only of iron but also
f lighter elements. Second, advanced theoretical data on EoS and thermal conductivity implemented by Potekhin et al.
1997) allowed them to study colder neutron stars, with Ts down to 50000 K. Potekhin and Yakovlev (2001) studied Ts−Tb
elations for magnetic envelopes composed of iron. They depend on the strength of the field B and on its inclination to
he surface. Potekhin et al. (2003) obtained analogous relations for the accreted envelopes and for a different value of ρb.
e describe those results below.

.2. Physics input

PCY97 studied the blanketing envelopes composed, from surface to bottom, of hydrogen, helium (4He), carbon (12C),
nd iron (56Fe) shells (stratified onion-like structure). At any given density the plasma contains ions of one chemical
lement that can be in different ionization stages. The uncertainties in the composition have been discussed briefly in
ection 3.3.2. More details about different shells can be found in Section 5.4.
The EoSs of heat blankets are described, e.g., in Haensel et al. (2007, Chapter 2). In the high-density domain (strongly

egenerate electrons, almost full pressure ionization), PCY97 used an EoS of the fully ionized electron–ion plasma. In the
ow-density domain (nearly ideal plasma that can be partially ionized) one can employ the opal (Rogers et al., 1996) or
nother tabulated EoS. The intermediate density domain (partially ionized, non-ideal plasma) is most complicated. In this
ase, PCY97 used numerical tables of Saumon et al. (1995) for H and He and an interpolation over the gap between the
pal tables and the domain of full ionization for the iron envelopes.
The electron heat conduction for partially ionized plasmas was treated in the mean ion approximation, using the

ormulas derived for fully ionized degenerate plasmas. The effective ion charge number Zeff can be taken from tables,
henever available. Otherwise PCY97 used an interpolation procedure. The radiative thermal conductivity was taken

rom the data of Rogers et al. (1996).

.3. Iron blanketing envelopes

The thermal structure of the envelope is studied by integrating Eq. (3.4) within the envelope. Fig. 2 shows the
ependence of temperature on density in the envelope at various Ts. The integration is started at the surface density
s, determined by the Eddington boundary condition (3.11). In the left panel, the envelope is assumed to be composed
f iron. The integration is terminated at ρb = 1010 g cm−3. The value gs14 = 2.43 chosen in Fig. 2 corresponds to the
anonical neutron star model. Solid curves are calculated using the physics input described above. Circles on the curves
re the turning points (κr = κe). Also shown are the electron degeneracy curve and the melting curve.
In a wide range of Ts, the outermost layers can be convective (see the left panel of Fig. 2). In these layers, the energy

s transported by convection rather than by heat conduction. The convective energy flux is described in the adiabatic
pproximation (see Section 2.2).
In order to check the effect of convection, calculations neglecting convection were performed. This extreme case is

pposite to the adiabatic one. In this approximation, one obtains slightly higher temperatures inside the convective part
f the atmosphere (the left panel of Fig. 2). The atmospheric temperature profiles were also derived by Zavlin et al.
1996) by numerically solving the radiative transfer equation at moderate optical depths and describing the convection
sing the mixing-length theory; they lie between the two extremes mentioned above. In deeper layers, the two extreme
rofiles tend to merge, because the thermal conductivity κ in Eq. (3.4) increases inside the envelope, thus reducing the
16
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Fig. 2. Left panel: Temperature profiles in an iron blanketing envelope (thick solid lines) compared with the three approximations: (i) by extrapolating
simplified κe of Yakovlev and Urpin (1980) (YU) to T > TF; (ii) by using simplified κe of Potekhin and Yakovlev (1996) (PY); and (iii) neglecting
convection (thin solid lines). The curves are labeled by the values of Ts6 . Circles show the points, where the radiative opacity equals the conductive
one; thick dots show the melting curve; long dashes display the degeneracy line, T = TF . Right panel: Temperature profiles in a fully accreted
envelope (Section 5.4; solid lines) are compared to those in the envelopes composed of pure iron (dot-dashed lines) and of pure helium (dashed
lines). The curves are labeled by the values of Ts6 . The circles are turning points which separate the regions of radiative and electron conduction;
asterisks indicate the H/He (lower ρ) and He/C (higher ρ) interfaces. (After PCY97. See text for details.)

temperature gradient at higher ρ. The thermal structure of the blanketing envelope at ρ ≳ 10 g cm−3 is almost unaffected
by convection.

The dotted and dot-dashed lines in the left panel of Fig. 2 show temperature profiles calculated using simplified
formulas for κe. The dotted lines are obtained with simplified expressions for κe derived by Urpin and Yakovlev (1980)
and Yakovlev and Urpin (1980) for strongly degenerate and fully ionized plasma; the expressions were extrapolated into
the domain of weak degeneracy and partial ionization. It turns out that in a cold enough envelope the thermal conductivity
of non-degenerate or partly degenerate electrons becomes important. A comparison with the tabular data of Hubbard
and Lampe (1969) reveals that a straightforward extrapolation of the Urpin and Yakovlev (1980) formulae from their
validity domain (fully ionized, degenerate plasma) to the case of non-degenerate matter may underestimate κe by orders
of magnitude. As seen from Fig. 2, this would significantly overestimate the internal temperature at Ts ≲ 2 × 105 K.

The dot-dashed profiles in the left panel of Fig. 2 were obtained using the simplified thermal conductivity code (Potekhin
and Yakovlev, 1996), which neglects contribution from electron–electron collisions and employs less accurate Coulomb
logarithms, but includes averaging of the effective relaxation times with the electron Fermi–Dirac distribution at partial
electron degeneracy. The contribution of electron–electron collisions has been reconsidered later (Shternin and Yakovlev,
2006) but in any case it seems to be not very important for the conditions assumed in Fig. 2. The dot-dashed lines almost
coincide with the solid ones, indicating again that the temperature profiles are most sensitive to the thermal conductivity
of degenerate electrons in Coulomb liquid of ions at Ts ≳ 105 K and to the thermal conductivity of mildly degenerate
lectrons at lower Ts.
This effect is also shown in Fig. 3, which displays log(Tb/Ts) as a function of log Ts. The left panel shows the case of iron

nvelopes. In this case, if log Ts [K] > 5.5, then the simple fit of Gudmundsson et al. (1983), Eq. (5.1), is fairly accurate.
t lower Ts its accuracy becomes worse. The scaling (self-similarity) relation, Tb = Tb(T 4

s /gs), holds well in the entire
emperature–gravity range presented in this figure, except for the lowest Tb and Ts. In the last case, especially at high Z ,
adiative opacities are affected by bound–bound transitions and strong plasma coupling effects. Therefore, they do not
bey the simple power law (4.2) anymore. An appropriate fit to the numerical results is given in Section 5.5.
17
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Fig. 3. Temperature ratio Tb/Ts as function of the effective surface temperature Ts , compared with the approximation of Gudmundsson et al. (1983),
q. (5.1), marked as GPE. Left panel: Iron envelopes with different surface gravities. Right panel: Envelopes with different amounts of accreted matter.
After PCY97. See text for details.)

.4. Accreted envelopes

Here we describe PCY97 blanketing envelopes containing shells of light elements (H, He, C; Potekhin et al. 2003
upplemented this sequence by an oxygen layer) and possibly the iron shell at the bottom. The iron shell models the non-
ccreted part of the outer crust (which consists of iron-group isotopes in its ground state). The light elements represent
he accreted matter and the products of its nuclear burning. The interfaces between the shells of different light elements
re placed at the approximate limits of their stability against the burning. The interface between the light elements and Fe
s determined by the total amount of the accreted matter. PCY97 called them accreted envelopes; the envelopes composed
olely of the light elements were called fully accreted. As outlined in Section 3.3, the parameters of such shells are not
free. In particular, lighter ions are closer to the surface, owing to gravitational stratification (Alcock and Illarionov, 1980).
It is also important that lighter elements transform into heavier ones at high enough temperatures (via thermonuclear
reactions) and/or densities (via pycnonuclear reactions).

In heat blankets of different compositions, hydrogen may be viewed as accreted, helium either as accreted or a product
of hydrogen burning, and carbon as a result of nuclear burning. Iron may represent either a primordial composition of
the stellar surface layers or a final product of nuclear transformations of light elements. In test runs, the boundaries
between the shells varied within wide limits. In final runs, the boundaries were varied within much more restricted
limits consistent with the models of nuclear burning existed by that time. In their analysis, the authors took into account
the results by Iben Jr (1974), Alcock and Illarionov (1980), Paczyński (1983), Ergma (1986), Miralda-Escudé et al. (1990),
Blaes et al. (1992), Schramm et al. (1992), Yakovlev (1994). If the temperature within a hydrogen, helium, or carbon
shell exceeded a certain limit, the nuclei within a given shell were replaced by heavier ones (e.g., H→He, etc.) reflecting
thermonuclear burning. Roughly, it was assumed that hydrogen can survive at T ≲ 4 × 107 K and/or ρ ≲ 107 g cm−3;
helium — at T ≲ 108 K and/or ρ ≲ 109 g cm−3, while carbon at T ≳ 109 K and/or ρ ≲ 1010 g cm−3. Potekhin and Chabrier
(2012) developed a more accurate treatment of limiting boundaries between carbon, oxygen, and iron-group substrate
in the neutron-star envelopes. The positions of other boundaries have also been updated (see Section 3.3.2). However, it
was checked that possible variations of these limiting boundary positions did not affect noticeably the resulting Ts − Tb
relations.

The right panel of Fig. 2 displays the thermal structure of a fully accreted envelope, where the accreted matter of mass
∆M ∼ 10−7M extends to ρ ≃ ρb in a neutron star with M = 1.4M⊙ and R = 10 km (gs = 2.43 × 1014 cm s−2). The
outer, intermediate, and inner shells of this envelope, separated by asterisks, are composed of H, He, and C, respectively.

One can observe significant differences from the iron envelope; they are explained below. For a not too cold neutron
star (T ≳ 105 K), the main temperature gradient occurs in a layer of degenerate electron gas with ions in the liquid state.
s
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Fig. 4. Photon surface luminosity (redshifted as detected by a distant observer, left vertical axis) or redshifted effective surface temperature (right
ertical axis) of the canonical neutron star model for four values of the ‘‘internal’’ temperature Tb (at ρb = 1010 g cm−3) versus the mass ∆M of

H+He; after Yakovlev et al. (2002).

The thermal conduction in this layer is mostly provided by the electrons, being limited by the electron–ion scattering.
The heavier the element, the smaller the thermal conductivity, and the steeper is the temperature growth inside the star.
With decreasing Ts, however, the width of the heat-blanketing degenerate layer becomes smaller, and the effect is less
pronounced. In a cooler neutron star (Ts ≲ 105 K), the main temperature gradient shifts into the neutron star atmosphere,
to the optical depths ∼ 1. For heavier elements, the atmospheric layers are denser at the same Ts. Then the internal
temperature gradient is weaker and the temperature grows slower inside the star. The effective surface temperature that
separates these two regimes is almost independent of the surface gravity (see Fig. 3 of PCY97).

The right panel of Fig. 3 shows log(Tb/Ts) as a function of log Ts for various masses ∆M of H + He. The dot-dashed line
represents log(Tb/Ts) for a non-accreted (Fe) envelope from the left panel. Other lines are for different compositions at
various∆M . The effect of∆M is seen to be quite pronounced. Even a thin hydrogen or helium shell of mass∆M = 10−16M ,
which extends only to ρ ∼ 103 g cm−3, strongly modifies the Tb–Ts relation.

According to PCY97, the Ts–Tb relation is mostly determined by the total mass ∆M of H and He, contained in the
blanketing envelope, being rather insensitive to the boundary density between the H and He shells and to a possible
presence of the carbon shell beneath the helium shell.

Fig. 4 shows the photon luminosity of the canonical neutron star versus ∆M for four values of Tb = 3 × 107, 108,
3 × 108, and 109 K. If the heat blanket is fully accreted, the luminosity can increase by about one order of magnitude,
i.e., the surface temperature Ts can increase by a factor of 2.

5.5. Relation between internal and surface temperatures

PCY97 constructed a fitting formula for Ts as a function of Tb9 = Tb/109 K, gs14, and parameter η, related to the accreted
mass ∆M of light chemical elements (H and He) by Eq. (3.21). The fit was based on the calculations of Ts − Tb relations at
4.7 ≤ log Ts ≤ 6.5, 0.4 ≤ gs14 ≤ 6, and 0 ≤ η ≤ 10−7. The boundaries between H, He and C shells were varied in test runs
but fixed in the bulk of computations (unless the shells are not replaced by Fe). For fixed Ts and gs14, the only physical
parameter that has been varied is ρFe, the upper boundary of the iron shell; ρFe ≤ ρb = 1010 g cm−3. According to PCY97,
heat insulating properties of carbon and iron are similar, so that ρFe can be replaced (within a reasonable accuracy) by
ρC, the upper boundary of the carbon shell. Recall that PCY97 found that insulating properties of H and He plasmas are
also similar. Therefore, the fit, albeit constructed for H/He/C/Fe structure, can be used for other positions of H/He and C/Fe
interfaces with a similar (albeit somewhat lower) accuracy.

For a purely iron envelope, a crude estimate (with an error ∼ 30%) yields

Ts6 = T∗ ≡
(
7 Tb9

√
gs14

)1/2
. (5.2)

ccording to Eq. (3.6),

F20 ≈ 0.567 T 4
s6, (5.3)

here F20 ≡ Fr/1020 erg cm−2 s−1. Therefore, in spherical symmetry,
2 4 32 −1
Lr ≈ 7.126 (R/10 km) Ts6 × 10 erg s . (5.4)

19



M.V. Beznogov, A.Y. Potekhin and D.G. Yakovlev Physics Reports 919 (2021) 1–68

T

w

o

w

T
g
t
c
E

T
t
o
s
o

i

w
T
e

Let us define ζ ≡ Tb9 − (T∗/103). Then a refinement of the fit (5.2) by PCY97 reads

F (Fe)
20 = 0.567gs14

[
(7ζ )2.25 + (ζ/3)1.25

]
. (5.5)

he typical fit error of F (Fe)
20 is about 8%, with maximum 18%, over the Ts − gs domain indicated above.

For a fully accreted envelope, PCY97 had

F (a0)
20 = 0.567gs14 (18.1 Tb9)2.42, (5.6)

hich is valid at not too high internal temperature, Tb ≲ 108 K.
Finally, for the partially accreted envelopes at any temperatures within the indicated range, an interpolation formula

f PCE97 was

F20 =
a F (Fe)

20 + F (a0)
20

a + 1
, (5.7)

here

a =
[
1.2 + (5.3 × 10−6/η)0.38

]
T 5/3
b9 . (5.8)

he typical fit error of Eq. (5.7) for F20 is about 12%, with maximum ∼ 20%, for all possible values of η and any values of
s and Ts within the indicated ranges. For η ≳ 10−7, the shell of light elements (H and He) would formally extend beyond
he heat blanketing envelope into the zone where light elements cannot survive because of pycnonuclear burning. In such
ases, the actual mass of light elements will be lower than the mass corresponding to the formal parameter η. However,
q. (5.7) remains valid even if ∆M is formally overestimated.
The dependence (5.5) is realized not only at sufficiently low accreted mass (η → 0), but also at sufficiently high Tb.

he latter result reflects the fact that at high Ts the thermal insulation is mostly produced by the electron conductivity in
he deep and hot layers of the envelope (within the sensitivity strip), in which light elements (H, He) burn into heavier
nes. On the other hand, even at very low accreted mass, ∆M/M ∼ 10−16, the approximation of fully accreted crust is
till good enough at sufficiently low temperature, because in this case the thermal insulation is actually provided by the
utermost accreted surface layers.
Potekhin et al. (2003) noticed that thermonuclear burning of helium into heavier elements leads to violation of the

sothermality of the fully accreted envelope at ρ ≳ 1010 g cm−3, if Tb ≳ 108 K. They shifted ρb to the neutron-drip density,
where the isothermality is guaranteed, and obtained the Ts −Tb relation for this case. They also extended the fit to higher
temperatures. The fit (5.5) for the iron envelope remains valid with this increase of ρb (within the indicated accuracy).
For a fully accreted envelope, the improved fit reads

F (a)
20 =

{
0.447 + 0.075 log(Tb/K)/[1 + (6.2 Tb9)4]

}
F (a0)
20 + 3.2 T 1.67

b9 F (Fe)
20

1 + 3.2 T 1.67
b9

, (5.9)

here F (a0)
20 is given by Eq. (5.6) and F (Fe)

20 by Eq. (5.5). The correction factor accounts for thermonuclear burning of He at
≳ 108 K and for the non-isothermality at high densities and temperatures. For a partially accreted envelope, Potekhin
t al. (2003) replaced the interpolation (5.7) by

F20 = a F (a)
20 + (1 − a) F (Fe)

20 , (5.10)

a =
[
1 + 3.8 (0.1ξ )9

]−1 [
1 + 0.171 ξ 7/2 Tb9

]−1
, ξ ≡ − log(106η). (5.11)

Since the results of PCY97 and Potekhin et al. (2003) have been obtained neglecting neutrino emission in the blanketing
envelope, the effective surface temperature is determined by Eqs. (5.3) and (5.10),

Ts = 1.1524 F 1/4
20 × 106 K. (5.12)

This assumption is acceptable, if Tb ≲ 109 K. At still higher temperatures, neutrino cooling within the heat blankets can
be important and the blanket models must be modified. In this case, Eq. (5.3) is valid only at the surface but not at the
envelope bottom ρ = ρb, because the flux at the radiative surface is no longer equal to Fb (see Section 3.2). With increasing
Tb, energy from the blanket is progressively lost to neutrino emission, while the photon emission levels off. In this case,
the boundary condition (3.7) is not directly determined by Ts (see Section 10.2 below).

6. Ion diffusion in heat blanketing envelopes

So far we have considered the models of heat blankets which contain ions of one species at any value of ρ. Evidently,
heat blankets may contain mixtures of different chemical elements. The parameters of ions in such mixtures have been
outlined in Section 3.3.1. Generally, diffusion of the ions of different species should be taken into account. Below, before
constructing models of such envelopes, we focus on ion diffusion and its effect on the structure and insulating properties
of the envelopes.
20
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.1. Diffusion currents in a dense plasma

Diffusion processes in a mixture of rarefied gases and in a weakly coupled multicomponent plasma (see Section 3.3.1)
re well studied and described in the classical monographs by Chapman and Cowling (1952), Hirschfelder et al. (1954).
any studies of diffusion in dense plasmas are based on the expressions for diffusion currents taken for a mixture of

arefied (weakly Coulomb coupled) particles, with the diffusion coefficients calculated for strongly coupled plasmas. This
pproach does not take into account that the Coulomb interaction affects not only the diffusion coefficients but the
iffusion currents themselves.
Here, we present the derivation of the diffusion currents from first principles. We will follow Beznogov and Yakovlev

2013, 2014a), Beznogov et al. (2016b) who used the approach similar to that described by Landau and Lifshitz (1987).
e will derive the basic formulas in a general form and apply them for heat blankets of neutron stars.
Let us consider a multicomponent Coulomb plasma, which is out of equilibrium under the effects of external forces

α (acting on particle species α: electrons α = e and ions α = j = 1, 2, . . .), gradients of number densities ∇nα and the
emperature gradient ∇T . Here and hereafter, the gradient operator ∇ is assumed to act in the local frame of reference.
ll deviations from the equilibrium are thought to be weak so that we can use the linear kinetics in which the diffusion
urrents are linear with respect to corresponding thermodynamic forces. Let us introduce generalized thermodynamic
orces

f̃ α = f α −

(
∇µα −

∂µα

∂T

⏐⏐⏐⏐
P
∇T
)
, (6.1)

here µα is the chemical potential of particles α.
In the outer layers of neutron stars, plasma particles are mostly affected by the gravitational force and the electric

orce,

f α = ZαeE + mαg . (6.2)

n this case, Zαe and mα are, respectively, the charge and mass of particle species α (Ze = −1); g is the gravitational
acceleration, determined by Eq. (3.3), and E is the electric field in the local reference frame, induced by a plasma
polarization in the gravitational field; this electric field ensures electric neutrality of the plasma, Eq. (3.12).

A deviation of the system from the state of diffusive equilibrium is characterized by the quantities

dα =
ρα

ρ

∑
β

nβ f̃ β − nα f̃ α, (6.3)

here ρα = mαnα is the mass density of the component α (ρ being the total mass density). Here we neglect the electron
ass in conformity with the approximations described after Eq. (6.7). Evidently,

∑
α dα = 0. Using Eqs. (6.1) and (6.2),

he Gibbs–Duhem relation∑
α

nα∇µα = ∇P − S ∇T (6.4)

S being the entropy density) and the electric neutrality condition (3.12), we obtain∑
α

nα f̃ α = ρg − ∇P . (6.5)

his is an important relation for the mechanical stability of the star. Particle species α are in a state of mechanical
quilibrium if and only if f̃ α = 0. If, in addition, the system is isothermal (i.e., ∇T = 0), then this expression coincides
ith the condition of ‘‘chemical’’ equilibrium of particles α (Chang et al., 2010). Furthermore, if the system as a whole is

n the state of hydrostatic equilibrium, then ρg = ∇P . Recall that hydrostatic equilibrium in neutron stars is restored over
time-scales ranging from milliseconds to tens of seconds (Shapiro and Teukolsky, 1983). On the other hand, it takes from
days to years to reach diffusive equilibrium in the envelopes of neutron stars (see Section 7.4). Therefore, if the system
as a whole is in hydrostatic equilibrium, then the diffusive equilibrium implies also the mechanical equilibrium.

The outer layers of neutron stars are usually in hydrostatic equilibrium. Then the right-hand-side of Eq. (6.5) is zero,
and Eq. (6.3) is simplified,

dα = −nα f̃ α. (6.6)

sing Eqs. (6.1) and (6.2), one can rewrite (6.6) in the form

dα = −
ρα

ρ
∇P − ZαnαeE + nα

(
∇µα −

∂µα

∂T

⏐⏐⏐⏐
P
∇T
)
. (6.7)

Because the electrons are much lighter than the ions, their characteristic velocities are much higher (especially
if they are degenerate). We will be mostly interested in the ion transport, in which case one can use the adiabatic
Born–Oppenheimer approximation (e.g., Schiff 1968). This approximation implies that the electrons are in mechanical
21
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uasi-equilibrium with respect to the ions (that is the electrons instantaneously readjust themselves to ion displacements).
hen de = 0 and, according to Eq. (6.6), f̃ e = 0. Therefore, in the limit of me → 0, we obtain

eE = −

(
∇µe −

∂µe

∂T

⏐⏐⏐⏐
P
∇T
)
. (6.8)

Using standard relations of chemical equilibrium (e.g., Landau and Lifshitz 1993), this expression can be rewritten through
chemical potentials of the ions. The adiabatic approximation allows us to exclude the electrons from the problem of ion
transport (the diffusion currents of ions are mostly determined by a non-equilibrium state of the ion subsystem, Paquette
et al. 1986).

The chemical potentials are usually known as functions of temperature and particle fractions. It is instructive to express
the derivative ∂µ/∂T at constant P and xj in terms of ∂µ/∂T at constant nj,

∂µ

∂T

⏐⏐⏐⏐
P,{xj}

=
∂µ

∂T

⏐⏐⏐⏐
{nj}

−
∂P
∂T

⏐⏐⏐⏐
{nj}

⎛⎝∑
j

nj
∂µ

∂nj

⏐⏐⏐⏐
T ,{nk|k̸=j}

⎞⎠⎛⎝∑
j

nj
∂P
∂nj

⏐⏐⏐⏐
T ,{nk|k̸=j}

⎞⎠−1

. (6.9)

The phenomenological expression for the mass density current can be written as

Jα = ραvα =
nmα

ρkBT

∑
β ̸=α

mβDαβdβ − DT
α

∇T
T
, (6.10)

here vα is the diffusion velocity of particles α, Dαβ is a generalized diffusion coefficient for particles α with respect to
articles β , DT

α is a thermal diffusion coefficient for particles α. The coefficient before the sum is chosen in such a way for
he expression to coincide with the ordinary definition of diffusion coefficients in a mixture of ideal gases (e.g., Chapman
nd Cowling 1952, Hirschfelder et al. 1954, Lifshitz and Pitaevskiı̆ 1981). By definition, the diffusion fluxes should satisfy
he relation∑

α

Jα = 0, (6.11)

hich imposes certain restrictions on the diffusion and thermal diffusion coefficients (as described in Chapman and
owling 1952, Hirschfelder et al. 1954). Eq. (6.10) is strictly valid for non-relativistic particles whereas the electrons in a
ense plasma can be relativistic. However, the adiabatic approximation can also be valid for relativistic electrons (as long
s they can be treated as massless), so that the exclusion of electrons from the ion diffusion problem is still possible.
A further use of Eq. (6.10) in the general form is complicated. Hereafter, we restrict ourselves to particular cases that

re most appropriate to ion diffusion in heat blankets of neutron stars. We will mainly consider binary ionic mixtures.
or them, Eq. (6.10) can be written as

J1 = −J2 = −
nim1m2

ρkBT
D12

(
d1 + kT

∇T
T

)
. (6.12)

Here, the last term is a correction due to thermal diffusion, which is usually weak; a dimensionless coefficient kT is called
the thermal diffusion ratio.

6.2. Diffusion in isothermal strongly coupled and strongly degenerate plasmas

To analyze the main features of Eq. (6.10) for the diffusion currents it is sufficient to study an isothermal system.
Moreover, as will be shown below in this section, the terms associated with the temperature gradient will disappear in
the limit of a strongly non-ideal plasma. Then general, non-isothermal expressions coincide with isothermal ones. Let
us consider a binary ion mixture (with two ion species j = 1, 2). To be specific, we assume that Z1 < Z2. Taking into
account quasi-equilibrium of electrons, de = 0, and also that

∑
α dα = 0 (see above), we obtain d1 = −d2. Therefore, it

is sufficient to study only d1. Using Eqs. (6.7) and (6.8), we obtain

d1 =
n1n2

ne

(
mu (Z1A2 − Z2A1)

∇P
ρ

+ Z2∇µ1 − Z1∇µ2

)
, (6.13)

here mu is again the atomic mass unit (i.e., mj = Ajmu). Without any loss of generality, the chemical potential of ions
an be presented as a sum of two terms, µj = µ

(id)
j + µ

(C)
j , where ‘‘(id)’’ labels the ideal gas contribution and ‘‘(C)’’ the

ontribution of the Coulomb interaction and other effects of non-ideality such as the exchange interaction, polarizability
f the electron background and so on (see Potekhin and Chabrier 2010, 2013 for details). Under the conditions in the
nvelopes of neutron stars, the main contribution to µ(C)

j comes from the Coulomb interaction of ions. As a result, the
ector d1 splits into the three terms, d1 = dg + d∇n + dC, with (Beznogov and Yakovlev, 2013)

dg = muZ1Z2
n1n2

(
A2

−
A1
)

∇P
, (6.14)
ne Z2 Z1 ρ
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d∇n =
n1n2

ne

[
Z2∇µ

(id)
1 − Z1∇µ

(id)
2

]
=

kBT
ne

(Z2n2∇n1 − Z1n1∇n2) , (6.15)

dC =
n1n2

ne

[
Z2∇µ

(C)
1 − Z1∇µ

(C)
2

]
. (6.16)

n Eq. (6.15) we have used the relation ∇µ
(id)
j = kBT

(
∇nj

)
/nj, which holds in an isothermal system. Let us consider each

erm separately.

• The term dg is responsible for the mechanism of gravitational separation of ions, provided their effective ‘‘molecular
weights’’ A/Z are different, which destroys the balance of gravity and electric forces. In the neutron-star envelopes
and white dwarfs, this mechanism was studied previously, e.g., by Alcock and Illarionov (1980), Hameury et al.
(1983), Chang and Bildsten (2003), Chang et al. (2010).

• The term d∇n describes ordinary diffusion under the action of gradients of ion number densities; this is easily seen
at n2 ≪ n1 in which case ne ≈ Z1n1 and d∇n ≈ −kBT ∇n2. In the neutron-star envelopes, this mechanism was also
studied previously, e.g., by Hameury et al. (1983), Chang et al. (2010).

• The term dC is responsible for a Coulomb mechanism of ion separation, which was put forward by De Blasio (2000)
and studied by Chang et al. (2010) for equilibrium plasma configurations. The latter authors have located the domains
of plasma parameters where dC, dg, or the nuclear mass defect of ions with A ≈ 2Z in dg are dominant. Later
Beznogov and Yakovlev (2013, 2014a) and Beznogov et al. (2016b) introduced the term dC in the expressions for
mass currents and studied its effects for non-isothermal or non-equilibrium plasma states.

Let us study specific features of the Coulomb mechanism of ion separation in a strongly coupled and strongly
egenerate plasma (Γ̄ ≫ 1, T ≪ TF). Within an accuracy of several percent, thermodynamic functions of such a plasma
an be described in the ion-sphere approximation using the linear mixing rule (see Potekhin and Chabrier 2010, 2013
nd references therein for details and for a more accurate description beyond these simplified assumptions). Under these
pproximations,

µ
(C)
j = −0.9

Z 5/3
j e2

ae
, ∇µ

(C)
j = −0.3

Z 5/3
j e2

ae

∇ne

ne
. (6.17)

hen

dC = 0.3
n1n2

ne

Z1Z2e2

ae

(
Z 2/3
2 − Z 2/3

1

)
∇ne

ne
. (6.18)

The structure of dC resembles the structure of dg; dC describes a specific ‘Coulomb’ separation of ions in a gravitational
ield. The separation occurs because the ions with different Z have different ion-sphere radii. Hence, the Coulomb energies
f the ion spheres are different (also see Section 6.5). A specific feature of the Coulomb term is that it is present even for
ons with Z1/A1 = Z2/A2 .

In order to illustrate this effect let us derive the final expressions for the diffusive ion currents in a strongly coupled ion
lasma, using the ion-sphere approximation and assuming that the pressure is mainly produced by degenerate electrons,

≈ Pe(ne). These simplifying assumptions are sufficiently accurate in the bulk of a typical neutron-star envelope.
hen, using the condition of hydrostatic equilibrium (3.2), we obtain

(
∇ne

)
/ne =

(
∇P
)
/
(
γ P
)

= ρg/
(
γ P
)
, where

= (∂ ln P/∂ ln ne )T . Under the above assumptions, the Coulomb contribution becomes

dC = 0.3
ρn1n2

ne

Z1Z2e2g
γ aeP

(
Z 2/3
2 − Z 2/3

1

)
. (6.19)

n a binary ionic mixture, there is only one non-trivial coefficient for binary diffusion, D12 = D21 ≡ D. With our treatment
f electrons as massless fermions (Section 6.1), while studying the ion transport, we can set J e = 0. Then Eq. (6.11) yields
hat J1 = −J2 and, taking into account d1 = −d2 (see above in this section), one can write down the diffusion current as

J2 = −J1 =
nim1m2

ρkBT
Dd1. (6.20)

ubstituting here Eqs. (6.14), (6.15) and (6.19), we obtain

J2 = D
m1m2ni

ρne
(Z2n2∇n1 − Z1n1∇n2)+

(
ug + uC

)
m2n2, (6.21)

here ni = n1 + n2 and

ug =
ρ1niD
ρnekBT

Z1Z2mug
(
A2

Z2
−

A1

Z1

)
, (6.22)

uC =
ρ1niD
nekBT

Z1Z2g
(
Z 2/3
2 − Z 2/3

1

) 0.3e2

aePγ
(6.23)

re the velocities of the gravitational (g) and Coulomb (C) separations of ions, respectively.
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If we consider a non-isothermal system in the limit of strong Coulomb coupling, using the linear mixing rule and
eglecting thermal diffusion, then from Eqs. (6.9) and (6.17) with P ≈ Pe(ne) we obtain that all the terms in Eqs. (6.7)
nd (6.8) related to ∇T vanish. Accordingly, the non-isothermal expressions for the diffusion currents coincide with the
sothermal ones.

The diffusion separation of ions does not violate an overall hydrostatic equilibrium, because the latter is established
uch quicker, over hydrodynamic timescales. Therefore, the diffusion of ions of species 2 inside a neutron star envelope

s accompanied by the diffusion of ion species 1 toward the stellar surface. This is clearly seen from the relation J1 = −J2
iscussed above. This purely diffusive motion leads to the collisional generation of the entropy (Ṡcoll) and to the related
nergy release with the rate Q [erg cm−3 s−1] (see, e.g., Chapman and Cowling 1952, Hirschfelder et al. 1954),

Q = T Ṡcoll =
ρ

ρ1ρ2
J2 · d1. (6.24)

For practical applications of Eqs. (6.21), (6.22) and (6.23) one needs the mutual diffusion coefficient of ions, D. For a
eakly coupled plasma it can be written as (Chapman and Cowling, 1952; Hirschfelder et al., 1954)

D =
3
8

√
2kBT
πm12

(
kBT

Z1Z2e2

)2 1
niΛ

, (6.25)

here m12 = m1m2/(m1 + m2) is the reduced mass of the ions 1 and 2, andΛ is the Coulomb logarithm. In order to apply
his expression for a plasma with any coupling (including a strong one) we will introduce a generalized Coulomb logarithm
uggested by Khrapak (2013) for calculating the self-diffusion coefficient in a one-component ion plasma. Beznogov and
akovlev (2014b) extended this method to a binary ion mixture. They introduced the effective Coulomb logarithm as

Λeff =
1
2
ln
(
1 + X−2) , X =

(
1 +

(
3Γ̄
) 3/2 ) 1/3

− 1. (6.26)

his formula allows one to estimate Λeff for Coulomb gas or liquid of ions. A more accurate approach will be presented
n Section 6.4.

.3. Diffusion in isothermal weakly coupled plasma

Now let us consider the opposite case of a weakly coupled plasma. There are two main differences from the strongly
oupled plasma. First, Coulomb parts of the chemical potentials are different. Second, the pressure is dominated by the
deal gas contribution, P ≈ P (id)

= (ni +ne)kBT . In the weakly coupled plasma, such that the mean ion coupling parameter
(3.16) is small (Γ̄ = ΓeZ5/3 = Γ0 Z̄1/3 Z5/3 ≪ 1),

µ
(C)
j = −

kBT
2

ZjΓ 3/2
e

√
Z2

3Z̄3

(
3ZjZ̄ − Z2

)
. (6.27)

hen the expression for the Coulomb component of the vector d1 can be presented in the form [cf. Eq. (6.18)]

dC =
n1n2

ne

√
πne

kBT
e3Z2

1 Z
2
2 (Z2 − Z1)

2Z̄ 3/2
√
Z2

(
∇Z̄ +

Z̄ Z2

Z1Z2

∇ne

ne

)
, (6.28)

here the term ∇Z̄ appears due to variations of ion fractions with depth.
Further calculations are analogous to the strong-coupling limit in Section 6.2. Eq. (6.21) has the same form, but an

xpression for uC is different. In this case,

∇ne

ne
=

∇P
P

+
∇Z̄

Z̄
(
Z̄ + 1

) =
ρg
P

+
∇Z̄

Z̄
(
Z̄ + 1

) .
As a result, we obtain [cf. Eq. (6.23)]

uC =
ρ1niD

ρ (kBT ) 3/2

√
π

ne

e3Z2
1 Z

2
2 (Z2 − Z1)

2Z̄ 3/2
√
Z2

[(
1 +

Z2

Z1Z2
(
Z̄ + 1

))∇Z̄ +
Z̄ Z2

Z1Z2

ρg
P

]
. (6.29)

ome numerical examples of the Coulomb separation velocities (after Beznogov and Yakovlev 2013, 2014a,b) will be given
n Section 6.5.

Let us make one important remark. Although the mechanisms of the ion separation are called gravitational (6.22)
nd Coulomb [(6.23), (6.29)], both of them are associated with the presence of the gravitational field. The gravitational
echanism is directly responsible for the gravitational separation of ions provided their buoyancy is different. The
uoyancy of the ions in a plasma is determined by their charge-to-mass ratio since the gravity acts toward the stellar
enter while the electric field toward the surface. As mentioned in Section 6.1, this macroscopic electric field appears as
response of the plasma to the external gravitational field, to ensure electric neutrality. As for the Coulomb mechanism,
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t is related to the difference of Coulomb energies of ion spheres in the electric field for the ions of different charges.
herefore, both mechanisms are actually caused by the gravity.
The presented expressions for diffusion and Coulomb separation of ions in ion mixtures (in various Coulomb coupling

egimes) can be used in ion liquids and gases. When the ions solidify, the diffusion is possible but strongly suppressed (e.g.,
ughto et al., 2011). To the best of our knowledge, for the fist time the component of the diffusion current associated
ith ion–ion interaction in the presence of gravitational field has been considered by Beznogov and Yakovlev (2013).
his component becomes important for mixtures of ions with equal A/Z . Nevertheless, we should stress that the classical
onograph by Hirschfelder et al. (1954) presents general expressions which describe non-equilibrium processes in the

rame of thermodynamics of irreversible processes. Using those expressions one can obtain the expressions for the
iffusion currents presented above. However, they have not been used in astrophysical literature, where the Coulomb
ontribution in the diffusion current has been neglected.

.4. Diffusion coefficients

.4.1. Methods of calculations
In order to study the diffusion in a plasma, aside of the diffusion currents, one needs the coefficients of diffusion and

hermal diffusion. Here we outline the methods for calculating the diffusion coefficients described in the literature. More
etails can be found in Beznogov and Yakovlev (2014b).
The main obstacle for calculating the diffusion coefficients in a Coulomb plasma of ions is the long-range nature of

he Coulomb interaction. This diffusion is similar to that for particles interacting via Debye potential1 (statically screened
oulomb potential) with a sufficiently large screening length,

ΦSSCP =
q1q2
r

exp
(

−
r
rD

)
. (6.30)

n this case, q is a particle charge,

rD =

√
4π
∑

j

q2j ni/kBT (6.31)

s the Debye screening length, SSCP means statically screened Coulomb potential.
The physics of diffusion processes is complicated. There are different types of the diffusion coefficients: the self-

iffusion coefficients Dii, and the mutual diffusion coefficients Dij, which determine diffusion currents (here i, j = 1, 2, . . .
label ion species in a multi-component ion plasma). Diffusion can be investigated using different methods such as
Chapman–Enskog theory, Green–Kubo relations, molecular dynamic simulations, effective potential theories, etc.

The most interesting case for us is the diffusion of ions in binary ion mixtures which constitute a weakly or a strongly
Coulomb coupled liquid (Section 3.3.1). As mentioned above, the diffusion in gases is well studied and described in
the famous monographs (Chapman and Cowling, 1952; Hirschfelder et al., 1954), while the diffusion in liquids is less
elaborated. Our aim is to choose a unified approach for calculating the diffusion coefficients in gases and liquids. In a
binary mixture, there is only one independent mutual diffusion coefficient D12 = D21 and two self-diffusion coefficients,
D11 and D22.

In a weakly coupled plasma (Γ̄ ≪ 1), the ions move more or less freely and diffuse owing to relatively weak Coulomb
collisions with nearby ions. In this case, the diffusion coefficients are usually expressed through a Coulomb logarithm
Λ, which can be estimated as a logarithm of sufficiently large ratio of the maximum-to-minimum impact parameters of
colliding ions. In this case one can use the classical diffusion theory by Chapman and Cowling (1952), Hirschfelder et al.
(1954). In astrophysical literature, this theory is often called the Chapman–Spitzer theory, which means the application
of the general diffusion theory to the Coulomb interactions under astrophysical conditions, as described in the classical
monograph by Spitzer (1965). Earlier astrophysical publications based on that theory were described, for instance, by
Paquette et al. (1986). With the growth of the Coulomb coupling, Λ becomes smaller. At Γ̄ ∼ 1 one gets Λ ∼ 1, and
he diffusion coefficient becomes D ∼ ωpia2i , where ωpi is the ion plasma frequency given by Eq. (6.45). Characteristic ion
collision frequencies reach the level of the plasma frequency, while the typical ion mean-free-path becomes comparable
to inter-ion distances.

In a strongly coupled plasma (Γ̄ ≫ 1), the ions are mostly trapped in their own potential wells (inside the
appropriate Wigner–Seitz cells) and constitute the Coulomb liquid or crystal. These ions mainly oscillate around their
quasi-equilibrium positions, and the diffusion proceeds through thermally excited jumps from one quasi-equilibrium
position to another (neighboring) one. One can distinguish the cases of classical (T ≳ Tpi) and quantum (T ≲ Tpi) ion
motion (where Tpi = h̄ωpi/kB is the ion plasma temperature; it is similar to the Debye temperature of the Coulomb
crystal). In the quantum case, the most important contribution comes from collective oscillations. As far as electrons are
concerned, one can consider approximations of the rigid or polarized electron backgrounds. These cases usually lead to
almost the same results.

1 The same potential form appears in the physics of dusty plasmas as well as in the nuclear physics, where it is called the Yukawa potential.
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Fontaine and Michaud (1979) obtained approximate analytic expressions for Dij through the Coulomb logarithm in
he case of weak ion coupling. They considered the cases of quantum and classical minimum impact parameters in the
oulomb logarithm. In the case of weak coupling, these results were further extended by Iben Jr and MacDonald (1985).
Paquette et al. (1986) calculated the mutual diffusion coefficients for a binary ion mixture at weak and moderate

oulomb coupling using the Chapman–Enskog formalism and statically screened Coulomb potential. In addition, they
nalyzed previous molecular dynamics calculations of self-diffusion coefficients at strong Coulomb coupling.
The first calculations of the self-diffusion coefficient D1 by the molecular dynamics were performed by Hansen et al.

1975) who proposed the following approximation at Γ > 1 (in a one-component plasma, where Γ ≡ Γ̄ ),

D∗

1 =
D1

ωpia2i
≈ 2.95Γ −4/3. (6.32)

Hansen et al. (1985) calculated the diffusion coefficients D12, D11 and D22 in a binary ion mixture at moderate and strong
oulomb couplings. They derived the approximate relation,

D12 ≈ x2D11 + x1D22, (6.33)

here x1 and x2 are number fractions of ions in an 1H –4He mixture (x2 = 1 − x1). The authors tabulated D12, D11 and
22 for several values of the parameters x1 and Γ0 [Eq. (3.17)].
Later the molecular dynamics simulations of the binary ionic mixtures have been undertaken by many research

roups. Boercker and Pollock (1987) calculated D12 in a binary ion mixture using the molecular dynamics and kinetic
heory for strongly and weakly coupled plasmas. Their results showed a good agreement with previous investigations.
obbins et al. (1988) studied the self-diffusion coefficient in a one-component plasma. Rosenfeld et al. (1995) modeled
elf-diffusion and mutual diffusion in binary ion mixtures in a wide ranges of A2/A1 and Z2/Z1 ratios for strong, moderate
and weak ion couplings. Extended calculations of self-diffusion coefficients in one-component liquids, described by the
Yukawa potential, were performed by Ohta and Hamaguchi (2000), who used the Green–Kubo relation as well as the usual
expression for diffusion coefficients. They tabulated the coefficient D∗

1 and approximated it by an analytic expression for
ifferent screening parameters.
Daligault and Murillo (2005) calculated the self-diffusion coefficient for a one-component ion system by the molecular

ynamics using a semi-empirical potential and approximated the results by an analytic expression. Furthermore, Daligault
2006) analyzed the dynamics of a liquid in a strongly coupled one-component plasma and studied the transition from a
ree particle motion to the regime in which the ions are ‘‘confined’’ in Coulomb potential wells.

Daligault (2012) modeled self-diffusion in one- and two-component strongly coupled ion systems by molecular
ynamics and fitted the numerical results at Γ̄ ≳ 25 by the expression

D∗
=

D
ωpia2p

=
A
Γ

exp (−BΓ ), (6.34)

here A and B are fit parameters. This expression can be derived in the model of the ‘‘confinement’’ and thermally
ctivated jumps of the ions from one potential well to the nearest one. Daligault (2012) found that the numerical results
re well reproduced with A = 1.52 and B = 0.0082. For the weak and intermediate coupling regimes, Γ̄ ≲ 25, Daligault
2012) proposed a model, which extends the widely used Chapman–Spitzer theory from the regime of weak coupling to
he regime of moderate coupling. According to this theory, D = kBT/(3mν), where ν is a characteristic collision frequency
iven by

ν =
4
3

√
π

m
niq4

(kBT )3/2
Λ, (6.35)

ndΛ is a Coulomb logarithm. In the Chapman–Spitzer theory (Chapman and Cowling, 1952; Spitzer, 1965; Paquette et al.,
986), Λ = ln(CrD/rT ), rD is the Debye screening length [Eq. (6.31)], which characterizes the largest impact parameter,
T = q2/kBT characterizes the smallest impact parameter, and C is a correction factor (C = 1 is usually assumed). Daligault
(2012) replaced this expression by

Λ = ln(1 + CrD/rT ) (6.36)

nd found that it fits the numerical results from weak to moderate coupling regimes and matches Eq. (6.34) at Γ ≈ 25.
Also, he extended his results to the Yukawa systems and to the mixtures.

Khrapak (2013) considered self-diffusion coefficients in a one-component plasma using the standard Chapman–Enskog
theory of a weakly-coupled plasma and molecular dynamics results by different authors at strong coupling. Based on these
results, he suggested a simple and convenient analytic approximation for a Coulomb coupling of any strength. This was
done by introducing a generalized Coulomb logarithm, Λeff.

Baalrud and Daligault (2013) suggested that both cases (of weak and strong coupling) can be described within one and
the same formalism of effective potential of ion–ion interaction and traditional Chapman–Enskog theory. They considered
several effective potentials obtained from radial distribution functions (RDFs, also called pair correlation functions) of the
ions, g(r), which were calculated either by molecular dynamics or by hypernetted chain technique. The effective potential
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llows one not only to describe the screening effect (that could have been done using a statically screened Coulomb
otential), but also take into account ion correlations, including strong ones. This method treats the screening and ion–
on correlations in a self-consistent manner, without introducing any external screening length. The authors stressed the
onvenience to express the diffusion coefficients through a generalized Coulomb logarithm.
Beznogov and Yakovlev (2014b) followed the same strategy and extended the method to binary ionic mixtures (see

ection 6.4.2). They expressed D∗ through an effective Coulomb logarithm and constructed a new fit to it, which we
reproduce in Appendix A.

Although we will not consider diffusion in Coulomb crystals, we remark that the problem was investigated by De Blasio
and Lazzari (1996) using macroscopic relations from Haase (1990). Later Hughto et al. (2011) simulated the self-diffusion
in the Yukawa solid using the molecular dynamics. They found that diffusion in the solid phase is strongly suppressed as
compared with the liquid. For example, according to Tables II and IV of Hughto et al. (2011), D∗ decreases by more than
an order of magnitude as Γ grows from 175 to 200, which implies B ∼ 0.1 in Eq. (6.34).

Calculations of diffusion coefficients in magnetized Coulomb plasmas were performed, e.g., by Bernu (1981), Ran-
ganathan et al. (2003). These authors obtained self-diffusion coefficients along and across the field lines. The former
coefficient is larger than the latter; both of them decrease with increasing field strength.

Hereafter we will neglect the quantum-mechanical effects on ion diffusion and consider the cases or rigid and slightly
compressible electron gas. We will restrict ourselves only to the classical ion–ion scattering in the presence of strongly
degenerate electrons.

6.4.2. Calculation of the effective potentials with the hypernetted chain method
Let us outline the results by Beznogov and Yakovlev (2014b) who calculated the diffusion coefficients, using the

effective potentials of ion–ion interaction in binary ions mixtures. As already discussed in Section 6.4.1 (and see Baalrud
and Daligault 2013), the effective potentials are determined by the RDFs of ions. These functions can be calculated by
different techniques, particularly, by molecular dynamics or by the hypernetted chain method. Beznogov and Yakovlev
(2014b) have used the hypernetted chain method, which requires less computational resources. As will be shown below,
a choice of the method for calculating RDF to obtain the diffusion coefficients is not of principal importance.

In this particular subsection lengths are measured in units of the ion sphere radius, ai, Eq. (3.18), and the potentials
are measured in units of kBT/e.

A state of a binary mixture of ions is determined by the mass and charge numbers of ions and also by two dimensionless
parameters x ≡ x1, the relative number fraction of ions 1, and by Γ0, Eq. (3.17).

Let gij(r), hij(r) and cij(r) (i, j = 1, 2) be the RDFs, total and direct correlation functions, respectively (e.g., Croxton
1974). All these functions are symmetric with respect to their subscripts [e.g., gij(r) = gji(r)]. By definition, one has
hij(r) = gij(r) − 1. The effective potential (also called mean field potential) Φ(r) in a one component plasma is defined
y the relation g(r) = exp [−Φ(r)] (e.g., Baalrud and Daligault 2013, Croxton 1974). An expansion of this formalism to a
inary mixture is quite evident,

gij(r) = exp
[
−Φij(r)

]
. (6.37)

or calculating the mutual diffusion coefficients one needs, first of all, the potential Φ12(r), responsible for the interaction
etween ion species 1 and 2.
Generally, all these functions cannot be determined in analytic form. The hypernetted chain approximation (e.g., Hansen

t al. 1977, Springer et al. 1973, Ng 1974) consists in a joint solution of two types of the equations. They are (i)
rnstein-Zernike relations, which connect direct and total correlation functions and (ii) a hypernetted chain closure. The
rnstein-Zernike equations are exact, whereas hypernetted chain closure is an approximation. This approximation reads

gij(r) = hij(r) + 1 = exp
[
hij(r) − cij(r) − φij(r)

]
, (6.38)

here φij(r) is a non-screened (bare) Coulomb potential,

φij(r) =
ZiZjΓ0

r
, (6.39)

the electron screening being neglected. Notice that the ion–ion interaction potential enters only hypernetted chain
closure relations and that no ion–ion screening is employed here. As will be shown later, the ion screening is obtained
automatically during the solution of hypernetted chain equations.

This system cannot be solved directly because of the long-range nature of Coulomb interaction. For a one-component
plasma, this problem has been solved by Springer et al. (1973) and Ng (1974) by introducing short-range potentials and
correlation functions. A similar method has been used by Hansen et al. (1977) for binary mixtures. Here we will not go into
the details of the calculations. Technical details and numerical schemes are discussed in Beznogov and Yakovlev (2014b),
where the authors followed the methodology of Springer et al. (1973), Ng (1974), Hansen et al. (1977).

Having completed the calculations, Beznogov and Yakovlev (2014b) compared the calculated Coulomb excess energy
with the results of Hansen et al. (1977) and found an agreement to five-six significant digits.

Now let us consider some examples of the obtained RDFs and corresponding effective potentials for the cases of weakly,
intermediate and strongly coupled plasmas. We also want to compare the effective potentials with the statically screened
27
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Fig. 5. Radial distribution functions (left panel) and absolute values of effective potentials (right panel) for H–C mixture in a weakly coupled plasma
with xH = 0.6 and Γ0 = 0.01 (Γ̄ ≈ 0.12). Dotted lines show the comparison with the corresponding statically screened Coulomb potential, Eq.
6.40). See the text for details.

Fig. 6. The same as Fig. 5, but for an intermediate coupling regime at Γ0 = 0.1 (Γ̄ ≈ 1.2).

oulomb potentials valid for weakly coupled plasmas. To this aim we rewrite Eq. (6.30) in a dimensionless form and
ewrite the Debye screening length in our dimensionless units,

Φij,SSCP =
ZiZjΓ0

r
exp

(
−

r
rD

)
,

1
rD

=

√
3Γ0Z2. (6.40)

The results are demonstrated on Figs. 5–7 for H/C mixture with xH = 0.6 and xC = 0.4. Fig. 5 shows weakly
coupled plasma regime with Γ0 = 0.01 which corresponds to Γ̄ ≈ 0.12. The RDFs are displayed on the left panel and
corresponding absolute values of effective potentials on the right panel (effective potentials can change signs as a result
of strong ion correlations in non-ideal plasmas; we plot their absolute values). The dotted lines show the comparison
with the corresponding statically screened Coulomb potentials [Eq. (6.40)]. In the weak coupling case (Fig. 5), the RDFs
demonstrate a behavior typical for an almost ideal gas. The effective potentials agree well with the statically screened
Coulomb potentials (some deviations at r > 10 are due to numerical issues, but they are unimportant, as the absolute
values of the potentials in this region are very small, |Φ| ≲ 10−6). We emphasize that hypernetted chain calculation
employed only the bare Coulomb potential. Yet, the obtained effective potentials demonstrate the ‘‘correct’’ screening for
weakly coupled plasma. In other words, this method allows one to calculate the ion screening from first principles.

Fig. 6 shows the same as Fig. 5 but for an intermediate coupling regime (Γ̄ ≈ 1.2). The RDFs still demonstrate gas-like
behavior, but the effective potentials start to deviate from the Debye-screened Coulomb potentials and oscillate at r ≳ 1.

The case of strong coupling (Coulomb liquid) is shown on Fig. 7. The system is the same as in Figs. 5 and 6 but with
Γ0 = 10 (Γ̄ ≈ 123). For better visual representation Φ12 is multiplied by 50 and Φ22 by 1000. A comparison to Debye-
screened Coulomb (Yukawa-like) potentials is not displayed, since the Debye approximation fails for strongly coupled
plasmas. The behavior of the RDFs is characteristic to condensed matter (i.e., to strongly correlated systems such as liquids
or solids). The effective potentials oscillate as the results of ion–ion correlations.
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Fig. 7. The same as Fig. 5, but for a strongly coupled plasma regime at Γ0 = 10 (Γ̄ ≈ 123). For better visual representation Φ12 is multiplied by 50
nd Φ22 by 1000.

.4.3. Computing diffusion coefficients
Here we return to the ordinary physical units.
The standard Chapman–Enskog procedure gives the following expression for the leading order approximation to the

utual diffusion coefficient in a binary mixture (Chapman and Cowling, 1952; Hirschfelder et al., 1954; Paquette et al.,
986):

D12 =
3
16

kBT
m12ni

1

Ω
(1,1)
12

. (6.41)

here m12 is again the reduced mass of colliding ions and Ω (1,1)
12 is an effective average product of the cross section and

relative velocity, which is related to the transport cross section after integrating over a Maxwellian velocity distribution.
It is given by

Ω
(ξ,ζ )
12 =

√
kBT

2πm12

∫
∞

0
exp

(
−y2

)
y2ζ+3Q (ξ )

12 (y) dy, (6.42)

here

Q (ξ )
12 (u) = 2π

∫
∞

0

[
1 − cosξ (χ12(b, u))

]
b db (6.43)

is an effective cross section at a given energy (a given relative velocity), b is an impact parameter, u is a dimensionless
relative particle velocity at infinity (in the units of

√
2kBT/m12 ),

χ12(b, u) =

⏐⏐⏐⏐⏐⏐π − 2b
∫

∞

rmin
12

dr

r2
√
1 −

b2
r2

−
φ12
u2

⏐⏐⏐⏐⏐⏐ (6.44)

s the scattering angle, φ12(r) is the interaction potential between the ions 1 and 2, and rmin
12 is the distance of the closest

pproach, that is the root of the denominator under the integral (6.44).
Let us introduce the ‘‘hydrodynamic’’ plasma frequency of the ion mixture (see, e.g., Hansen et al. 1985),

ωpi =

√
4πniZ̄2e2

Āmu
. (6.45)

e will express the mutual diffusion coefficients in units of ωpia2i ,

D∗

12 =
D12

ωpia2i
. (6.46)

For a weakly coupled binary mixture, the dimensionless diffusion coefficient (6.46) is calculated analytically [Chapman
and Cowling 1952, Hirschfelder et al. 1954; cf. Eq. (6.25)],

D∗

12 =

√
π 1

5/2

√
Ā (A1 + A2)

¯ 2

1
2 2 (cl)

, (6.47)

6 Γ0 Z A1A2 Z1 Z2Λ
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Fig. 8. Effective Coulomb logarithm Λeff versus Γ0 , calculated from Eq. (6.49), for an H–C mixture.

here Λ(cl) is the ‘‘classical’’ Coulomb logarithm for a weakly coupled plasma,

Λ(cl)
= ln

(
1

√
3Γ 3/2

0 Z1Z2
√
Z2

)
, Λ(cl)

≫ 1. (6.48)

The algorithm of calculating D∗

12 for a plasma of arbitrary Coulomb coupling strength consists of three steps. First,
ne uses the hypernetted chain method (Section 6.4.2) to compute the RDFs. Then one determines the effective potential
12(r) from Eqs. (6.37) and substitutes it instead of φ12(r) in the integral (6.44). Finally, D∗

12 is calculated from Eqs. (6.46),
6.42) and (6.43).

Such calculations of the mutual diffusion coefficients have been performed by Beznogov and Yakovlev (2014b) for the
H–4He, 1H–12C, 4He–12C, 12C–16O and 16O–79Se mixtures at different values of Γ0 and x1. For convenience of applications,
the calculated values ofΛeff have been approximated by an analytic expression. The Coulomb logarithm is defined through
D∗

12 as

Λeff =

√
π

6
1

D∗

12Z
2
1 Z

2
2Γ

5/2
0

√
Ā (A1 + A2)

Z̄2A1A2
. (6.49)

hen D∗

12 is given by Eq. (6.47) at any coupling, but with the classical Coulomb logarithm Λ(cl) replaced by the effective
oulomb logarithm Λeff. This approach is in line with that by Khrapak (2013), Baalrud and Daligault (2013) (see
ection 6.4.1). The diffusion coefficient is again given by Eq. (6.25), although Λeff is now more refined. It is convenient,
ecause Λeff is a slowly varying function of plasma parameters (especially of particle fractions). It has been approximated
y a universal expression (A.1) (Appendix A). The expression contains five fit parameters for any binary mixture (listed
n Table A.1 of Appendix A). This gives a unified description of mutual diffusion coefficients for binary mixtures.

Fig. 8 showsΛeff as a function of Γ0 for an H–C mixture. One can easily identify the regions of weak and strong Coulomb
ouplings (Appendix A), as well as the transition region of moderate coupling.

.4.4. General features of diffusion coefficients
There is no rigorous proof of the existence of an effective ion–ion potential, which would properly include all many-

ody effects (correlations) between the ions in a strongly coupled Coulomb plasma (or, generally, between particles in
liquid). Moreover, it is likely that such a potential does not exist. Nevertheless, the method of effective potentials is a
romising tool for solving many problems of physics of strongly coupled plasmas with reasonable accuracy (see Baalrud
nd Daligault 2013).
We have employed the standard hypernetted chain method of radial distribution functions. Although there exist

odified versions of this method (e.g., Iyetomi and Ichimaru 1983), the accuracy of the standard method is sufficient
or calculating the diffusion coefficients. As seen from Fig. 2 of Baalrud and Daligault (2013), even the use of ‘exact’
DFs, calculated by molecular dynamics, gives the diffusion coefficients that are close to those determined by the
hapman–Enskog method.
As seen from Fig. 9, the diffusion coefficients D∗

12, computed via the effective potentials, are systematically higher
∗MD
han the values of D12 , calculated by Hansen et al. (1985) via the molecular dynamics; the difference increases with
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d

Fig. 9. Reduced diffusion coefficient D∗

12 in an H/He mixture (xH = xHe = 0.5) as a function of Γ0 (the solid curve), as compared with the molecular
ynamics (MD) calculations by Hansen et al. (1985). Note that here Γ̄ = 2.48Γ0 .

growing Γ0. The same behavior was mentioned by Baalrud and Daligault (2013, their Fig. 2). A comparison of the results
of molecular dynamics simulations (Rosenfeld et al., 1995; Boercker and Pollock, 1987) with the results of Beznogov and
Yakovlev (2014b) described here leads to similar conclusions. Apparently the discrepancy at strong coupling arises from
the approximate character of the effective potentials method.

There are two ways to improve the accuracy of the effective potentials method: either by using second-order
corrections to the diffusion coefficients in the framework of the standard Chapman–Enskog method (Sonine polynomials
expansion, see Chapman and Cowling 1952, Hirschfelder et al. 1954 and also Eqs. (40)–(45) in Beznogov and Yakovlev
2014b) or by improving the standard Chapman–Enskog method itself. The latter possibility was employed by Baalrud and
Daligault (2015), who proposed to apply the modified Enskog theory of dense gases to strongly coupled Coulomb plasmas.
This allowed them to somewhat reduce the discrepancy between the effective potential method and molecular dynamics
results.

The effect of the second order correction was considered by Beznogov and Yakovlev (2014b) and in more detail
by Shaffer et al. (2017) who demonstrated that with the increase of Γ̄ the second order correction quickly vanishes (see
Fig. 3 of Shaffer et al. 2017). Therefore, it is reasonable to omit these corrections; the accuracy of the results is limited by
the accuracy of analytic approximations and by the method of effective potentials itself.

A comparison of sparse calculations of the self-diffusion coefficients in binary ionic mixtures with those in one-
component ion plasmas reveals that the method of effective potentials is more accurate for one-component plasmas than
for binary mixtures. Relations similar to Eq. (6.33) can be also derived for the diffusion coefficients obtained via effective
potentials (see Beznogov and Yakovlev 2014b for details).

It would be important to confirm the validity of the effective potential approach and formulate the conditions at which
it is reasonably accurate. We have already demonstrated that the approach becomes less accurate with increasing Coulomb
coupling. When the temperature drops to the melting temperature Tm, the quantum effects in ion motion may become
important for many properties of the matter (e.g., Haensel et al. 2007). In particular, they can be important for diffusion.
This effect has not been studied in the literature in detail. As long as the quantum effects are neglected, the method of
effective potentials appears to be quite adequate (although the inclusion of quantum effects would be desirable).

The main advantage of the presented results is their simplicity, uniformity, and convenient fit expressions. Another
advantage is that the method of effective potentials can be easily generalized for calculating other kinetic properties of
strongly coupled ion plasmas, for instance, diffusion and thermal diffusion coefficients in multicomponent mixtures of ions
which are often needed for applications but almost not explored in the astrophysical literature. This is especially important
for thermal diffusion coefficients. In strongly coupled systems, they are usually calculated using non-equilibriummolecular
dynamics (e.g., Simon et al. 1998 and Evans and Morriss 2007), which is a more complicated numerical problem than the
modeling based on standard (equilibrium) molecular dynamics.

Kagan et al. (2017) developed further the idea of effective Coulomb logarithms and applied the effective potential
method to the calculation of thermal diffusion coefficients (as proposed by Beznogov and Yakovlev 2014b). The state of
the art of the effective potentials approach is described by Baalrud and Daligault (2019).

The above calculations have been conducted assuming a rigid (incompressible) electron background. The results can be
generalized for the case of compressible electron background of any degeneracy and relativity, but the effects of electron
polarization in dense matter of neutron stars are expected to be weak.
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Fig. 10. Coulomb separation velocities of ions in the 4He–12C mixture in the blanketing envelopes of neutron stars as a function of the mean ion
coupling parameter (3.16) (the lower axis) or temperature (the upper axis); xHe = 0.6, xC = 0.4, ρ = 106 g cm−3 , and gs = 2 × 1014 cm s−2 . SC
refers to a strongly coupled plasma, Eq. (6.23); WC to a weakly coupled plasma, Eq. (6.29). (After Beznogov and Yakovlev 2014a.)

6.5. Estimates of diffusive velocities

The diffusion coefficients can be used for estimating diffusion velocities in heat blanketing envelopes of neutron stars.
Although the diffusive current (6.21) has the standard form, it contains a new Coulomb term [Eqs. (6.23) and (6.29) in the
limits of strong and weak couplings]. The effects of Coulomb forces on ion separation were first described by De Blasio
(2000) and later studied by Chang et al. (2010), who considered equilibrium isothermal configurations of ion mixtures
with account for the Coulomb effects (the method of ‘‘chemical’’ equilibrium). Now this result can be extended to the
case of non-equilibrium and/or non-isothermal systems.

As mentioned in Section 6.2, the Coulomb contribution is especially important for the ion mixtures with the same
charge-to-mass ratio, such as He, C, and O. The gravitational contribution (6.22) for such ions is non-vanishing only owing
to the mass defect. In strongly coupled plasmas, typical for the neutron-star envelopes, it is about one order of magnitude
smaller than the Coulomb contribution. On the other hand, for the mixtures of ions with different charge to mass ratio,
the gravitational contribution dominates and is typically one order of magnitude larger than the Coulomb contribution.
For these mixtures, the Coulomb contribution can be neglected.

The estimates show (Beznogov and Yakovlev, 2013) that although the velocities of the Coulomb separation of ions in
the neutron star envelopes are not negligible, the diffusive energy release (6.24) is small and cannot reheat cooling middle
aged (ages ≲ 105–106 yr) neutron stars.

Fig. 10 shows the velocity of the Coulomb separation of ions in the He–C mixture as a function of the average Coulomb
coupling parameter (3.16) or temperature. The estimates are performed using the formulae presented in Section 6.2. In
particular, we use a simplified diffusion coefficient (6.25), which gives nearly the same results as the more refined theory
described in Section 6.4. The plasma density and gravitational acceleration are typical for the heat blankets of neutron
stars, ρ = 106 g cm−3 and gs = 2 × 1014 cm s−2. The composition (xHe = 0.6, xC = 0.4) is assumed to be uniform. Note
that this figure is for illustrative purposes only as the temperatures needed to get Γ̄ ≲ 0.01 are too high and neither
helium, nor carbon can actually exist at these temperatures (due to nuclear burning).

Specifically, Fig. 10 exhibits the mean (diffusive) velocity of carbon ions uC with respect to the matter as a whole
(which is at rest because of the overall hydrostatic equilibrium). In practice, one often introduces the relative diffusion
velocity u = u1 − u2 of one ion species with respect to the second one. It is easily recovered from u1 with the use of
relation m1n1u1 + m2n2u2 = 0; it is of the same order of magnitude. The solid line is calculated numerically from the
general expression (6.16) and from the expressions for µ(C)

j given by Potekhin and Chabrier (2010) (see Section 7.1 for
more details). The long-dashed line corresponds to the limit of strongly coupled plasma, Eq. (6.23); the short-dashed
line is for the weak-coupling limit, Eq. (6.29). One can see that the transition between the regimes of weak and strong
couplings takes place at Γ̄ ∼ 0.1. The limiting cases of weak and strong coupling appear in good agreement with numerical
calculations. In the transition region, the velocity uC reaches maximum at nearly the same Γ̄ ∼ 0.2. This maximum
occurs because J (C) ∼ Dd(C). With increasing Γ̄ , the quantity d(C) grows, and the diffusion coefficient D becomes lower.
The competition between the diffusion coefficient D and the Coulomb contribution to deviations from equilibrium (to d(C))
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reates the maximum in the velocity curve. Therefore, although the Coulomb effects are most noticeable in the regime of
trong coupling, the velocity of the Coulomb separation reaches maximum at intermediate coupling, Γ̄ ∼ 0.2.
According to Fig. 10, the velocity of the Coulomb separation in the heat blankets of neutron stars can be as high as

∼ 5 m yr−1. Taking into account characteristic depths of the heat blankets, a strong separation there is expected to
occur during decades. The Coulomb separation in a 4He–12C mixture may also be efficient in white dwarfs (Beznogov and
Yakovlev, 2013, 2014b).

Taking Γ̄ = 1 (i.e., T = 1.78 × 108 K), from Fig. 10 we have uC ∼ 3 m yr−1. Note, however, that direct gravitational
separation in a plasma, if allowed, would proceed much faster. If we took the same ρ = 106 g cm−3, T = 1.78 × 108 K,
and gs = 2 × 1014 cm s−2 but consider the12C–26Fe mixture (where Z1/A1 ̸= Z2/A2 and the direct separation operates)
and put, for instance, xC = 0.4, we would have much larger separation velocity uFe ∼ 15 m yr−1. Further applications of
Eq. (6.10) to heat blankets of neutron stars are discussed below.

7. Diffusive heat blanketing envelopes of neutron stars

7.1. Constructing diffusion-equilibrium envelopes

In this section we follow Beznogov et al. (2016b) and directly focus on diffusion in neutron star heat blankets with
the aim to determine Ts − Tb relations. Here we study blanketing envelopes made of binary ion mixtures in diffusive
equilibrium. They are not isothermal (not in a state of full thermodynamic equilibrium) because of the heat flux from
stellar interiors to the surface.

We will adopt the same assumptions as in Sections 6.1 and 6.2. In addition, we neglect the effect of thermal diffusion.
The validity of these assumptions will be discussed later. With the formulated assumptions, we come to Eq. (6.20) for
the diffusion currents of ions. Now, however, we do not restrict ourselves to the approximations of strongly or weakly
coupled plasma, but consider a plasma with arbitrary Coulomb coupling in the presence of temperature gradients.

The diffusion equilibrium implies the absence of diffusion currents. According to Eq. (6.20) this is equivalent to the
condition d1 = 0. In addition, since d2 = −d1 and the electrons are in the state of quasi-equilibrium, de = 0 (see
Sections 6.1 and 6.2), we come to d1 = d2 = de = 0. Furthermore, assuming an overall hydrostatic equilibrium of the
envelope and Eq. (6.6), we obtain f̃ 1 = f̃ 2 = f̃ e = 0. These are the equations of the diffusion equilibrium.

Using Eqs. (6.1), (6.2) and (6.9) [cf. Eq. (6.8)], we arrive at the basic system of equations

∇̃µe = −eE, ∇̃µj = mjg + ZjeE, (7.1)

where ∇̃ is defined as

∇̃µα ≡

∑
j

∂µα

∂nj
∇nj +

∂P
∂T

⎛⎝∑
j

nj
∂µα

∂nj

⎞⎠(∑
k

nk
∂P
∂nk

)−1

∇T . (7.2)

he indices j, k take the values 1 and 2, while the index α can be ‘‘e’’, 1, or 2. The chemical potentials and the pressure
re assumed to be known, together with their derivatives, as functions of temperature and number densities of ions. The
uantities which are unknown include ∇nj and eE . Interestingly, one does not need to know the diffusion coefficients
hemselves, under the formulated assumptions. However, generally, without neglecting the thermal diffusion, one needs
he diffusion and thermal diffusion coefficients to determine an equilibrium configuration.

To close the system of equations (7.1) and (7.2) one should add the expressions (3.2) and (3.4) for the hydrostatic
quilibrium and for the radial thermal heat flux density FT in the local plane parallel approximation,

dP
dz

= gsρ, κ
dT
dz

= FT . (7.3)

hese are the equations for calculating diffusively equilibrated envelopes. Their integration should be carried out from the
adiative surface (T = Ts) inside the envelope to its bottom, ρ = ρb. In this way one can calculate all physical parameters
n the envelope (particularly, T , P and nα) as a function of z or, equivalently, as a function of ρ. The calculations give the
equired Ts − Tb relations.

The EoS and thermodynamic functions have been taken from Potekhin and Chabrier (2010) with the improvements
entioned in Potekhin and Chabrier (2013).2 The thermal conductivity κ has been taken as a sum of the electron
onductivity κe and the radiative one κr. These conductivities have been determined using analytic approximations
escribed in Appendix A of Potekhin et al. (2015b)3; the radiative thermal conductivity is constructed using Rosseland
pectral opacities presented in the Opacity Library (Rogers et al., 1996),4 or within the Opacity Project (op, Mendoza et al.
007).5 Interpolation and extrapolation along the opacity tables has been carried out by the method described by PCY97.6

2 A corresponding Fortran code is accessible at http://www.ioffe.ru/astro/EIP/.
3 A corresponding Fortran code is accessible through http://www.ioffe.ru/astro/conduct/.
4 Available at the web page http://mesa.sourceforge.net/index.html of the mesa project (Paxton et al. 2019 and references therein).
5 Available at http://opacities.osc.edu/rmos.shtml.
6 The extrapolation method beyond these tables has been improved by Potekhin and Chabrier (2018).
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g

Fig. 11. Scheme of a neutron star blanketing envelope in the plane-parallel approximation (see the text for details).

Eqs. (7.1) are analogous to the conditions of chemical equilibrium presented by Chang et al. (2010). The difference
consists in the presence of terms containing ∇T in Eqs. (6.1) and (7.2), which were neglected by Chang et al. (2010).

Before discussing the results, let us describe the parameters of heat blanketing envelopes.

7.2. Models of heat blanketing envelopes

Beznogov et al. (2016b) have constructed blanketing envelope models, which consist of binary ion mixtures of H–He,
He–C, or C–Fe. As mentioned in Section 3.2, the envelope models are self-similar, being dependent on the surface gravity
gs. The results obtained at one value of gs can be easily rescaled to another value. Beznogov et al. (2016b) have used
s0 = 2.4271 × 1014 cm s−2, which corresponds to the canonical neutron star model with M = 1.4M⊙ and R = 10 km.

For two realistic EoSs of neutron star interiors7 APR (Akmal et al., 1998) and BSk24 (Pearson et al., 2018), such surface
gravity corresponds to stars with M = 1.73M⊙, R = 11.3 km and with M = 2.00M⊙, R = 12.3 km, respectively.

All analyzed diffusively equilibrated envelopes demonstrate stratification of elements. Lighter ions concentrate in the
upper layers of the envelopes while the heavier ions are localized near the envelope bottom. An essentially binary mixture
(a transition layer) is formed between the upper and lower layers. A schematic plot of a heat blanketing envelope is
presented in Fig. 11, which shows also the directions of electric field and heat flux.

The thickness of the transition layer depends on many parameters, including the types of ion species, temperature and
the depth from the stellar surface. The mixtures under consideration are significantly different. In the H–He and C–Fe
mixtures, the effective ‘‘molecular weights’’ of the ions are noticeably different; accordingly, the gravitational separation
of the ions is leading there (see Section 6). In contrast, in the He–C mixtures the ‘‘molecular weights’’ of the ions are
equal, and the ions are separated by the Coulomb mechanism which is weaker than the gravitational one. Therefore the
transition layer in the He–C mixture should be much wider than in the H–He and C–Fe mixtures (as confirmed by the
calculations described below).

For further analysis one needs to introduce a parameter which would characterize the amount of lighter and heavier
ions in the envelope. PCY97 used the parameter η, Eq. (3.21), which is directly related to the pressure P∗ at the bottom
of the outer layer with mass ∆M , setting ∆M equal to the total mass of light ions in the envelope (see Sections 3 and 5).
Instead, Beznogov et al. (2016b) used an equivalent parameter ρ∗, related to η through

xr(ρ∗) ≡ x∗

r = 1.0088
(
ρ∗

6Z/A
)1/3

, (7.4)

where ρ∗

6 ≡ ρ∗/106 g cm−3 and x∗
r is the solution of Eq. (3.23) for the given η. If P∗ corresponds to a strongly degenerate

layer of the envelope (TF ≫ T ), then ρ∗ is almost equal to the mass density at P = P∗, that is at the bottom of the outer
layer whose mass ∆M equals the total mass of the lighter ions in the considered binary mixture. In the non-degenerate
matter, ρ∗ does not have a straightforward physical meaning.

For a given chemical composition and the surface gravity gs, the heat blanket is characterized by the surface
temperature Ts and by the amount of lighter ions (i.e., by ∆M , η, or ρ∗), and also by the bottom density ρb (see below).

7 One should not confuse this EoS with the EoSs in heat blanketing envelopes.
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n

Fig. 12. Effective density ρ∗

b at the ‘‘physical’’ heat blanket bottom, where plasma becomes isothermal with an accuracy within 10%, as a function
of Ts for the canonical neutron star model. The solid line corresponds to the blanket made of pure iron while the dashed line is for pure carbon.
After Beznogov et al. (2016b).

Naturally, these parameters are restricted (Section 3.3.2). Another restriction implies ρ∗ ≲ ρb; otherwise the heat blanket
would contain only light ions. Besides, it would be meaningless to consider ∆M values smaller than the mass of the
eutron star atmosphere, which implies ∆M ≳ 10−18–10−16 M⊙. The reported calculations have been mostly conducted

at those temperatures and densities where given elements can survive over long time.
The surface temperature Ts has been varied from ∼ 0.3 MK to ∼ 3 MK, a typical range of observable surface

temperatures of isolated neutron stars (Potekhin et al., 2020). In accordance with the above restrictions, ρ∗ has been
varied up to ∼ 106 g cm−3 for H–He mixtures; up to ∼ 108 g cm−3 for He–C mixtures; and up to ∼ 109 g cm−3 for C–Fe
mixtures.

The choice of ρb requires special comments (Section 3.1). From physical point of view, ρb can be chosen at such ρ = ρ∗

b ,
that at higher ρ the envelope becomes nearly isothermal. However in practice, this choice is inconvenient since such ρ∗

b
depends on many parameters, first of all on Ts, as demonstrated in Fig. 12. In that figure, we show the dependence of
ρ∗

b (determined as the density at which T is only several percent below its limiting value) on Ts for the envelope which
contains pure iron (the solid curve) and pure carbon (the dashed curve). One sees that when Ts drops by one order of
magnitude, ρ∗

b drops by ∼ 5 orders.
The figure clearly shows that the real physical heat blanket becomes thinner when the star cools. To simplify further

use of blanket models, instead of ρ∗

b one usually assumes a fixed value of ρb. The most used (standard) value is ρb = 1010

g cm−3 (e.g., Gudmundsson et al. 1983). This value can be varied depending on a specific problem. Calculations of thermal
evolution of neutron stars employ fixed Tb − Ts relations as a boundary condition for finding the temperature distribution
in stellar interiors (Section 2.2). The higher ρb, the simpler the solution of the latter problem. On the other hand, the higher
ρb, the larger is the heat diffusion time tth through this envelope. Clearly, one cannot rely on evolutionary simulations
over timescales shorter than tth. An estimate for the canonical neutron star model with Ts = 1 MK and the iron blanketing
envelope yields tth ∼ 10−3x4r days (Section 4.3.1). With ρb = 1010 g cm−3, it gives tth about a year (Section 4.3.1). Therefore,
if one needs to model faster processes, one should decrease ρb (complicating operation of numerical algorithms). For
instance, under the same conditions but with ρb = 108 g cm−3 one has tth within a day, and for ρb ≲ 106 g cm−3 (used,
e.g., by Potekhin and Chabrier 2018, Beznogov et al. 2020, Yakovlev et al. 2021) one has tth within a few minutes.

To allow for different possibilities, the calculations (Beznogov et al., 2016b) have been carried out at ρb = 108, 109

and 1010 g cm−3 (except for the H–He mixtures, for which the density 1010 g cm−3 is unrealistic and has been excluded).
This allows users to choose suitable ρb for their specific problem.

Note that under certain conditions (e.g., in the presence of sufficiently strong magnetic fields), the envelope can reach
isothermality at larger density, ρb > 1010 g cm−3 (e.g., Potekhin et al. 2003; see Section 5.5). One should also remember
that in the case of the carbon envelope, the temperature may noticeably grow at higher densities, immediately beyond
the transition to the iron-group elements, so that ρ∗

b for a pure carbon may mark a false physical bottom of the heat
blanket. In these cases, one may need to increase ρb to reach a desired isothermality. Then tth may increase (up to ∼ 100
years at the neutron-drip density).

7.3. Heat blankets in diffusive equilibrium

Here we describe the results by Beznogov et al. (2016b). Fig. 13 presents distributions of ions and the temperature
10 −3
profiles T (ρ) in the envelopes composed of the He–C and C–Fe mixtures assuming ρb = 10 g cm . Calculations have
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Fig. 13. Fraction of lighter ions as a function of ρ (left) and the T (ρ) dependence (right) in the heat blanketing envelopes composed of He–C and
–Fe mixtures, for the canonical neutron star. Calculations are performed for Ts6 = Ts/106 K = 0.8 (solid lines) and 1.5 (dashed lines) at ρ∗

= 106

cm−3 (He–C; dotted and dot-dashed lines) and 108 g cm−3 (C–Fe; solid and dashed lines). See the text for details. After Fig. 1 of Beznogov et al.
2016b).

een performed for two effective temperatures, Ts = 0.8 and 1.5 MK (the solid and dashed curves, respectively). The
ass of lighter elements corresponds to ρ∗

= 106 g cm−3 for the He–C envelopes (the dotted and dot-dashed curves)
nd ρ∗

= 108 g cm−3 for the C–Fe envelopes (the solid and dashed curves). The chosen value of ρ∗ for the He–C mixture
orresponds to the depth of the transition layer z∗

≈ 3 m and to the total depth of the heat blanketing envelope zb ≈ 161
; for the C–Fe mixture we have, z∗

≈ 28 m and zb ≈ 145 m, respectively (for the canonical neutron star model).
The left panel of Fig. 13 shows the density profiles of lighter ions. One can see that the transition layer for the He–
mixture is much wider than for the C–Fe mixture (typical relative depths δρ/ρ∗ are different by about one order
f magnitude). This confirms the expectations discussed in Section 7.2; there is good agreement with the results of
ection 6 and with the predictions by Chang et al. (2010) on the difference of gravitational and Coulomb mechanisms
f ion separation in the mixtures with different and equal effective molecular weights. Because of the wide transition
egions in the He–C mixture, the diffusive ‘‘tail’’ of helium ions extends to densities much higher than ρ∗, and contributes
ignificantly to the total helium mass ∆MHe. For the C–Fe mixture, the diffusive ‘‘tail’’ of carbon is much shorter, so that
lmost entire mass of carbon is contained in the region ρ ≲ ρ∗. The difference in the behaviors of diffusive ‘‘tails’’ can be
ost important for diffusive nuclear burning. In addition, as seen in the figure, the width of the transition layer increases
ith the growth of T , especially for the He–C mixtures.
The right panel of Fig. 13 displays the temperature profiles. It is seen that at high enough ρ the temperature approaches
constant, meaning that the envelope becomes nearly isothermal. As shown in the previous section, the isothermal

ayers are reached at lower densities with the decrease of Ts. The plasma composed of lighter ions has higher thermal
onductivity (e.g., PCY97; see also Potekhin et al. 2015b and references therein). Therefore, the thermal conductivity of
he He–C mixture is overall higher than of the C–Fe mixture. Accordingly, at a given Ts, the T (ρ) curves for the He–C
ixture are lower than for the C–Fe mixture.
Fig. 14 presents typical Tb(Ts) relations for the He–C envelopes (left panel) and C–Fe ones (right panel) at ρb = 1010

cm−3. The curves correspond for the envelopes consisting of pure elements (He or C on the left panel; C or Fe on the
ight panel) and their mixtures at fixed ρ∗

= 106 g cm−3. As in Fig. 13, lighter elements have lower Tb for a given Ts, than
eavier elements. For ion mixtures, the curves are intermediate between the curves for pure elements. Variations of ρ∗

hange thermal insulation of the heat blanketing envelope and, hence, change Tb (as detailed below).
Fig. 15 demonstrates the dependence of the internal temperature Tb on the effective transition density ρ∗ at fixed

urface temperature Ts = 1.47 MK for the H–He (left panel) and He–C (right panel) heat blankets. The solid lines
orrespond to ρb = 108 g cm−3, the short-dashed lines to ρb = 109 g cm−3, and the long-dashed lines are for the He–C
nvelope with ρb = 1010 g cm−3 (hydrogen cannot survive at such high densities, but carbon can). All the curves show a
haracteristic transition from the envelope made mostly of heavier ions (small values of ρ∗), to the envelope that consists
ainly of lighter ions (higher values of ρ∗). The intermediate range of ρ∗, where both ion components are of principal

mportance, is seen to be sufficiently wide. It is worth to notice the different transition behavior of the Tb(ρ∗) curves
or different mixtures. The behavior of the H–He mixture is ‘‘special’’: while increasing the amount of lighter (hydrogen)
ons, Tb grows up, whereas for the He–C and C–Fe mixtures the behavior is the opposite. This effect has been first noticed
y Beznogov et al. (2016b). The special case of hydrogen occurs because of two reasons. First, charge to mass ratio for
rotons (hydrogen ions) Z/A ≈ 1 strongly differs from Z/A ≈ 0.5 for other ions. Second, helium has low radiative opacity.
As discussed in Section 4.2, the region of densities and temperatures, where κe ≈ κr, constitutes the sensitivity

∗
trip which gives the main contribution to Tb − Ts relations. As long as the transition layer (i.e. ρ ) does not fall in the

36



M.V. Beznogov, A.Y. Potekhin and D.G. Yakovlev Physics Reports 919 (2021) 1–68

g
a
(

t
t

s
t

F
c
d
t
i
s
w
w

f
s
m
(
3

Fig. 14. Tb −Ts relations for the envelopes composed of pure He or C (left) and C or Fe (right) and their mixtures at ρ∗
= 106 g cm−3 and ρb = 1010

cm−3 for the canonical neutron star. The solid lines correspond to pure carbon on both panels; the short-dashed lines are for pure helium (left)
nd iron (right); the long-dashed lines are for the He–C (left) and C–Fe (right) mixtures. See the text for details. After Fig. 3 in Beznogov et al.
2016b).

Fig. 15. Internal temperature Tb as a function of ρ∗ for the canonical neutron star with heat blanketing envelopes made of H–He mixtures at
ρb = 108 or 109 g cm−3 (left) and He–C mixtures at ρb = 108 , 109 or 1010 g cm−3 (right). The surface temperature is Ts = 1.47 MK. One can see
he transition from the envelopes made predominantly of heavier ions (low ρ∗) to the envelopes consisting mainly of lighter ions (large ρ∗). See
he text for details. After Fig. 4 of Beznogov et al. (2016b).

ensitivity strip, Tb is nearly independent of ρ∗. In contrast, when the transition range falls into the sensitivity strip, then
he dependence of Tb on ρ∗ is the strongest.

With growing Ts, the sensitivity strip shifts inside the heat blanket. This explains the behavior of long dashed curves in
ig. 14. At low Ts the transition region is deeper than the sensitivity strip. Therefore, the mixture behaves as pure lighter
omponent. With increasing Ts, the sensitivity strip moves deeper and reaches the transition region, where the mixture
emonstrates its two-component nature. At larger Ts the sensitivity strip appears deeper than the transition region, and
he mixture behaves as pure heavier component. This behavior was further explored by Wijngaarden et al. (2019) who
nvestigated the sensitivity of Tb to ρ∗ in the Ts − ρ∗ plane considering not only the diffusion and the position of the
ensitivity strip, but also diffusive nuclear burning (see their Figs. 4 and 5). Yet, it is important to note that published
orks on diffusive nuclear burning treated diffusion rather approximately (trace ion approximation, no thermal diffusion)
hich might seriously affect the nuclear burning (see below).
Fig. 16 demonstrates the effect of the terms containing ∇T in Eqs. (6.1) or (7.2) on the properties of He–C envelopes. The

igure shows the fractions of helium, xHe(ρ), and carbon, xC(ρ), calculated in five cases (curves 1–5) for one and the same
urface temperature Ts = 1.1 MK. The left part of this figure (at log ρ ≲ 1.5) should be taken with caution, because the
atter at these densities is non-degenerate (according to Eq. (4.13), ρF ∼ 300 g cm−3), so that the involved assumptions

such as the linear mixing rule), which are applicable for strongly degenerate plasmas, are no longer valid there. Curves 1,
and 5 are computed including the contribution of ∇T terms, whereas curves 2 and 4 neglect this contribution (which is
37
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Fig. 16. Profiles of helium fraction (decrease) and carbon fraction (increase) as functions of density ρ for five envelope models of He–C mixtures
n the canonical neutron star with Ts = 1.1 MK. Models 1–5 are shown by curves of different types. They either include or exclude the ∇T term in
q. (6.1) (respectively, ‘‘on’’ or ‘‘off’’ in the legend). An asterisk at each curve indicates the position of the effective transition density ρ∗ . See text
or details. After Fig. 5 in Beznogov et al. (2016b).

quivalent to the approximation made in Section 6 and in the paper by Chang et al. 2010). Curves 2 and 3 are computed
or one value of ρ∗

≈ 1.7 × 104 g cm−3, whereas curve 1 assumes the same fraction of carbon at the radiative surface
from which one integrates the equations), as curve 2, xC(z = 0) = 2× 10−6. This boundary condition leads to a different
value of the accumulated mass of helium, and therefore to a different ρ∗

≈ 3.7×103 g cm−3. Nevertheless, the difference
between curves 1, 2 and 3 has almost no effect on the Tb−Ts relation. The values of Tb for these relations differ by less than
1% because the corresponding values of ρ∗ lie out of the sensitivity strip. In contrast, curves 4 and 5 have ρ∗

≈ 9 × 105

g cm−3 inside the sensitivity strip. However, in this case the effects of ∇T are weak owing to stronger electron degeneracy
(as already mentioned in Section 6.2, in the approximations of linear mixing, strongly non-ideal ion plasma, and strongly
degenerate electrons, all the ∇T terms disappear). That is why curves 4 and 5 are close to each other and the ∇T terms,
again, do not affect the Tb − Ts relation.

As seen from curves 1, 2 and 3, the contribution of the ∇T term depends, among other things, on the statement of
the problem. It is important which quantity is fixed as a boundary condition — the accumulated mass or the fraction of
ions at the surface. According to calculations, the ∇T terms have the strongest effect on the ion fraction profiles if the
transition region coincides with the region of moderate coupling of ions. This situation occurs at sufficiently high Ts in
the outer regions of the envelopes (ρ ≲ 107 g cm−3) which consist of light elements (such as hydrogen, helium, carbon).
However even in these cases the effect of ∇T on the Tb − Ts relations, profiles of pressure, temperature and density is
weak.

7.4. Envelopes out of diffusive equilibrium

In addition to diffusively equilibrated heat blanketing envelopes, Beznogov et al. (2016b) considered the envelopes out
of diffusive equilibrium. Since ion diffusion is relatively slow (see below), a non-equilibrium state can exist for a long
time without violating a global hydrostatic equilibrium. By way of illustration, let us study a fixed ion distribution, xj(ρ),
ignoring the equations of diffusive equilibrium. The structure of the envelope can be calculated by integrating Eqs. (7.3).

The results are presented in Fig. 17. The left panel shows three envelope models for H–He mixtures. The right panel
presents three models for He–C mixtures. The figures demonstrate the helium number fraction as a function of mass
density for the canonical neutron star model with surface temperature Ts = 106 K. All three models for the H–He mixtures
have the same amount of hydrogen (log ρ∗

= 5.06), while all three models for the He–C mixture have the same amount of
helium (log ρ∗

= 7.18). The helium fraction increases with ρ on the left panel, because helium is heavier than hydrogen,
but it decreases on the right panel since helium is lighter than carbon. The solid lines refer to diffusion-equilibrated
configurations, while the dashed lines refer to non-equilibrated configurations with wider (long dashes) and narrower
(short dashes) transition regions, than in the equilibrated case.

All three models give nearly the same values of Tb. For instance, for the He–C mixture, one gets the temperature
T = 4.00 × 107 K at ρ = 1010 g cm−3. For the H–He mixture at ρ = 109 g cm−3 one has T = 4.64 × 107 K for
b b b b
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Fig. 17. Helium fraction as a function of density in heat blanketing envelopes composed of H–He mixtures (left panel: ∆M = 5.09 × 10−14 M⊙ ,
log ρ∗

= 5.06) or He–C mixture (right panel: ∆M = 3.04 × 10−11 M⊙ , log ρ∗
= 7.18) at gs14 = 2.43 and Ts = 1 MK. The solid lines correspond

o diffusively equilibrated envelopes, whereas long-dashed and short-dashed lines refer to diffusely non-equilibrated envelopes with wider (long
ashes) and narrower (short dashes) transition layers. See text for details. After Fig. 7 in Beznogov et al. (2016b).

he equilibrium and ‘‘narrow’’ profiles and Tb = 4.54 × 107 K for the ‘‘wide’’ profile. Therefore, the resulting Tb − Ts
elations are weakly sensitive to a heat blanket configuration. The main parameter which regulates the Tb(Ts) relation is
he accumulated mass of light elements ∆M divided by g2

s M (or, equivalently, η or ρ∗). This is true at least as long as the
on distributions are not too wide, as seen for the H–He mixture, for which the ‘‘wide’’ profile gives a slightly different
alue of Tb. On the other hand, strong deviations from an equilibrium configuration cannot exist for a long time (see
elow).
The insensitivity of the Tb−Ts relations to the distribution of ion fractions is helpful for understanding the importance of

hermal diffusion effects. Although thermal diffusion may change ion fractions, these changes will not affect the resulting
b(Ts) relations. However, thermal diffusion can be important for the processes that are sensitive to the distribution of
he ion fractions (e.g., diffusive nuclear burning). Beznogov et al. (2016b) demonstrated this by making several estimates,
ssuming a constant thermal diffusion ratio kT = 0.1 in Eq. (6.12), which is the conservative upper limit obtained in
alculations with the effective potential method. For the H–He mixture with xH = xHe = 0.5, the thermal diffusion rate
oes not exceed 3% of the ordinary diffusion rate, and for the He–C mixture (xHe = xC = 0.5) it does not exceed 6%.
Using Eq. (6.20), one can calculate the diffusion velocity of ions for diffusively non-equilibrium configurations consid-

ered in Fig. 17. Then, introducing a typical width ∆z of the diffusively non-equilibrium layer and taking characteristic
diffusive velocities v, one can estimate typical diffusion-equilibration time teq ∼ ∆z/v for these configurations. For the
–He envelopes, the estimate gives ∆z about a few meters, the diffusive velocity v ∼ 10−4-−10−3 cm s−1 and the

diffusion-equilibration time teq of a few days or weeks. For the He–C envelopes, ∆z is also about a few meters but the
diffusion velocity is much slower, v ∼ 10−7–10−6 cm s−1. Accordingly, teq ∼ 10–100 yr. The equilibration in the He–C
mixture lasts much longer as a result of the slow Coulomb separation of ions. Therefore, the diffusive equilibration takes
from a few days to a century, depending on the chemical composition of heat blankets.

7.5. Diffusive and the onion-like heat blanketing envelopes

Let us compare the main properties of the diffusive (Section 7) and onion-like (PCY97, Section 5) blanketing envelopes.
For illustration, we consider a canonical neutron star with the effective surface temperature Ts = 0.89 MK. Then the
redshifted surface temperature is T∞

s = 0.68 MK. This choice corresponds to the magnetic hydrogen atmosphere plus
power-law fits to the Vela pulsar spectrum from Chandra observations by Pavlov et al. (2001) and from XMM − Newton
observations by Manzali et al. (2007). Recently Ofengeim and Zyuzin (2018) obtained a similar value T∞

s = 0.700±0.005
MK for Chandra observations. It is remarkable that the attempts to improve the estimate using wide ranges of M and R
give almost the same T∞

s in all these ranges (e.g., Ofengeim and Zyuzin 2018). Using a Tb −Ts relation, one can determine
the non-redshifted temperature Tb at the envelope bottom and the redshifted internal temperature of isothermal stellar
interiors T̃ = Tb

√
1 − rg/R. In reality, the Vela pulsar possesses the surface magnetic field B ∼ 3 × 1012 G. Therefore, the

Ts distribution over its surface is non-uniform (see Section 8.3.4), which was ignored in the above-mentioned spectral
models.

Fig. 18 shows the dependence of the internal stellar temperature T̃ on the accumulated mass ∆M of lighter elements
n the blanketing envelope for different envelope models. The short-dashed curve corresponds to the envelope composed
f He–C mixture with ρb = 1010 g cm−3. It demonstrates the dependence of T̃ on the total mass of helium, ∆M = ∆MHe.
he long-dashed line shows the same but for C–Fe envelopes, with ∆M = ∆M being the total mass of carbon. The
C
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Fig. 18. Redshifted internal temperature T̃ of the canonical neutron star with T∞
s = 6.8 × 105 K as a function of accumulated mass ∆M of light

lements in the blanketing envelope. The solid line corresponds to the PCY97 model, while other lines refer to the models of envelopes composed
f binary ion mixtures. After Beznogov et al. (2016a). See the text for details.

ash-dot line refers to H–He envelopes, ∆M = ∆MH being the total mas of hydrogen; in this case ρb = 108 g cm−3,
MH ≲ 10−11 M⊙, because hydrogen cannot survive at higher densities (cf. Section 3.3.2). The solid line is calculated for

he PCY97 model with ρb = 1010 g cm−3, and ∆M is the total mass of H and He.
This figure is analogous to Fig. 15 in Section 7.3. It also shows the ‘‘anomalous’’ behavior for the H–He mixture. For

ther envelope models, the thermal conductivity and internal temperature increase with the growth of ∆M at a fixed
surface temperature (see Section 7.3 for details). According to Fig. 18, if the chemical composition of the envelope is
unknown, theoretical uncertainties of T̃ due to unknown ∆M are really large and hamper an accurate determination of T̃ .
The largest variation by a factor of ∼ 2.5 is achieved for the PCY97 model. This has been anticipated, because the PCY97
model assumes the presence of larger spectrum of chemical elements. For binary mixtures, especially, for the H–He and
He–C envelopes, the variations of T̃ are smaller. This is also natural, because the difference of charge numbers of ions in
the binary mixtures is smaller, hence variations of heat conduction are weaker.

Since different curves in Fig. 18 are plotted for ∆M of different nature, a plain comparison of the curves may be
misleading. However, in some cases such a comparison is possible. For instance, the PCY97 and He–C curves at ∆M ≳
10−10 M⊙ correspond to the blankets which are mostly composed of He; these curves are in very good agreement with
each other. Equally, the PCY and C–Fe curves at low ∆M correspond to the blankets almost fully composed of Fe; they
are also in good agreement.

Fig. 19 shows thermal states of the same star as in Fig. 18 but at different Ts (when the star is warmer or colder)
for different models of the heat blanketing envelopes. The thermal states are characterized by the dependences of T̃
on T∞

s which, in their essence, are analogous to the dependences of Tb on Ts (Fig. 14). The vertical dotted line marks
T∞
s = 6.8 × 105 K (as in Fig. 18). The curves can be viewed as ‘‘evolutionary tracks’’ of the star. The left panel is devoted

to He–Fe and He–C envelopes; the thick curves refer to one-component envelopes (the thick dashed curve is for pure Fe,
the solid curve for pure C, and the dot-dashed curve for pure He). Thin curves of different styles correspond to binary
mixtures with different masses of lighter ions (∆M/M⊙ = 10−16, 10−14, 10−12, 10−10 and 10−8). The lowest value of ∆M
corresponds to a thin surface layer of a lighter element, while the highest value to a thin layer of a heavier element at
the bottom of the heat blanket. The T̃ (T∞

s ) relations vary in response to the variations of the envelope’s composition.
The right panel of Fig. 19 demonstrates the same as the left panel but for the PCY97 model. As before, the thick dashed

line corresponds to the envelope of pure iron. The thick solid line (denoted as ‘‘Acc’’) is for the envelope with the maximum
amount of H+He. Thin dashed lines of different styles refer to different masses of H+He. As expected, this model gives the
widest variations of T̃ (T∞

s ), which is clear from comparison of the right and left panels of Fig. 19. Notice that difference in
the values of T̃ for a partially accreted and non-accreted envelopes is smaller in warmer stars and larger in colder stars,
which is explained by the shift of the sensitivity strip to lower densities as the star cools down.

The most important result is that the Tb−Ts relations for the diffusive envelopes are nearly independent of the structure
of the transition layer (on its width, distributions of ion fractions, presence or absence of diffusive equilibrium). These
relations depend only of∆M (or η). In particular, these results confirm the validity of the PCY97 models (Section 5), where
the envelopes were approximated by the sequence of shells of ions of one species (that is of H, He, C or Fe), with sharp
boundaries between the shells (the ‘‘onion-like’’ structure).

To summarize our comparison of the diffusive models of heat blankets with the PCY97 models we would like to stress
the following:
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Fig. 19. Thermal states (̃T − T∞
s relations) of the same star as in Fig. 18 (with various blanketing models) but at different T∞

s (at different thermal
urface states). The basic surface state of Fig. 18 is plotted by the vertical dotted line. The curves to the right of that line refer to hotter (younger)
tar, while the curves to the left refer to colder (older) star. The left panel is for the C–Fe and He–C mixtures; the right panel is for the PCY97
odel. See the text for details.

• Binary-mixture diffusive and PCY97 models are based on almost the same microphysics. They are not diverse but
complementary.

• One can use the PCY97 model if the composition of a given blanketing envelope is formed via the quasi-stationary
evolution of accreted hydrogen–heliummatter (with the layers of H, He, C, and Fe from top to bottom). At∆M ≳ 10−7

M⊙ the heat blanket will be fully accreted (H, He, C). The position of the upper boundary of the Fe layer can be shifted
upwards by decreasing ∆M . While using the PCY97 fits presented in Section 5.5, one should bear in mind that the
positions of the interfaces between different elements are fixed. If these positions are different, a heat blanket model
should be recalculated.

• PCY97 stated that replacing hydrogen with helium and carbon with iron would have almost no effect on Ts − Tb
relations. Here we have paid more attention to the effect of such replacement and confirmed that the effect is small,
compared with a replacement of light ions (H or He) by heavier ones (C or Fe).

Nuclear reactions in the blanketing envelope can noticeably change ∆M and the Tb − Ts relation in the course of a
eutron star evolution. All the calculations in this section have neglected the possibility of convection in the envelope. As
iscussed in Section 5.3 (see Fig. 2), the convection can occur in some parts of the envelopes, but it has almost no effect
n the Tb − Ts relations.
The calculated Tb − Ts relations for diffusively equilibrated envelopes have been approximated by analytic expressions

, which are convenient for simulating thermal evolution of neutron stars and related phenomena.
The presented models of heat blankets are greatly simplified; real envelopes may contain ions of many species. For

xample, Fantina et al. (2020) studied the cooling and the equilibrium composition of the outer layers of a non-accreting
eutron star down to crystallization and showed that the sharp changes in composition obtained in the one-component
lasma approximation are smoothed out when a full nuclear distribution is allowed. In the liquid part of the envelope,
owever, stratification of ions will prevent the appearance of regions containing many ion species at once. Realistic
nvelopes have most probably shell structures with one type of ions in each shell and narrow diffusive transition layers of
inary mixtures between the shells. For calculating Ts −Tb relations, it would be sufficient to neglect diffusive broadening
f the shell boundaries. However, the ‘‘onion-like’’ approximation could be insufficient for tracing the evolution of nuclear
omposition within the blanketing envelopes, for example, with allowance for the diffusive nuclear burning (Chang and
ildsten, 2003, 2004; Chang et al., 2010; Wijngaarden et al., 2019).

. Magnetic blanketing envelopes

.1. Statement of the problem

.1.1. Microphysics of matter in magnetic envelopes
Microphysical properties of the matter in magnetic heat-blanketing envelopes have been described in many publica-

ions (see, e.g., Yakovlev and Kaminker 1994, Potekhin and Chabrier 2013, Potekhin et al. 2015b, and references therein).
n this section we briefly outline some important results.

Magnetic fields B in the heat blankets affect the properties of electrons and ions. As a rule, the effects on the properties
f electrons are most pronounced. These effects can be roughly separated in two types. First, there are classical effects
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ssociated with electron rotation about B-lines. Secondly, there are quantum-mechanical effects produced by quantization
f electron motion across B and resulted in the appearance of the electron Landau (or Rabi–Landau8) energy levels. The
uantum effects are usually pronounced at much higher magnetic fields than the classical ones. The classical effects change
ainly the electron transport properties but leave the thermodynamic properties (e.g., the electron pressure) unchanged.
he quantum effects can modify the transport and thermodynamic properties. The effects of both types can be different
n non-degenerate and degenerate electron plasmas.

lassical effects. The most important classical effect is that electron conduction becomes anisotropic. The effect occurs at
ny electron degeneracy and is controlled by the electron magnetization parameter

ξ = ω∗τe, (8.1)

here τe is the effective electron thermal-conduction relaxation time, ω∗
= ωc/γr is the characteristic gyrofrequency of

otation of a conduction electron about the magnetic field lines, ωc = eB/(mec) is the electron cyclotron frequency, and
r is the characteristic Lorentz factor of the conduction electrons. In the degenerate matter, γr =

√
1 + x2r , with xr being

determined by Eq. (3.13). In this case, ξ ≈ 1760 (B12/γr)τe/(10−16 s), where B12 ≡ B/1012 G.
The electron heat conduction in a magnetic field is determined by the three thermal conductivity coefficients,

specifically, by the thermal conductivities κ∥ and κ⊥ along and across B, and by the Hall thermal conductivity κH which
describes the heat flux component perpendicular to B and to the temperature gradient ∇T . If the quantum effects
are small, the conductivity κ∥ appears to be almost independent of B. In the regime of weak electron magnetization
ξ ≪ 1, many collisions during one gyro-rotation) the electron conduction is only slightly anisotropic, with κ∥ ≈ κ⊥

nd κH ∼ κ∥ξ ≪ κ∥. In the opposite case of strongly magnetized electrons (ξ ≫ 1, many rotations between successive
ollisions), κH ∼ κ∥/ξ ≪ κ∥ and κ⊥ ∼ κ∥/ξ

2
≪ κ∥, so that thermal conduction across B-lines becomes greatly suppressed.

herefore, the magnetic field can significantly affect the electron heat transport at ξ ≳ 1.

uantum effects. In non-degenerate layers of neutron-star envelopes, the electrons are usually non-relativistic; electron
hermal conduction is relatively unimportant because radiative thermal conduction is sufficiently high (resembling the
on-magnetic case; e.g., Section 4). The magnetic field is called strongly quantizing for the electrons, if it forces the majority
f the electrons to occupy the ground Landau level. In a non-degenerate matter, this occurs at T ≪ Tcycl, where

Tcycl = h̄ωc/kB ≈ 1.343 × 108 B12K. (8.2)

owever, in the non-degenerate case the electron pressure still remains unaffected by B, being equal to Pe = nekBT ,
lthough some other thermodynamic functions are affected (for instance, the electron heat capacity is reduced by a
actor of 3). As for the radiative thermal conductivity, it becomes anisotropic. It is described by the two radiative thermal
onductivity coefficients, along and across B, which are enhanced, as compared to the non-magnetic case, proportionally
o (Tcycl/T )2 ∝ B2.

In the deeper layers of the heat blanket the electrons become strongly degenerate (and possibly relativistic); the
nisotropy of electron thermal conduction is most important. It operates in the classical and quantum regimes. In the
uantum regime, the magnetic field modifies also the electron gas thermodynamics, particularly, Pe.
The quantum effects of magnetic field are different in the two domains of ρ and T (for details see, e.g., Haensel et al.

007, Chapter 4). The first is the domain of strongly quantizing magnetic field, which forces almost all the electrons to
ccupy the ground Landau level. It occurs at relatively low ρ < ρB and low T ≲ TB, where

ρB ≈ 7 × 103 (A/Z) B3/2
12 g cm−3

; TB = Tcycl at ρ < ρB; TB = Tcycl/γr at ρ > ρB. (8.3)

n this case all thermodynamic and kinetic properties of the electron plasma can be strongly affected by the magnetic
ield. The second is the domain of weakly quantizing field, where ρ ≳ ρB and T ≲ TB. In this domain the electrons can
opulate many Landau levels but the thermal energy kBT is smaller than the distance between neighboring Landau levels.

Then the presence of the Landau levels can still affect thermodynamic and kinetic properties of the electron plasma. The
bulk properties like the electron pressure, internal energy, or chemical potential are affected only slightly. If very high
accuracy is not required, they can be replaced by corresponding non-magnetic quantities. However, those quantities that
are determined by the electrons with energies near the Fermi energy (for instance, electron specific heat or transport
coefficients) can be affected much stronger. Such quantities oscillate with increasing density due to population of new
Landau levels by strongly degenerate electrons.

At ρ < ρB the quantizing magnetic field strongly reduces the degeneracy temperature,

TF ≈

√
1 + x2B − 1√
1 + x2r − 1

TF0, xB =

(
4ρ2

3ρ2
B

)1/3

xr, (8.4)

here TF0 = TF(B = 0) is given by Eq. (3.14), and xB is the Fermi momentum of degenerate electrons in the strongly
quantizing limit in units of mec .

8 The magnetic quantization was first studied by Rabi (1928).
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In summary, the strongest effects of a magnetic field on the microphysics of plasma in heat blanketing envelopes are
xpected at sufficiently low densities and temperatures, ρ ≲ ρB and T ≲ TB. For instance, at B = 1012 G, one has TB ∼ 108

and ρB ∼ 104 g cm−3. If B is more or less the same within the envelope and we increase ρ or T beyond ρB or TB, the
agnetic effects will weaken. In a weakly quantizing field, the quantum effects make the thermodynamic functions to
scillate around their classical values with changing ρ or B (see Potekhin and Chabrier, 2013).

.1.2. Magnetic heat blankets for 1D and 2D thermal evolution codes
High magnetic fields make thermal conduction in the outer layers of neutron stars strongly anisotropic. This affects

hermal flows near the stellar surface and the surface map of the effective temperature Ts. In addition, the magnetic
orces and quantum effects of the B-field on the pressure can change the hydrostatic structure of neutron star layers. The
roblem of neutron star thermal evolution ceases to be one-dimensional (1D) and becomes more complicated (2D or even
D).
It seems reasonably to assume that the blanketing envelope remains thin and can be artificially divided into small

omains in such a way that B is nearly constant in each domain (varying parametrically from one domain to another).
et us assume further that typical length-scales of these domains along the surface are much larger than the heat
lanket width. Then one can approximate any domain by a piece of plane-parallel layer (like in Section 3.2), solve the
orresponding heat transport problem and find a local Ts − Tb relation. Here, Ts and Tb are, respectively, the local surface
nd internal temperatures for a given domain. Generally, both temperatures depend on the magnetic field B in the given
omain.
The solution of the above problem for all domains can be used as a boundary condition to model (Section 3) the thermal

nd magnetic evolution in neutron star interiors (r < Rb).
Naturally, the magnetic field penetrates into the entire star or into its essential part, the crust and the core. Then the

magnetic effects, particularly, anisotropic heat conduction, have to be included into the equations which describe the
thermal and magnetic evolution of the interiors. In this connection, one can employ the two heat-blanket descriptions
which are good either for 2(3)D or for 1D thermal evolution codes.

Heat blankets for 2D or 3D codes. These 1D heat-blanket models based on the heat transport solutions for separate domains
can serve as boundary conditions at appropriate internal domains in 2D or 3D codes to follow the thermal evolution of
magnetic neutron stars.

Heat blankets for 1D codes. The 1D heat-blanket models provide natural boundary conditions for the 1D evolutionary
codes. Their use can be based on the assumption that neutron star interiors are isothermal; see Eq. (2.16) and the
discussion in Section 3.2. The isothermality can be provided by high conductivity of the stellar interior, if the thermal
evolution time-scale is sufficiently long. The weaker assumption that T̃ depends only on r , but not on the angles in the
pherical coordinate system, is also sufficient. This weaker assumption can be fulfilled, if the heat conduction at ρ > ρb
s isotropic and the thermal relaxation time of the non-isothermal zone is small compared to the thermal evolution time-
cale. There may be several causes for this isotropy: the decrease of the Hall parameter ξ with increasing density, a
mall-scale (compared to R) configuration of the magnetic field, or predominant conduction by neutrons if ρb reaches the
neutron-drip density (as in Potekhin et al. 2003).

Then Tb = T (Rb) is the same in all the domains of the envelope at a given moment of time. Therefore, one can integrate
over all the domains and obtain the total photon surface thermal luminosity Lγ as a function of Tb. The Lγ − Tb relation,
erived in this way, plays the same role as the Ts − Tb relation for non-magnetic stars. In this case, it is convenient to

define the mean effective surface temperature T̄s by

Lγ = 4πR2σSBT̄ 4
s , (8.5)

nd use the T̄s −Tb relation to study the thermal evolution of the star with a 1D computer code. The heat blanket remains
ssentially 2D, but the anisotropic temperature distribution in the heat blanket is totally included in the appropriate T̄s−Tb
elation, making the internal thermal evolution problem one-dimensional.

Now the surface distribution of the effective temperature Ts can be noticeably non-uniform and the observable
radiation flux can depend on observation direction. However, we will see (Section 8.3.6) that the effect is almost smoothed
out due to light bending in General Relativity, at least for a dipole surface magnetic field and isotropic local surface
emission model. A distant observer will detect nearly the same bolometric thermal flux observing the star at any angle.

1D versus multi-D. Since 2D or 3D codes are more complicated, they are used less often. A review of such computations
is given by Pons and Viganò (2019). For example, a 2D code has been realized by Aguilera et al. (2008) and elaborated by
Viganò et al. (2013).

1D codes are simpler; they have been employed in the majority of studies of cooling magnetized neutron stars. Their
validity is restricted by the requirement that T is independent of angles at ρ > ρb, as discussed above. This requirement
does not necessarily imply that the effects of magnetic field in the interiors are washed out (for instance, the heat
transport is isotropic or the generation of Joule heat due to the electric current dissipation is spherically symmetric).
The isothermality can be provided by the high thermal conductivity even for anisotropic heat transport, sources, or sinks.
Then the main places of anisotropic temperature distribution are the heat insulating envelopes. In these envelopes, the
magnetic effects can be especially strong and the heat conduction is not too fast to smear out the anisotropy.
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It would be difficult to formulate strict conditions for the validity of 1D codes. These conditions depend on specific
roblem, particularly, on magnetic field strength and geometry. We expect that 1D codes are especially accurate if the
agnetic field in the neutron star crust is B ≲ 1014 G.
In what follows we mainly discuss the heat blankets for 1D codes.

onstructing magnetic heat blankets. At the first step one needs to solve a heat blanket problem in a small local part of
he insulating envelope. If we assume a locally constant B within this part, we will have no magnetic force there and the
ydrostatic equilibrium will be described by our familiar Eq. (3.2), although the pressure P can depend on B due to the
uantum effects outlined in Section 8.1.1.
As we discussed above, the heat transport in the magnetic heat blanket is generally described by the three thermal

onductivity coefficients: κ∥, κ⊥, and κH. Nevertheless, one can show that, in our approximation of a local thin plane-
arallel blanket with a locally fixed B, Eq. (3.4) remains valid, if κ means the effective radial thermal conductivity, given
y

κ = κ∥ cos2 θB + κ⊥ sin2 θB, (8.6)

here θB is the angle between B and the normal to the surface. Therefore, the Ts − Tb problem for a local domain
educes to solving the same two Eqs. (3.2) and (3.4), which have been used for non-magnetic heat blankets, but with
ore complicated physics involved.
The magnetic field affects the thermal structure of the blanketing envelope in several ways (Section 8.1.1). First, it

akes the thermal conductivity anisotropic. Here, the effects are twofold.
(i) Classical effects of electron rotation about field lines can strongly reduce κ⊥ but they do not affect κ∥. They are

specially important near the magnetic equator [θB ≈ 90◦, κ ≈ κ⊥ in Eq. (8.6)]. Such equatorial regions become poor heat
onductors, which lowers the local effective temperature Ts for a given Tb.
(ii) Quantization of electron motion into Landau levels can strongly modify both κ∥ and κ⊥. If the heat is mostly

ransported by degenerate electrons and the magnetic field is strongly quantizing, then the quantum effects enhance
∥. These effects are most pronounced near the magnetic poles, where θB ≈ 0 and κ ≈ κ∥. Then the quantum effects
ncrease the local Ts for a given Tb.

In the domains of strongly quantizing magnetic field, the classical and quantum effects on thermal conduction act
n opposite directions. They are mainly important in different parts of the neutron star surface. In addition, one needs
uch stronger B-fields to make the quantum effects pronounced. Note that the quantum effects modify also the plasma
ressure, and hence the ρ(z) profiles.

he approximations of the model. Evidently, the formulated heat blanket model is not perfect. First of all, the approximation
f locally constant (force-free) magnetic fields can be too crude. Indeed, the B field in the outer neutron star layer is likely
o be nearly force-free, but even relatively small corrections may produce magnetic forces which could affect the structure
f the outer layers.
Second, the formulated model deals actually with radial heat fluxes. Within the same model, there are also tangential

luxes. Such fluxes may be insignificant at one domain of the surface, but combining the domains we will obtain heat fluxes
irculating under the surface. They can be locally constant along their circulation lines. However, globally, tangential heat
irculations may redistribute some amount of heat from one domain of the heat blanket to others and affect thus Ts.
or example, in the dipole field model, the heat is transported along the field lines from hotter polar regions to cooler
quatorial domains, so that the equator temperature becomes higher than predicted by the plane-parallel approximation.
his becomes important in superstrong magnetic fields B ≳ 1014 G (e.g., Potekhin et al. 2015b). However, this can
ardly affect the observed luminosity, because, in strong magnetic fields, the equatorial region is cold and gives negligible
ontribution to the total flux anyway. One can also anticipate that the temperature gradients along the surface may render
ome parts of the envelope baroclinically unstable, although a strong magnetic field may partly stabilize it.
Such effects have been almost not considered in the literature and will be ignored below. They could be good subjects

or future projects.

.2. Analytic model

The main effects of strong magnetic fields on the heat blankets can be understood using a simplified fully analytic
odel, analogous to that considered in Section 4 for the non-magnetic case. For a strongly quantizing magnetic field, such
model was constructed by Ventura and Potekhin (2001); it is outlined below. Many results are useful for understanding
he main features of the heat blankets for 2D codes. More elaborated numerical models are discussed in Section 8.3,
ostly for the heat blankets designed for 1D codes.

.2.1. Equation of state
As in the non-magnetic case, we consider the envelope composed of a fully ionized electron–ion plasma. The equation

f state of such a plasma has been discussed in Potekhin and Chabrier (2013).9 Under typical conditions in the heat
lanketing envelopes, the Landau quantization of ion motion can be neglected, whereas the electrons can be quantized.

9 See footnote 2.
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Table 1
Coefficients an , bn and cn in Eq. (8.8).
n 1 2 3 4 5 6

an 0.0949 0.1619 0.2587 0.3418 0.4760 0.2533
bn 0.0610 0.1400 0.1941 0.0415 0.3115 0.1547
cn 0.090 0.0993 0.0533 2.15 0.2377 0.231

First consider the case of low temperatures, where the electrons are degenerate. As mentioned in Section 8.1.1, in
the regime of weak quantization, the electron pressure oscillates around its non-magnetic values with increasing density.
Replacing the accurate EoS by its non-magnetic counterpart will not noticeably affect the structure of the envelope.

In the strongly quantizing limit (T ≪ TB and ρ < ρB) the pressure of degenerate electrons becomes much lower than
at B = 0. As a result, the electrons remain non-degenerate along the radiation-dominated part of the envelope. Since the
pressure of the non-degenerate gas is independent of the magnetic field, we can use the classical non-degenerate EoS in
this part of the envelope.

8.2.2. Radiative opacities
The radiative thermal conductivity in a magnetized plasma was described, e.g., by Potekhin and Chabrier (2018). The

radiative conductivity becomes anisotropic (Section 8.1.1), but the difference between its longitudinal (κr,∥) and transverse
(κr,⊥) components is not too large, so that we can neglect the difference for a qualitative analysis. If the radiative opacities
are mediated by free-free transitions, then in a strongly quantizing magnetic field they tend to

Kr(B) ≈

(
23.2 T
TB

)2

Kr(0) ≃ 2.2
ḡeff Z3ρ

A2 T 1.5
6 B2

12
cm2 g−1, (8.7)

here Kr(0) is given by Eq. (4.3), xB is given by Eq. (8.4), and ρ is expressed in g cm−3. This estimate may be used if
nly T6 ≲ B12 and xB ≪ 1. We will use it in Section 8.2.4. According to Eqs. (3.11) and (8.7), the strong magnetic fields,
12 ≳ T6, push the radiative surface to higher densities, ρs ∝ B.
Another approximation, which takes both free-free transitions and Thomson scattering into account, has been

eveloped by Potekhin and Yakovlev (2001) following numerical calculations of Silant’ev and Yakovlev (1980). At fixed ρ
nd T , it reads

κr,∥(B)
κr(0)

=

(
Kr,∥(B)
Kr(0)

)−1

= 1 +
A1 u + (A2 u)2

1 + A3 u2 u2,
κr,⊥(B)
κr(0)

=

(
Kr,⊥(B)
Kr(0)

)−1

=
1 + (A4 u)3.5 + (A5 u)4

1 + A6 u2 , (8.8)

here

u ≡
Tcycl
2T

, An = an − bn f cn , f ≡
Kff

Kff + KT
, KT = σT

ne

ρ
= 0.4

Z
A

cm2

g
,

Kff = 2 × 104
1 + 0.502 T 0.355

Ry + 0.245 T 0.834
Ry

108.8 + 77.6 T 0.834
Ry

Z2

A
ρ

T 7/2
6

KT, Kr(0) = (Kff + KT) A(f , T ) Apl(ρ, T ),

A(f , T ) = 1 +
1.097 + 0.777 TRy

1 + 0.536 TRy
f 0.617 (1 − f )0.77, Apl = exp

⎧⎨⎩0.005

[
ln

(
1 +

0.5
T6

√
Z
A
ρ

)]6
⎫⎬⎭ .

ere, mass density ρ is measured in g cm−3, Kr,∥(B) and Kr,⊥(B) are the Rosseland opacities in a strongly quantizing
agnetic field B for propagation of photons along and across B, respectively, which are related by Eq. (3.8) to κ∥ and

⊥ in Eq. (8.6); KT is the Thomson scattering opacity at B = 0 (determined by the Thomson scattering cross section σT),
Ry = kBT/Z2 Ry = 6.33 T6/Z2, where Ry = 13.605 eV is the Rydberg energy; Kff is the free-free opacity at B = 0.
he fit parameters an, bn and cn given in Table 1 ensure an average fit error of 5.5% with the maximum error of 11%
o the numerical results of Silant’ev and Yakovlev (1980). The factor Apl(ρ, T ), which effectively eliminates the radiative
ransport at large densities, has been introduced by Potekhin et al. (2003); it mimics the suppression of radiative transport
t photon frequencies below the electron plasma frequency.
The scattering opacities are modified by the electron degeneracy at high ρ and by the Compton effect at T ≳ 108 K.

n accurate analytic description of both these effects is given by Poutanen (2017). The free-free opacities are suppressed
y electron degeneracy. In the absence of the Landau quantization, the free-free opacities at arbitrary degeneracy have
een fitted by Schatz et al. (1999), based on numerical calculations of Itoh et al. (1991). The fit of Schatz et al. (1999) is
napplicable in the case of quantizing magnetic fields. On the other hand, the fit (8.8) is only applicable for non-degenerate
on-relativistic plasmas. A smooth interpolation between the different regimes has been suggested by Potekhin and
habrier (2018).
Caution is necessary however while using these fit expressions. A strong magnetic field shifts the ionization equilibrium

oward a lower ionization degree by increasing the electron binding energies. Therefore, even if the plasma is fully ionized
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Fig. 20. Longitudinal (κ∥) and transverse (κ⊥) electron thermal conductivities in the outer neutron-star envelope composed of iron at T = 108 K and
= 1014 G: comparison of accurate numerical results (solid lines) with different approximations. The electrons are degenerate to the right of the
ertical dot-dashed line, which marks ρF . In this domain, the classical approximations for κ∥ [Eq. (4.16)] and κ⊥ ∼ κ∥/ξ

2 are shown by short-dashed
lines. The long-dashed horizontal line in the non-degenerate region shows the conductivity κnd

e given by Eq. (4.15) with FZ/Λ = 1. The dotted lines
show the approximations including the Landau quantization effects but without thermal averaging of the effective electron relaxation time (i.e., with
the step-like approximation of the Fermi distribution function; cf. Potekhin and Yakovlev 1996). After Ventura and Potekhin (2001).

at some ρ and T in the absence of the magnetic field, it can be only partially ionized at the same ρ and T for high B. This
increases the contribution of bound–bound and bound-free transitions and can increase the radiative opacity well above
the values given by Eq. (8.7) (see Potekhin et al., 2015a).

8.2.3. Electron thermal conductivities
Unified expressions for the electron thermal conductivities in a fully ionized degenerate plasma with arbitrary magnetic

field are discussed, e.g., in Potekhin et al. (2015b). As we already mentioned in Section 8.1.1, these conductivities undergo
quantum oscillations at ρ ≳ ρB. At B ≫ 1010 G, the electron transport across the field is typically suppressed by orders
of magnitude. This allows one to neglect κ⊥, which is a good approximation everywhere except in the domains where
θB ≈ π/2. In this approximation, Eq. (8.6) reduces to

κ ≈ κ∥ cos2 θB. (8.9)

his formula holds not only in the degenerate but also in the non-degenerate electron gas. In the simplest approximation,
n which the effective electron relaxation time is calculated for fully degenerate matter, the conductivity κ∥ decreases and
⊥ increases toward lower densities at ρ < ρB, as is shown in Fig. 20. However, averaging over the finite thermal width
f the Fermi level terminates the growth of κ⊥ and moderates the decrease of κ∥, before they become comparable.
In order to construct a temperature profile, we can calculate κ∥ in the classical (non-magnetic) approximation (4.16) at

high densities, where the magnetic field is weakly quantizing. At lower densities, the quantizing nature of the field must
be taken into account. At ρ < ρB, as long as the electrons are strongly degenerate and the ions form a strongly coupled
Coulomb liquid, one obtains the order-of-magnitude estimate (see Ventura and Potekhin, 2001)

κ∥ ≃
4
3b
κnmΛγ

2
r x2B ≃ 5 × 1015 T6 x3B

Z
erg cm−1 s−1 K−1, (8.10)

here b = h̄ωc/mec2 = B12/44.14 is magnetic field strength in relativistic units, κnm is the non-magnetic conductivity
given by Eq. (4.16), and Λ is the non-magnetic Coulomb logarithm. This estimate gives the values of κ∥ not much different
from numerical results, provided that ρ < ρB and T ≪ TF.

As noted above, very strong fields push the onset of electron degeneracy to higher ρ. Therefore, the turnover from
adiative to electron thermal conductivity may occur in the non-degenerate regime. In that case, κ∥ can be evaluated
rom Eq. (4.15).

.2.4. Temperature profile
In Section 8.1.1, we have defined several regimes regulating the EoS and opacities in strong magnetic fields. To

onstruct an approximate analytic temperature profile, it is sufficient to use the non-magnetic radiative and longitudinal
lectron thermal conductivity κ∥ unless the field is strongly quantizing. Magnetic oscillations around the classical thermal
onductivities will be smoothed out by integration while obtaining the temperature profile from Eq. (3.4).
In the domain of strongly quantizing magnetic field, the opacities are appreciably modified. However, in the liquid

egenerate part of the heat blanket, which is of our primary interest here, the analytic expressions for κ can be again
∥
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pproximated by a power law, Eqs. (8.10) and (4.15). As follows from Eq. (8.7), the same is true for the radiative opacity in
he extreme quantizing limit (provided that the free-free opacity dominates). In the non-degenerate regime, the magnetic
ield does not affect the EoS. In this case, we recover the solution given by Eq. (4.6) with the new values of β = 4.5 and
0,

T6 ≈ 0.95 (ḡeff q)2/9 (ρZ/A)4/9 B
−4/9
12 , (8.11)

here q is given by Eq. (4.11). Thus the temperature is reduced (its profile becomes less steep) with increasing B as long
s the field is strongly quantizing (ρ < ρB and T ≪ TB).
Interestingly, the value of the constant conductivity along the thermal track, Eq. (4.7), is independent of the magnetic

ield, while its numerical value is only slightly lowered as a result of changing the parameter β .

.2.5. Sensitivity strip
As in the non-magnetic case, the sensitivity strip is placed near the point, where κr = κe, and the radiative conduction

s overpowered by the electron one. In a strongly quantizing field, using Eqs. (8.7) and (8.10), we have

ρ ≈ 250 (A/Z) (ḡeff)−0.2 T 0.7
6 |cos θB|−0.4B12 g cm−3, (8.12)

nstead of Eq. (4.17). With the temperature profile (8.11), we now obtain

Tt ≈
3.5 × 107

|cos θB|8/31
ḡ6/31
eff q10/31 K, ρt ≈

3 × 103 q7/31 B12A

|cos θB|18/31 ḡ
2/31
eff Z

g cm−3. (8.13)

If, however, the electrons are non-degenerate along the turning line, then κ∥ is given by Eq. (4.15) instead of Eq. (8.10),
nd we obtain the turning point at

ρt ≈ 52
√
Λ/FZ (A/Z) ḡ

−1/2
eff T6 |cos θB|−1 B12 g cm−3. (8.14)

ombining with Eq. (8.11), we get

Tt ≈
2.2 × 107

|cos θB|0.8

(
Λq
FZ

)0.4

K, ρt ≈
1.1 × 103 q0.4 B12A

|cos θB|1.8 ḡ0.5
eff Z

(
Λ

FZ

)0.9

g cm−3. (8.15)

Thus, in the cases of degenerate and non-degenerate electrons we obtain quite similar expressions for ρt and Tt.
omparing them with Eq. (4.18) we see that in the non-magnetic case Tt has the same order of magnitude as in the
agnetic field at θB = 0. However Tt increases with increasing θB in the magnetized envelope. Notice that in a strongly
uantized magnetic field Tt is independent of the field strength, while ρt grows linearly with B. One can see that ρt lies in
he region of strong magnetic quantization. Assuming that θB is not close to π/2 and neglecting the factors about unity,
e see that ρt < ρB for B12 ≳ (Z T 4

s6/gs14)
14/31, which corresponds to the high-field pulsars and magnetars (Section 10.2).

Let us also estimate the point at which the electrons become degenerate. For simplicity, we assume that the electrons
re non-relativistic. Note that the condition T = TF in the strongly quantizing magnetic field is equivalent to ρ ≈

08 (A/Z)
√
T6 B12 g cm−3. Then from Eq. (8.11) we obtain

ρF ≃ 3700 (ḡeff q)1/7(A/Z)B12 g cm−3. (8.16)

hus, in analogy to the non-magnetic case, turning from radiative to electron thermal conduction occurs not far from the
egeneracy onset, ρt ∼ ρF. Depending on θB, it occurs either in the non-degenerate (at θB ≈ 0) or in the degenerate (at
B ≳ 60◦) electron gas.
The integration of the temperature profile beyond the turning point (for obtaining Tb) can be done in the same way

s in the non-magnetic case. However, the integration path should be divided in two parts: (i) ρ < ρB, where Eq. (8.10)
or the thermal conductivity can be used, and (ii) ρ > ρB, where Eq. (4.19) can be used with the right-hand side divided
y cos2 θ . The result is similar to Eq. (4.20), but contains a profound dependence on the inclination angle: the thermal
radient grows rapidly as θ approaches π/2.

.3. Numerical results

We will mainly outline the models for heat blankets made of iron (Potekhin and Yakovlev, 2001) and of partly accreted
PCY97-like) matter (Potekhin et al., 2003). Since the isothermality in high-B fields may be reached at larger ρ, the bottom
ensity ρb in these models is shifted to 4× 1011 g cm−3. The analytic T̄s − Tb fits for magnetic models are constructed in

such a way to reproduce the Ts − Tb fits derived (Section 5.5) for B → 0 at ρb = 1010 g cm−3. The models are designed
for 1D codes. The results for B ≳ 1014 G are illustrative (may be improved with 2D or 3D codes, as discussed above; it
was demonstrated, for instance, by Potekhin et al. 2015b).
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Fig. 21. Temperature profiles through an iron envelope of a neutron star with the surface gravity gs = 1014 cm s−2 , effective surface temperature
s = 5×105 K (solid lines) and 2×106 K (dashed lines), and different magnetic field strengths (marked in the panels). Different lines in each bunch
how different magnetic field inclinations: cos θB = 0 (the top line in each bunch), 0.1, 0.4, 0.7, and 1 (the bottom line). Dotted lines show the
rofiles calculated without neutrino emission. The long vertical dashes mark the density ρB at which the first Landau level starts to be populated.

.3.1. Equation of state and opacities
In the deep layers of the blanketing envelope, where the plasma is fully ionized, the pressure is mostly determined

y free electrons with small corrections due to ions (Chapter 4 of Haensel et al. 2007). The transport properties of such
plasma have been reviewed by Potekhin et al. (2015b).
A considerable complication at lower densities is introduced by bound species. As discussed in Chapter 4 by Haensel

t al. (2007), different approaches to the EoS yield appreciably different models of atmospheric layers. We will mainly
se the models of iron (non-accreted) blanketing envelopes based on the Thomas–Fermi EoS derived by Thorolfsson et al.
1998).

.3.2. Temperature profiles
Fig. 21 shows the calculated temperature profiles in the envelopes of neutron stars at three surface magnetic fields,

= 1011 G, 1013 G, and 1015 G, two effective surface temperatures, Ts = 0.5 MK and 2 MK, and five angles θB between the
field and the normal to the surface, from 0 to 90◦. The curves start at the radiative surface, where T = Ts. These results
confirm the qualitative conclusions of Section 8.2. Strong dependence on the magnetic field inclination, θB, starts to be
pronounced near turning points. In accordance with our estimates (Section 8.2), they are shifted to higher densities with
increasing B. The linear dependence of the radiative-surface density, ρs ∝ B, obtained analytically, is seen to be realized
for B ≳ 1011 G.

The higher the temperature, the wider is the density region, where κ∥ and κ⊥ do not differ strongly from the scalar
thermal conductivity κ at B = 0. Therefore the dependence of the profiles on the magnetic field B is less pronounced at
higher Tb showing convergence to the B = 0 case.

The temperature profiles, which are calculated with allowance for neutrino emission (solid and dashed lines), are
compared with the results of calculations assuming Qν = 0 (dotted lines). In the ρ − T domains where the difference
between these results is noticeable, the thermal flux is not constant through the envelope, so that Eq. (3.6) is not
applicable.

It should be noted that the profiles in Fig. 21 have been calculated assuming a neutron-star photosphere without
phase transitions. However, some theoretical results hint that the strong magnetic field may cause the so-called magnetic
condensation, which implies formation of a physical solid or liquid surface instead of imaginary radiative surface inside an
extended atmosphere (see Medin and Lai 2007 and references therein). Potekhin et al. (2007) compared thermal profiles
with and without the magnetic condensation and demonstrated that the effect of the condensation on the Ts −Tb relation
is small (see their Fig. 7). Nevertheless, this effect can be visible on the neutron star cooling curves (Potekhin and Chabrier,
2018).

8.3.3. Surface temperature at the magnetic pole and equator
The relation between the internal and surface temperatures, considered for non-magnetic envelopes in Section 5.5,

is strongly affected by the magnetic fields (Fig. 21). To study these effects we introduce the ratios R = Ts(B)/Ts0 of the

surface temperature Ts at a given field B to the value Ts = Ts0 at B = 0 for the same Tb.
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Table 2
Parameters of Eqs. (8.17), (8.18).
n Iron envelope Accreted envelope

an bn an bn
1 1.76 × 10−4 159 4.50 × 10−3 172
2 0.038 270 0.055 155
3 1.5 172 2.0 383
4 0.0132 110 0.0595 94
5 0.620 0.363 0.328 0.383
6 0.318 0.181 0.237 0.367
7 2.3 × 10−9 0.50 6.8 × 10−7 2.28
8 3 0.619 2 1.690
9 0.160 0.113
10 21 163
11 4.7 × 105 3.4 × 105

Let us start with the two most important cases of the magnetic field which is either normal or tangential to the surface
(i.e., at the magnetic pole or equator, respectively). In the first case the heat is transported through the heat-blanketing
surface by the longitudinal thermal conductivity along the magnetic field lines, κ = κ∥; we will call this case the parallel
conduction case. In the second case the heat is transported by the transverse thermal conductivity across the field lines,
κ = κ⊥, which will be referred to as the transverse conduction case. Extensive calculations of the temperature profiles
for both cases have been performed by Potekhin and Yakovlev (2001) in the case of iron envelope and by Potekhin et al.
(2003) for partially and fully accreted envelopes. These authors produced the following analytic fits:

R∥ =

(
1 +

a1 + a2 T
a3
b9

T 2
b9 + a4T

a5
b9

Ba6
12

(1 + a7B12/T
a8
b9 )

a9

)(
1 +

1

3.7 + (a10 + a11 B
−3/2
12 ) T 2

b9

)−1

, (8.17)

R⊥ =

[
1 + b1 B12/(1 + b2 T

b7
b9 )
]1/2

[
1 + b3 B12/(1 + b4 T

b8
b9 )
]β , β =

(
1 + b5 T

b6
b9

)−1
, (8.18)

with the parameters ai and bi given in Table 2. Here, as before, Tb9 = Tb/109 K. These fits were checked against calculations
for input parameters restricted by the conditions 6.5 < log Tb < 9.5, log Ts > 5.3, and 10 < log B < 16, where Tb and
Ts are expressed in K and B is G. The numerical values of Ts are reproduced with residuals up to 5%–10%. The authors
emphasized that these results are uncertain at superstrong fields (B ≳ 1014 G).

The effect of the magnetic field on the local effective temperature Ts is illustrated in Fig. 22. The figure shows the
distribution of the redshifted temperature T∞

s over the surface of the canonical neutron star with the dipole magnetic
field versus the magnetic field strength at the pole. The upper and lower curves of the same style present Ts at the
magnetic pole and equator, respectively. The electron-quantization effects amplify the longitudinal thermal conductivity,
which is fully responsible for the heat transport near the pole. These effects make the polar regions of the heat-blanketing
envelope more heat-transparent, increasing Ts for a given Tb. On the contrary, the classical Larmor-rotation effects strongly
reduce the transverse conductivity which is most important near the equator. The equatorial regions become less heat
transparent, which lowers the local effective temperature. These results are in qualitative agreement with the earlier
results of Van Riper (1988), Schaaf (1990), and Heyl and Hernquist (2001), although there are quantitative differences
discussed by Potekhin and Yakovlev (2001).

8.3.4. Variation of temperature over the stellar surface
The dependence of Ts on the angle θB is most easily described by the model of Greenstein and Hartke (1983) which

implies a superposition of ‘‘longitudinal’’ and ‘‘transverse’’ heat fluxes:

T 4
s (B, θB) = T 4

s∥(B) cos
2 θB + T 4

s⊥(B) sin
2 θB. (8.19)

This approximation has been used, e.g., by Page (1995), Shibanov and Yakovlev (1996), and Heyl and Hernquist (1998).
Numerical calculations of Potekhin and Yakovlev (2001) confirmed that it accurately (within ≈ 30%) reproduces the
dependence of Ts on θB. However, a replacement of the power-law index 4 with α according to

R =
(
Rα

∥
cos2 θB + Rα

⊥
sin2 θB

)1/α
, α =

{
4 +

√
R⊥/R∥ (for iron),

(2 + R⊥/R∥)2 (fully accreted).
(8.20)

ields better accuracy (see Potekhin et al. 2003).
According to Eq. (8.20), the flux density for any angle θB is expressed through the solutions for the cases of parallel

and transverse conduction. Using Eqs. (8.17) and (8.18), one can thus find the flux densities at arbitrary B and θB for the
iron (F (Fe)) and fully accreted envelope (F (a)). For a partially accreted envelope, one can use the interpolation (5.10), which
r r
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Fig. 22. Redshifted local surface temperature of the canonical neutron star with a dipole magnetic field versus the field strength B = Bpole at the
agnetic pole for the internal temperature Tb = 3 × 108 K and iron heat blanketing envelope at six values of magnetic colatitude ϑ in the 1D

approximation.

remains reasonably accurate for strong magnetic fields. With this solution, one can easily calculate the distribution of the
flux density and the effective temperature Ts [Eq. (5.12)] over the neutron star surface for any strength and geometry of
the surface magnetic field.

Consider, for instance, a dipole surface magnetic field (Ginzburg and Ozernoy, 1964),

B(ϑ) = Bpole

√
cos2 ϑ + a2g sin2 ϑ, tan θB = ag tanϑ, (8.21)

here ϑ is the polar angle of a local element on the surface measured from the magnetic axis, Bpole is the field strength
t the pole, and ag is a factor due to General Relativity,

ag =
ψ(rg/R)
2f (rg/R)

, (8.22)

here

f (x) = −
3
x3

[
ln(1 − x) + x +

x2

2

]
, ψ(x) =

√
1 − x

[
3

1 − x
− 2f (x)

]
. (8.23)

One has ag → 1 in the flat-space geometry (rg/R → 0).
The distribution of Ts over the surface of the star with a dipole magnetic field can be deduced from Fig. 22 (for

Tb = 3 × 108 K). This distribution drastically depends on the magnetic field strength. The fields B ≲ 3 × 1010 G weakly
affect the thermal conductivity and, hence, the surface temperature distribution. The fields 3 × 1010G ≲ B ≲ 3 × 1013

influence the transverse thermal conductivity much stronger than the longitudinal one due to the classical effects of
lectron Larmor rotation (Section 8.1.1). A wide equatorial region of the star becomes much colder than at B = 0 while
smaller polar region becomes slightly warmer. For the higher fields, B ≳ 1014 G, the situation is inverted: the increase
f the longitudinal thermal conductivity by the quantizing magnetic field becomes more important. A large region of the
urface with the center at the magnetic pole becomes hotter than at B = 0, but a narrow strip near the equator stays much
older than at B = 0. In this strip, the approximation of plane-parallel layer used for calculating the temperature profiles
ay become inaccurate. Large tangential heat flows may smear the temperature gradients in this equatorial ‘‘valley of

he cold’’ which hopefully does not affect an overall surface temperature distribution.
Note that the anisotropy of the temperature distribution depends on the internal temperature Tb. With increasing Tb

he anisotropy becomes smaller, as a result of the convergence to the B = 0 case (Section 8.3.2).

.3.5. Total photon luminosity
A Ts − Tb relation is basic and extremely useful for non-magnetic neutron stars; Ts is a reliable observable, and the

elation allows one to infer Tb. In a magnetic star, Ts varies over the surface and is not a robust observable any more.
nstead, it is more instructive to use the total surface luminosity of the star, L , which seems to be really robust (see
γ
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Fig. 23. Redshifted photon surface luminosity (left vertical axis) and mean effective temperature (right vertical axis) of the canonical neutron star
ith a dipole magnetic field, for two values of Tb and four models of the heat-blanketing envelope (accreted mass ∆M = 0, 10−12 , 10−10 , and
0−7 M⊙) versus magnetic field strength at the pole B = Bpole . (After Potekhin et al. 2003.)

ection 8.3.6). The mean surface temperature T̄s can be conveniently defined by Eq. (8.5). In this way the Ts(Tb) relation
n non-magnetic stars is replaced by the Lγ (Tb) (or, equivalently, T̄s(Tb)) relation for magnetic stars.

The total photon luminosity Lγ is obtained by integrating the local radiated flux, σSBT 4
s , over the entire stellar

urface. Potekhin and Yakovlev (2001) numerically calculated Lγ for iron blanketing envelopes with the dipole magnetic
ield and isotropic surface emission model and fitted the result as

Lγ (B)
Lγ (0)

=
1 + a1β2

+ a2β3
+ 0.007 a3β4

1 + a3β2 , (8.24)

here

β = 0.074
√
B12 T−0.45

b9 ,

a1 =
5059 T 3/4

b9

(1 + 20.4 T 1/2
b9 + 138 T 3/2

b9 + 1102 T 2
b9)1/2

,

a2 =
1484 T 3/4

b9

(1 + 90 T 3/2
b9 + 125 T 2

b9)1/2
,

a3 =
5530 (1 − 0.4 rg/R)−1/2 T 3/4

b9

(1 + 8.16 T 1/2
b9 + 107.8 T 3/2

b9 + 560 T 2
b9)1/2

,

nd B12 relates to the magnetic pole. The maximum fit error is 6.1% (i.e., 1.5% for the mean effective temperature T̄s). Note
hat the fit expressions used by the authors for calculating Lγ (B) were less accurate by themselves. This lowered the real
ccuracy of the presented fits. Nevertheless this accuracy seems sufficient for cooling simulations.
Fig. 23 displays the photon luminosity versus B = Bpole for two values of Tb and four values of ∆M , mass of accreted

atter in the blanketing envelope. The magnetic field affects the photon luminosity at B ≳ 3 × 1010 G. In the range of
≲ 3 × 1013 G, the equatorial decrease of the heat transport dominates, and the luminosity is lower than at B = 0. For
≳ 1014 G, the polar increase of the heat transport becomes more important, and the magnetic field enhances the photon

uminosity.
The joint effect of the accreted envelope and the magnetic field is demonstrated by the dot-dashed, dotted, and dashed

ines. As in the non-magnetic case, the accreted material makes the envelope more heat-transparent, increasing the
uminosity at given Tb. Therefore, at B ∼ 1010–1013 G, the magnetic field and the accreted envelope affect the thermal
nsulation in the opposite directions. At higher B, both effects increase the luminosity. However, as evident from Fig. 23,
he dependence of this increase on B and ∆M is complicated. In particular, at B ≳ 1014 G, the effect of the accreted
nvelope is weaker than in the non-magnetic case.
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Fig. 24. Effect of dipole or radial surface magnetic fields on the flux of electromagnetic radiation F (B) detected from a canonical neutron star for
he internal temperature Tb = 3×108 K at the bottom of the iron heat blanket. Long-dashed line presents the flux observed in the direction toward
he magnetic pole and short-dashed line toward the magnetic equator as functions of the field strength B at the pole. The upper and lower dotted
ines show the same fluxes calculated neglecting gravitational bending of light rays outside the neutron star. The dot-dashed line is for the radial
ield of the same strength as the field at the magnetic pole.

Note one important feature: the effect of the magnetic field on Lγ becomes weaker with growing Tb. It is explained by
he convergence to the B = 0 solution discussed in Section 8.3.2. Accordingly, the luminosity of a hot neutron star cannot
e strongly affected even by very high magnetic fields.

.3.6. Gravitational lensing and observed flux
Since the temperature distribution over the surface of a magnetized neutron star is non-uniform, the flux of radiation
detected from the star depends on observation direction. Calculating the flux, it is important to take into account

ravitational bending of light rays propagating from the stellar surface to a distant observer. We will illustrate this effect
f General Relativity for a spherically symmetric neutron star (with the Schwarzschild space–time geometry outside the
tar) using the results of Pechenick et al. (1983) and Zavlin et al. (1995b), and employing the heat-blanket model designed
or 1D cooling code. The most important consequence of light bending is that an observer will collect radiation from a
arger part of the stellar surface. The maximum colatitude of the surface element (with respect to line of sight) visible at
nfinity, ϑviz

max, is determined by the compactness parameter rg/R,

ϑviz
max =

∫ rg/2R

0

du√
(1 − rg/R)(rg/2R)2 − (1 − 2u)u2

. (8.25)

One has evidently ϑviz
max = 90◦ and the visible fraction of the stellar surface s = 0.5 for a flat space, rg/R → 0. One

has ϑviz
max = 112◦ and s = 0.686 for a neutron star with mass M = 1.4M⊙ and radius R = 15 km (rg/R = 0.275);

and ϑviz
max = 132◦ and s = 0.833 for the canonical neutron star (rg/R = 0.413). The observer would see the entire

surface (ϑviz
max = 180◦) at rg/R = 0.568. With increasing rg/R, the photons emitted from certain places of the surface

nearly tangentially to it should move along more tightly curved spirals to reach the observer. At rg/R = 2/3, the
tangentially emitted photons would travel along closed circular orbits (ϑviz

max = ∞). For a canonical neutron star, the cases
of ϑvizmax = 180◦ and ∞ would realize at R = 7.27 and 6.19 km, respectively. The propagation of light rays emitted from
rapidly rotating neutron stars was considered in many publications (e.g., Braje et al. 2000, Cadeau et al. 2007, Bauböck
et al. 2015, Nättilä and Pihajoki 2018, Poutanen 2020, Suleimanov et al. 2020, and references therein).

The gravitational bending effect is illustrated in Fig. 24 for the canonical neutron star. For comparison, by the dot-
dashed line we show the flux from the star where the magnetic field is radial everywhere on the surface; the surface
temperature distribution is then isotropic (although Ts depends on B), the detected flux F (radiated from a visible part
of the surface) is evidently independent of observation direction. All other lines in the figure show the fluxes F (B) for
the dipole magnetic field. The dash-and-dot lines refer to the fluxes detected either along the magnetic pole or along the
equator (assuming the magnetic axis coincides with the rotational one). These lines demonstrate the largest difference
of the fluxes detected under different angles. They are obtained taking proper account of bending of light rays. For

comparison, we present also the fluxes calculated neglecting the gravitational ray-bending effect (as if space–time were
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lat outside the star). In the absence of light bending, the difference of the fluxes observed under different angles would
e quite noticeable. For instance, at B = 4 × 1012 G the difference would be about 57%. The light bending reduces it to

4%, making it almost negligible. The observer detects the flux from a large fraction of the surface, that is close to the flux
averaged over observation directions.

Therefore, the light bending for neutron stars is usually strong and crucial. It allows one to neglect weak dependence
of the observed fluxes on the detection direction and use the average fluxes and the mean effective temperatures T̄s in
the theories of neutron-star thermal evolution. Although the local surface temperature of a strongly magnetized neutron
star largely varies over the surface, General Relativity disguises these variations: the flux of thermal radiation, as detected
by a distant observer, is mostly determined by the total luminosity of the star. Therefore, if phase-resolved observations of
some neutron star demonstrate noticeable variations of the bolometric flux, they cannot be attributed to the blackbody
(isotropic) thermal radiation emergent from the star with a dipole magnetic field and isothermal interior.

Nevertheless, the bolometric flux showing large variations with rotation phase still can be attributed to the thermal
radiation emergent from the star with a dipole magnetic field and isothermal interiors, provided that radiative transfer in
the strongly magnetized neutron star photosphere is treated accurately. In contrast with the isotropic blackbody radiation,
discussed above, radiation of a magnetic photosphere consists of a narrow (< 5◦) pencil beam along the magnetic field and
a broad fan beam with typical angles ∼ 20◦–60◦ (Zavlin et al., 1995a). For example, Storch et al. (2014) have demonstrated
that the large X-ray pulse fraction of PSR B0943+10 can be explained by including the beaming effect of a magnetic
atmosphere, while remaining consistent with the dipole field geometry constrained by radio observations.

9. Heat blanketing envelopes and cooling of isolated neutron stars

In the final sections we outline the applications of heat blanket models for numerical simulations of observational
manifestations of neutron stars. In this section, we consider the most familiar application to cooling isolated middle-aged
neutron stars neglecting the effects of magnetic fields. We do not pretend to give a detailed description of the neutron
star cooling theory and observations. The neutron-star cooling theory was described in a number of detailed reviews
(Yakovlev and Pethick, 2004; Page, 2009; Tsuruta, 2009; Potekhin et al., 2015b; Geppert, 2017), and an up-to-date survey
of the observations of thermally emitting cooling neutron stars with references to original works can be found in Potekhin
et al. (2020).10

9.1. Cooling simulations

Evidently, the interpretation of observations of neutron stars is greatly complicated by uncertainties in the chemical
composition of heat blankets. Here, following Beznogov et al. (2016a), we illustrate the effects of these uncertainties on
thermal evolution of isolated neutron stars.

The main objects of study will be not very young (age t ≳ 100 yr) cooling isolated neutron stars. These stars
have already passed the early stage of internal relaxation (e.g., Gnedin et al. 2001, Yakovlev and Pethick 2004 and
references therein). Their internal regions are already isothermal, with large temperature gradients remaining only in
the heat-insulating blankets.

Aside of the envelopes consisting of binary ion mixtures (Section 7), it is important to study the PCY97 envelope model
(Section 5) containing sequences of spherical shells of pure H, He, C, and Fe. The corresponding Ts−Tb relation is governed
by ∆M , the accumulated mass of H and He.

The PCY97 model was elaborated further by Potekhin et al. (2003) by including the effects of the magnetic fields
(Section 8) and the effect of temperature growth to ρb > 1010 g cm−3 (Section 5.5). Beznogov et al. (2016a) compared the
diffusive-equilibrium models with the widely used PCY97 model and employed the neutron star models with the BSk21
EoS (Goriely et al., 2010; Pearson et al., 2012; Potekhin et al., 2013) in their interiors (at ρ > ρb). In this case, the maximum
mass for stable neutron star models is Mmax = 2.27M⊙ (with R = 11.04 km and the central density ρc = 2.29 × 1015

g cm−3). The most powerful direct Urca process of neutrino emission (Lattimer et al., 1991; Haensel, 1995) in the cores of
such stars is allowed at M > MDurca = 1.59M⊙ (ρc > 8.21× 1014 g cm−3). Furthermore, we fixed M = 1.4M⊙ star (with
R = 12.60 km) at which the direct Urca process is forbidden, and we neglect the effects of superfluidity of nucleons in
the core and the crust, focusing on the effects of heat blankets. The main neutrino cooling process for such a star would
be the modified Urca process from the core, which is treated following Yakovlev et al. (2001). Note that the efficiency of
this process can be enhanced by in-medium effects (e.g., Shternin et al. 2018). This enhancement is not included into our
illustrative calculations here.

Fig. 25 presents some computed cooling curves. Each panel of this figure refers to one model of the blanketing envelope.
The upper left panel shows the envelopes made of H–He mixtures, the upper right panel is for He–C mixtures, the bottom
left panel for C–Fe mixtures and the bottom right panel is for the PCY97 model. A shaded strip in each panel is composed
of possible cooling curves for a given heat blanket (only ∆M varies whereas other parameters are fixed). These strips fill
the areas between thick lines showing the cooling of neutron stars with nearly pure hydrogen and helium, helium and

10 An updated list of the basic properties of the thermally emitting neutron stars, extracted from observations, is available at http://www.ioffe.ru/
astro/NSG/thermal/.
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Fig. 25. Cooling curves T∞
s (t) (left vertical axes) and L∞

γ (t) (right vertical axes) for the 1.4 M⊙ star with the BSk21 EoS and with different models of
heat blanketing envelopes. The star is non-superfluid and the direct Urca process of neutrino emission is forbidden. See text for details. (After Beznogov
et al. 2016a.)

carbon, carbon and iron, iron and the PCY97 envelopes with the highest amount of light elements (labeled as ‘‘Acc’’). The
dashed lines are calculated for some intermediate values of ∆M . They demonstrate that the strips are really filled with the
cooling curves. Because of the reasons discussed in Section 7.2, different envelope models are taken for different values
of ρb. That is why the cooling curve for pure He in the upper left panel is slightly different from the analogous curve in
the upper right panel.

The strips shown in Fig. 25 can be viewed as some cooling curves, ‘‘broadened’’ due to unknown ∆M . Clearly, the strip
idths depend on the envelope type. For the envelopes made of H–He and He–C mixtures, the broadening is rather weak;

or the C–Fe envelopes it is wider; the largest broadening is naturally provided by the PCY97 envelope.

.2. Blanket composition and internal structure of neutron stars

The larger the broadening, the higher the uncertainty of the internal temperature of a neutron star T̃ inferred from
bservations using heat-blanket models. This uncertainty leads even to higher uncertainties in the neutrino cooling
unction,

ℓ(̃T ) =
L∞
ν (̃T )
C (̃T )

, (9.1)

hat is the ratio of the total neutrino luminosity to the total heat capacity of the star. Both, L∞
ν (̃T ) and C (̃T ), are mostly

etermined by neutron star cores. From observations of cooling middle-aged neutron stars one can estimate T̃ . Then, using
he cooling theory, one can estimate (constrain) the cooling functions ℓ(̃T ) which contain the most important information
n microphysical properties of superdense matter in neutron star cores.
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Fig. 26. Some selected cooling curves of neutron stars from Fig. 25 compared with observations. The observational data are plotted for the neutron
stars with known kinematic ages and estimated thermal luminosities from the surface. See the text for details.

The attempts to evaluate ℓ(̃T ) for some cooling neutron stars have been done in numerous publications, particularly
by Beznogov et al. (2016a). The uncertainties of inferring T̃ from observable T∞

s due to unknown chemical composition of
eat blankets can reach a factor of ∼2.5 (see Section 7.5). This leads to uncertainties of inferring ℓ(̃T ) by a factor of ∼ 102

ecause of a strong temperature dependence of ℓ(̃T ). Since, theoretically, ℓ(̃T ) can vary within ∼10 orders of magnitude
e.g., Beznogov et al. 2016a), depending on composition and superfluid properties of neutron stars cores, the uncertainties
y a factor of ∼ 102 should not be treated as ‘‘too enormous to be meaningless’’, but the problem to reduce them via
nderstanding the composition of heat blankets looks very important.

.3. Cooling neutron stars with different envelopes

Another characteristic feature of cooling curves seen from Fig. 25 is their inversion: at a certain age t a strip of any
urve becomes narrow but then widens again; the cooling curves intersect and interchange. For instance, for the C–Fe
ixture before the inversion the curve for pure C heat blanketing envelope goes higher than for pure Fe envelope, while
fter the inversion it becomes lower. The inversions occur at t ≈ 105 yr for the envelopes containing H–He and He–C
ixtures, and at t ≈ (2−3)×105 yr for the C–Fe and PCY97 envelopes. Notice that for the envelopes composed of binary

onic mixtures, all cooling curves intersect at almost one and the same t , while for the PCY97 envelopes they intersect in
small area in the T∞

s − t plane.
Such inversions are well known in the literature (e.g., Yakovlev and Pethick 2004). They manifest the transition of

he star from the neutrino cooling stage to the photon cooling stage. The transition time is relatively short. At the
eutrino cooling stage, the star is mainly cooling via neutrino emission from the entire stellar interior; it has lower surface
emperature if its heat blanket consists of heavy elements with low thermal conduction. At the photon cooling stage, the
tar is mostly cooling via thermal photon emission from the surface; the neutrino emission stops to affect the cooling
hich is now regulated by the heat capacity of the core and the thermal conductivity of the heat blanket. The lower the
hermal conductivity, the higher Ts.

Fig. 26 presents some selected cooling curves from Fig. 25. The long-dashed curve refers to the blanketing envelope
f pure iron; the solid curve is for the pure carbon; the gray short-dashed line (‘‘PCY97 acc’’) is for the PCY97 envelope
ith the maximum amount of light elements. The shaded region between the Fe and C curves is filled by the cooling
urves calculated assuming the C–Fe heat blanket with different ∆M . The region between the C and He cooling curves is
illed by cooling curves for the He–C envelope. The region between the He and ‘‘PCY97 acc’’ lines is filled by those cooling
urves for the PCY97 envelope, which avoided other filled regions. To simplify the figure we do not show the cooling
urves for the blanketing envelopes composed of H–He mixtures. In addition, in Fig. 26 we plot some observational data
n isolated neutron stars whose thermal emission has been detected or upper limits have been obtained (see footnote
0). We have chosen to plot the estimated luminosities, rather than temperatures, for the reasons discussed in Potekhin
t al. (2020) (also see Viganò et al. 2013). Here, we show only the objects with available ‘‘kinematic ages’’, estimated
ndependently of pulsar timing, and we adopt them as the observational estimates of the true ages. Such estimate can be
ased on proper motion of the star, on physical properties of the associated SNR or surrounding nebula, or, in a few cases,
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ooling neutron stars with known ages and thermal luminosities.
No. Object Age L∞

γ kBT∞ Reference numbers
(kyr) (1032 erg s−1) (eV)

Weakly magnetized thermally emitting neutron stars

1 RX J0822.0−4300 (in Puppis A) 4.45 ± 0.75 50 ± 11 265 ± 15 1(a), 2(s)
2 CXOU J085201.4−461753 (‘‘Vela Jr.’’) 2.1–5.4 20 ± 10 90 ± 10 3(a), 4(s)
3 2XMM J104608.7−594306 11–30 0.77–6.2 40–70 5(a,s)
4 1E 1207.4−5209 (in G296.5+10.0) 7+14

−5 13.1+4.9
−1.6 90–250 6(a), 7(s)

5 CXOU J160103.1−513353 0.8 ± 0.2 58 ± 2 118 ± 1 8(a), 9(s)
6 1WGA J1713.4−3949 (in G347.3−0.5) 1.608 ∼ 20 − 120 138 ± 1 10(a), 11(s)
7 XMMU J172054.5−372652 0.9 ± 0.3 216+55

−66 161 ± 9 12(a), 11(s)
8 XMMU J173203.3−344518 2–6 174+19

−39 153+4
−2 13(a), 14(s)

9 CXOU J181852.0−150213 3.4+2.6
−0.7 84+68

−42 130 ± 20 15(a), 16(s)
10 PSR J1852+0040 (in Kes 79) 6.0+1.8

−2.8 104+24
−20 133 ± 1 17(a), 18(s)

11 CXOU J232327.8+584842 (in Cas A) 0.320–0.338 61–94 123–185 19(a), 20–20(s)

Middle-aged pulsars

12 PSR J0205+6449 (in 3C 58) 0.819 1.9+1.5
−1.1 49+5

−6 23,24(a), 11(s)
13 PSR J0357+3205 (‘‘Morla’’) 200–1300 0.15+0.25

−0.11 36+9
−6 25(a,s)

14 PSR J0538+2817 (in Sim 147) 40 ± 20 10.9+2.7
−4.6 91 ± 5 26(a), 27(a,s)

15 CXOU J061705.3+222127 (in IC 443) ∼ 30 2.6 ± 0.1 58.4+0.6
−0.4 28(a), 29(s)

16 PSR B0833−45 (Vela pulsar) 17–23 4.24 ± 0.12 57+3
−1 30(a), 31(s)

17 PSR J1119−6127 (in G292.2−0.5) 4.2–7.1 19+19
−8 ∼ 80–210 32(a), 33(s)

18 PSR B1951+32 (in CTB 80) 64 ± 18 1.8+3.0
−1.1 130 ± 20 34(a), 35(s)

19 PSR B2334+61 (in G114.3+0.3) ∼ 7.7 0.47 ± 0.35 38+6
−9 36(a), 37(s)

Strongly magnetized X-ray emitting isolated neutron stars (XINSs)

20 RX J0720.4−3125 850 ± 150 1.9+1.3
−0.8 90–100 38(a), 39,40(s)

21 RX J1308.6+2127 550 ± 250 3.3+0.5
−0.7 ∼ 50–90 41(a), 42(a,s)

22 RX J1605.3+3249 440+70
−60 0.07–5 35–120 43(a), 44,45(s)

23 RX J1856.5−3754 420 ± 80 0.5–0.8 36–63 46(a), 47 –49(s)

Useful upper limits

24 PSR J0007+7303 (in CTA 1) ≈ 9.2 < 0.3 < 200 50(a), 51(s)
25 PSR B0531+21 (Crab pulsar) 0.954 < 300 < 180 52(a), 53(s)
26 PSR B1727−47 (in RCW 114) 50 ± 10 < 0.35 < 33 54(a), 11(s)

References: 1. Becker et al. (2012); 2. De Luca et al. (2012); 3. Allen et al. (2015); 4. Danilenko et al. (2015); 5. Pires et al. (2015); 6. Roger et al.
1988); 7. Mereghetti et al. (2002); 8. Borkowski et al. (2018); 9. Doroshenko et al. (2018); 10. Cassam-Chenaï et al. (2004); 11. Potekhin et al.
2020); 12. Lovchinsky et al. (2011); 13. Cui et al. (2016); 14. Klochkov et al. (2015); 15. Sasaki et al. (2018); 16. Klochkov et al. (2016); 17. Sun et al.
2004); 18. Bogdanov (2014); 19. Ashworth and J (1980); 20. Heinke and Ho (2010); 21. Posselt and Pavlov (2018); 22. Wijngaarden et al. (2019);
3. Stephenson (1971); 24. Kothes (2013); 25. Kirichenko et al. (2014); 26. Kramer et al. (2003); 27. Ng et al. (2007); 28. Chevalier (1999); 29. Swartz
t al. (2015); 30. Aschenbach (2002); 31. Ofengeim and Zyuzin (2018); 32. Kumar et al. (2012); 33. Ng et al. (2012); 34. Migliazzo et al. (2002);
5. Li et al. (2005); 36. Yar-Uyaniker et al. (2004); 37. McGowan et al. (2006); 38. Tetzlaff et al. (2011); 39. Hohle et al. (2012); 40. Hambaryan
t al. (2017); 41. Motch et al. (2009); 42. Hambaryan et al. (2011); 43. Tetzlaff et al. (2012); 44. Pires et al. (2019); 45. Malacaria et al. (2019);
6. Mignani et al. (2013); 47. Ho et al. (2007); 48. Sartore et al. (2012); 49. Yoneyama et al. (2017); 50. Martín et al. (2016); 51. Caraveo et al.
2010); 52. Stephenson and Green (2003); 53. Weisskopf et al. (2011); 54. Shternin et al. (2019).

n historical supernova dates. For convenience of the reader, we list the estimated ages, luminosities, and temperatures
f these neutron stars in Table 3 (details and discussion are given in Potekhin et al. 2020). All the quantities in Table 3
nd Fig. 26 are shown as measured by a distant observer (i.e., ‘‘redshifted’’). Errorbars in the figure correspond to the
easured values with uncertainties at the 1σ confidence level), and downward arrows mark upper limits (at the 3σ
onfidence level). The last column of the table indicates the references for the given estimates, the reference numbers
eing supplemented by a letter ‘‘a’’ for the kinematic age and ‘‘s’’ for the results of spectral analysis.
Let us start with the stars which are currently at the neutrino cooling stage. The long-dashed cooling curve is for

he iron blanketing envelope. Calculations show (e.g., Yakovlev et al. 2001, Potekhin and Chabrier 2018) that this curve
s almost independent of neutron star mass as long as the direct Urca process in the stellar core is forbidden. As seen
rom Fig. 26, variations of chemical composition in the blanketing envelope allow one to explain much more objects,
ut not all of them. In order to explain other objects, the effects of nucleon superfluidity in the stellar core are required
see Page et al. 2014 for a review of these effects). For instance, the neutron stars XMMU J172054.5−372652, XMMU
173203.3−344518, and CXOU J185238.6+004020 (objects 7, 8, and 10) are significantly hotter than they should be at
heir ages according to the model of a cooling neutron star with iron heat blanket, but the allowance for accreted blankets,
omposed of light elements, brings the theory to agreement with the observations. On the other hand, the coldest stars at
he neutrino cooling stage, such as the Vela pulsar (object 16 in the figure), PSR J0205+6449 (object 12), or PSR B1727−47
object 26) are much colder than they should be according to the iron heat blanket model. Their low thermal luminosities
an actually be explained by the direct Urca reactions, if these neutron stars are sufficiently massive (Lattimer et al. 1991,
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aensel 1995; see Section 9.1; the possibility of this explanation for the listed objects is demonstrated in Potekhin et al.
020).
Now let us focus on the objects which are at the photon cooling stage. According to Fig. 26, all of them are more

r less compatible with the modified Urca neutrino cooling in non-superfluid stars. Generally, they can be explained by
ariations of chemical composition in heat blanketing envelopes. For instance, warmer objects at this cooling stage, such
s RX J0720.4–3125 (object 20), should have predominantly iron blanketing envelopes, while colder objects may have
eat blankets made of light elements.
The evolution of neutron stars at the photon cooling stage does not depend directly on their neutrino emission.

owever, one can state that the objects observed at the photon cooling stage could not have neutrino emission strongly
nhanced at the previous neutrino cooling stage (with respect to the modified Urca emission of non-superfluid stars).
therwise, at the neutrino cooling stage they should have been cooling fast and they would transit to the photon cooling
tage earlier. By t ∼ 105 yr their surface luminosity would be too weak to be observed. Therefore, all the objects observed
t the photon cooling stage may have strongly suppressed neutrino emission; the hottest of them should have blanketing
nvelopes made of iron.

0. Other models of heat blankets and their applications

Here we outline some other applications of heat-blanket models in neutron star physics.

0.1. Ordinary magnetic neutron stars with isothermal interiors

Let us consider a passively cooling ordinary isolated neutron star with not too strong magnetic field (B ≲ 1014 G)
provided its interiors are isothermal after the internal thermal relaxation. As discussed in Section 8, the internal thermal
evolution of such stars can be simulated with 1D cooling codes; the main effects of the magnetic field there consist in
redistributing the heat flow emerging through the heat blanket to the surface. These effects are incorporated into the
models of heat blankets.

The effects can be formally quite substantial making the magnetic poles much warmer than the equatorial surface
belts. However, they do not greatly affect the total thermal surface luminosity L∞

s for a given temperature Tb at the heat
lanket bottom (Section 8.3.6), at least for a dipolar surface magnetic field configuration.
Cooling of neutron stars in this approximation has been studied in many publications (relevant reviews have been

isted above). It is the simplest way to include the effects of magnetic fields into the cooling theory of neutron stars
ut one should bear in mind that the approach is restricted by not too strong B-fields. Cooling of these stars is mostly
egulated by the nuclear composition of their cores (which opens or forbids enhanced neutrino emission like direct Urca
rocess) and by baryon superfluidity of the core that greatly affects the neutrino luminosity and heat capacity of the stars.

0.2. Neutron stars with very strong magnetic fields; magnetars

Cooling of neutron stars with superstrong magnetic fields is different. As argued in Section 8, their internal regions
ρ ≳ ρb) can be essentially non-isothermal mainly because of strong anisotropic thermal conduction there. Anisotropic
nternal temperature distributions, T̃ (r, t), have to be determined by the internal thermal evolution equations with 2D (or
3D) cooling codes using local differential heat-blanket models as boundary conditions. These calculations are complicated.
The results appreciably depend on magnetic field strength and geometry throughout the star. The thermal and magnetic
field evolution may become strongly coupled so that one should study the united thermomagnetic evolution of strongly
magnetized neutron stars (see, e.g., Pons and Viganò 2019, for review). This science may be needed to explore the
evolution of the high-B pulsars and X-ray (‘‘dim’’) isolated neutron stars (XINSs) and especially the evolution of soft
gamma repeaters (SGRs) and anomalous X-ray pulsars (AXPs; see, e.g., Mereghetti 2013, Kaspi and Beloborodov 2017
and references therein).

There is no clear difference between SGRs and AXPs (Gavriil et al., 2002). Their most popular models assume B ∼

(1014–1016) G (see Kaspi and Beloborodov 2017, for review and references). The stars with such strong magnetic fields
are called magnetars (Duncan and Thompson, 1992). Although estimates of dipole magnetic fields for a few of them
are not so high, they may possess superstrong small-scale fields near the surface (e.g., Mereghetti et al., 2015). An
alternative interpretation of the properties of the SGRs/AXPs (e.g., Zezas et al. 2015, Bisnovatyi-Kogan and Ikhsanov
2015, and references therein) is based on the assumption that they are neutron stars with ‘‘normal’’ magnetic fields
B ∼ 1011–1012 G, slowly accreting matter from a residual disk (left after a supernova explosion or after a high-mass
X-ray binary evolutionary stage). However, an observational argument against the latter scenario has recently been given
by Doroshenko et al. (2020), based on the absence of aperiodic spectral variability in the SGRs/AXPs, unlike in known
accreting sources.

The SGRs/AXPs appear overall much hotter than ordinary cooling neutron stars and spontaneously show violent
bursting activity. In frames of the magnetar paradigm, these features are usually associated with the persistent and
explosive processes of internal energy release powered somehow by magnetic fields. In this scenario, the SGRs/AXPs are
usually thought to be relatively young, t ∼ 103–105 yr (see Kaspi and Beloborodov, 2017). Observations show that some
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GRs/AXPs intermittently behave as high-B pulsars and vice versa. One also observes bursting activity in some ‘‘ordinary’’
eutron stars.
The history of the development of 2D codes to follow the evolution of strongly magnetized neutron stars is nicely

eviewed by Pons and Viganò (2019), who also describe the most relevant numerical methods and main results of such
imulations. It seems that the use of 2D codes becomes especially important for surface magnetic fields B ≳ 1014 G (as
e have already mentioned above).
Note that in some cases one needs to consider magnetized neutron stars which are so hot that the neutrino emission in

heir heat blankets becomes important along with the heat conduction. If so, the assumption of thermal flux conservation,
q. (3.4), used in the standard heat-blanketing models, is violated and one should account for the neutrino energy losses
ithin the blanket (as already mentioned in Section 4).
For instance, according to Kaminker et al. (2012), this happens when the temperature Tb at the bottom of the blanket

xceeds about 109 K, which may occur in magnetars. The appropriate heat-blanket models have been constructed and
sed in a number of publications as reviewed by Potekhin et al. (2015b).
The heat transport through such envelopes can be essentially reduced owing to the neutrino emission. This may affect

umerical solution of the thermal evolution problem within the neutron star interior (ρ > ρb). In addition to the Ts − Tb
elations, which are sufficient for ordinary cooling codes, it may be profitable to have the tables of the heat flux density
t ρ = ρb and impose the condition of flux continuity at the bottom of the heat blanket.

0.3. Hot neutron stars: newly born and old merging

Strong neutrino emission may affect the structure of the heat blankets not only in magnetars but also in other neutron
tars with hot surface layers.
First of all, they are neo-neutron stars — newly born neutron stars which descended from the protoneutron-star stage

either after a core-collapse supernova or accretion-induced collapse of a white dwarf) but have not yet reached the
tage of internal thermal relaxation (e.g., Lattimer et al. 1994, Gnedin et al. 2001). This evolutionary stage is called the
eo-neutron star phase and it lasts for ∼ 104 s until the outer crust ‘‘forgets’’ its initial conditions. Thermal evolution
t this stage has to be followed using the elaborated heat blanket models, which take into account neutrino emission,
ontributions of photons and electron–positron pairs into the pressure as well as the contraction of the outer layers
see Beznogov et al. 2020 for details). Such stars have not been observed so far, although they could be observed in the
uture in a lucky chance of nearby core-collapsed supernova explosion.

Another example of neo-neutron stars can be provided by merging neutron stars in compact double neutron star
inaries. One such merging event GW170817 has been detected by the LIGO/Virgo collaboration of gravitational observa-
ories (Abbott et al., 2017) and in electromagnetic waves (Palmese et al., 2017). One expects to observe many such events.
bservational prospects of detecting neo-neutron star in mergers are discussed in Beznogov et al. (2020). Before two
eutron stars merge, they can be heated up by strong tidal forces and become efficient neutrino emitters (e.g., Rosswog
nd Davies 2002, Rosswog and Liebendörfer 2003, Alford and Harris 2018).

0.4. Accreting neutron stars

Constructing heat blanketing envelopes of accreting neutron stars is a complicated task. A neutron star may accrete
nterstellar matter or a matter from a companion star in a binary system. The infalling matter, composed usually of light
lements (hydrogen and helium), affects chemical composition of surface layers and produces energy release there due
o the transformation of the infall energy into the heat. If accretion is a (quasi) persistent process, the freshly accreted
aterial becomes eventually buried under the weight of newly accreted matter. This can be viewed as if the accreted
atter sinks into the deeper layers of the star. The sinking can be accompanied by gravitational separation, diffusion of

ons and nuclear burning. Depending on the parameters, the burning can be stable or explosive. If explosive, it creates
ursting activity of neutron stars by triggering X-ray bursts and superbursts.
As a rule, all these processes occur in heat blanketing envelopes of accreting neutron stars. They have been studied

or many years in numerous publications. Usually such studies have not been focused on the heat insulating problem but
ave been mostly devoted to bursting activity of neutron stars (see, e.g., Galloway and Keek 2021, in’t Zand 2017, and
eferences therein).

Heat blanketing envelopes (Ts − Tb relations) of accreting neutron stars can be essentially time-dependent; their
chemical composition, and hence heat-insulating properties, can be variable. The assumption of stationary thermal flux
conservation, Eq. (3.4), may break down because of the thermonuclear energy generation within the heat blankets and
strong associated neutrino emission. For instance, according to Brown et al. (2002), thermal luminosities of accreting
neutron stars in different quiescent epochs (between accretion episodes) can vary by a factor of 2 − 3 because of
variable chemical composition in the blanketing layer for a constant internal temperature of the star. While considering
thermonuclear burning of hydrogen and helium in the envelope, it may be important to include diffusive nuclear burning
of protons and He nuclei. They diffuse into the deeper and hotter layers, where their burning is essentially intensified
(Chang and Bildsten, 2003, 2004; Chang et al., 2010; Wijngaarden et al., 2019).

The models for heat blankets containing light (accreted) elements described in Sections 5 and 7 can also be applied to
some scenarios of evolution of accreting neutron stars.
58



M.V. Beznogov, A.Y. Potekhin and D.G. Yakovlev Physics Reports 919 (2021) 1–68

a
e

X
c
n
c
s
c
(
n
b

1

o
b

e
p
o
s
a
t
(
o

G
c
a
o
t

d
w

1

b
a
T
t

T
r
u
a
(
T
e
s
b
o
o

R

The models of heat blankets for neutron stars which accrete either from interstellar matter or from companion stars
nd change chemical composition due to diffusive nuclear burning of H, He or C have been developed by Wijngaarden
t al. (2019).
A special case of the accreting neutron stars, for which the heat blanketing envelopes can be most useful, are soft

-ray transients (SXTs) with intermittent active and quiescent periods of accretion. During high-state accretion episodes,
ompression of the crust under the weight of newly accreted matter results in deep crustal heating, driven by exothermic
uclear transformations (Haensel and Zdunik, 1990, 2008; Fantina et al., 2018; Gusakov and Chugunov, 2020). There is a
lose correspondence between the theory of thermal states of transiently accreting neutron stars and the theory of neutron
tar cooling (Yakovlev et al., 2003). Comparing the heating curves with a measured equilibrium thermal luminosity, one
an constrain parameters of dense matter (e.g. Yakovlev et al., 2004; Ho, 2011; Potekhin et al., 2019); see Wijnands et al.
2013), who discussed prospects of application of such an analysis to various classes of X-ray transients. A survey of
eutron stars in SXTs with evaluated average accretion rates and thermal luminosities in quiescence has been presented
y Potekhin et al. (2019). For such SXTs, the models of heat blanketing envelopes can be most useful.

0.5. Rotating neutron stars

All neutron stars rotate, and their rotation may affect the structure of their heat blankets. A rotating star becomes
blate with respect to the spin axis, which produces non-uniform effective temperature distribution over the surface. To
e specific, we consider rigid rotation.
The general technique for solving the problem of rotating envelopes is somewhat in line with that for magnetic

nvelopes (Section 8.1). One can divide the heat blanket into small domains and apply the approach of a locally flat,
lane-parallel layer with some properly determined effective surface gravity geff in each domain. The total luminosity
f the star is the sum of the surface emissivities of all the domains. Global space–time metric is no longer spherically
ymmetric, being deviated from the spherically symmetric metric (2.1) due to rotation. The common and most reasonable
pproximation is to assume that a Ts − Tb solution in each domain is the same as in a virtual non-rotating star which has
he same effective surface gravity geff as in the local domain. Then the solution can be found using self-similarity relations
Section 3.2) discussed throughout this paper many times. While calculating the stellar luminosity for a distant observer,
ne should take into account gravitational light bending outside the star (like in Section 8.3.6).
The first, simplified models of heat blankets for spinning neutron stars were constructed by de Niem et al. (1985),

eppert and Wiebicke (1986, 1988) who were inspired by the discovery of millisecond pulsars. The general solution was
onstructed by Miralles et al. (1993) in the Hartle approximation, that is by treating the rotation as sufficiently slow. This
pproximation seems sufficient for all observable neutron stars. The local effective surface temperature Ts at the equator
f a spinning neutron star with isothermal interiors appears slightly lower than at the pole. The effect seems so weak
hat it modifies neutron star cooling only slightly and is commonly ignored in cooling simulations.

Note that the above procedure to construct the heat blankets neglects meridional circulation of heat flows in stars
eformed by rotation (e.g., Schwarzschild 1958, Kippenhahn et al. 2012). Such circulations in neutron stars are typically
eak (Pavlov and Yakovlev, 1978).

0.6. Old and cold neutron stars

At late cooling ages t ≳ 10 Myr, isolated neutron stars become really cold if they are not strongly reheated, for instance,
y accretion or by internal exothermal non-equilibrium processes. According to estimates by Yakovlev and Pethick (2004),
non-superfluid passively cooling neutron star of age t ∼ 20 Myr would have the surface temperature Ts ∼ 103 K.
he presence of superfluidity in the core would lower Ts even more, by a factor of several. This seems to be the lowest
emperature limit for an old neutron star, which is certainly purely academic.

Observations of thermal emission of old neutron stars (with characteristic ages ∼ 1 Gyr) with the Hubble Space
elescope (HST) and large ground-based telescopes in the ultraviolet and optical bands substantially supplement the
esults obtained with the XMM-Newton and Chandra orbital observatories in the X-rays. Most of the results are rather
ncertain. The thermal radiation of the nearest millisecond pulsar J0437−4715 has been observed and analyzed by many
uthors, in particular by Kargaltsev et al. (2004), Durant et al. (2012), González-Caniulef et al. (2019). The characteristic
spindown) age of this pulsar is 6.64 Gyr. Modeling the cool thermal component of its spectrum yields R = 13+0.9

−0.8 km and
∞

= (2.3 ± 0.1) × 105 K (González-Caniulef et al., 2019), which indicates that the pulsar has been reheated during its
volution. The effective surface temperature Ts ∼ (1–3) × 105 K and bolometric thermal luminosity L∞

= 8+7
−4 × 1029 erg

−1, obtained by Pavlov et al. (2017) for the ordinary radio pulsar B0950+08 with characteristic age 17.5 Myr, should also
e caused by reheating. On the other hand, Guillot et al. (2019) derived the estimate T < 42000 K from the non-detection
f PSR J2144−3933 with characteristic age 0.3 Gyr in deep HST observations. This result may be related to slow rotation
f the PSR J2144−3933, whose spin period of 8.5 s is the longest among known radio pulsars.
Possible reheating mechanisms have been discussed in a number of publications and summarized by Gonzalez and

eisenegger (2010), who showed that the rotochemical heating and superfluid vortex creep are preferable. Comparison
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f the reheating theory with observations was performed, e.g., by González-Jiménez and Petrovich (2015), Yanagi et al.
2020). More exotic hypothetical heating mechanisms include, for example, annihilation of dark matter particles inside a
eutron star (e.g., Hamaguchi et al., 2019).
Even these, really cold neutron stars cannot be absolutely isothermal, from the surface to the center. Nevertheless,

t is quite reasonable to assume that their internal regions are highly isothermal and heat blankets are very thin. The
ons in these blankets may be in the gaseous, liquid, solid or amorphous state. Their effects of partial ionization and
trong Coulomb coupling can be dominant. In contrast to many cases considered above, the electrons may not constitute
n almost incompressible (uniform) background. The electron system can be rather compressible, because the densities
f these cold heat blankets are relatively low. Both, bound and unbound, electrons may coexist like in a terrestrial
ondensed matter but the presence of huge, non-terrestrial magnetic fields can make the properties of such a matter very
eculiar.

1. Conclusions and outlook

The models for heat blanketing envelopes are most important for numerical simulations of thermal evolution of
eutron stars of many types. These are ordinary cooling isolated middle-aged neutron stars, accreting neutron stars,
agnetic and non-magnetic neutron stars (particularly, magnetars and high-B pulsars), very young neutron stars which

are recently born in supernova explosions, and old merging neutron stars in compact binaries. The heat blanket models
are also required to interpret observations of old and cold currently isolated neutron stars as well as merging neutron
stars which are expected to become hot due to intensified tidal interactions.

These blanket models can be of different types and are flexible, for instance, for solving a specific problem. For example,
one can distinguish the models for spherically symmetric neutron stars with isotropic temperature distribution from the
differential models for strongly magnetized stars (that provide boundary conditions for computing the thermal evolution
problem in a star with very strong magnetic fields and highly anisotropic thermal conduction in its interiors).

We have presented heat-blanketing envelope models composed of binary ion mixtures in diffusive equilibrium and
compared them with the traditional models where the ion species are assumed to be strictly separated. The diffusive
equilibrium for non-isothermal envelopes has been treated in thermodynamically consistent manner, which is an advance
compared with early works where the diffusive equilibrium was evaluated neglecting temperature gradients. This is a step
toward the physically consistent treatment of thermal states of neutron stars.

Nevertheless, current models for heat blanketing envelopes are not perfect and can be improved. For instance, one can
include thermal diffusion, which is currently neglected. Besides, it may be important to include the magnetic force into the
hydrostatic balance in magnetic envelopes. It would also be interesting to consider nucleosynthesis and associated energy
generation in the blankets for accreting stars. More refined heat-blanket models are desirable, containing ion mixtures of
more than two species in and out of diffusive equilibrium.

Even a perfect knowledge of the heat-blanket model for an assumed chemical composition of neutron star surface
layers would not allow one to unambiguously interpret the observations. If the effective surface temperature is accurately
measured, the uncertainties due to the unknown chemical composition within the envelope can translate into a factor
of 2–3 uncertainties in our theoretical predictions of the internal temperature of the star Tb, and in a factor of ∼ 100
uncertainties in our predictions of the neutrino luminosity of the star. Besides, the neutron stars with strong magnetic
fields have strongly non-uniform surface temperature distribution. The theoretical Ts − Tb relations cannot be directly
used to interpret observations of such stars. Instead, they should be only used to calculate the total photon luminosity,
with the result depending on a largely unknown temperature pattern on the surface.

To move further, it would be perfect to combine the modeling of the neutron star thermal structure and evolution
with the modeling of chemical evolution of the heat blanket. This program is difficult to realize, especially if the network
of nuclear reactions within the envelope has to be solved. Its realization would be equivalent to solving all the necessary
equations together, which will render the artificial separation of heat-blanketing envelopes unnecessary. Some steps
toward realization of this program have been made (e.g., Wijngaarden et al., 2019), but its fulfillment will obviously take
a long time, during which the heat blanket models will stay as an indispensable ingredient in the theory of neutron-star
thermal evolution.
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Table A.1
Fit parameters in Eq. (A.1).
Mixture p1 p2 p3 p4 p5
1H –4He 7.43×10−2

−1.13×10−2 1.72×10−1 8.57×10−2 1.45
1H –12C 3.80×10−2 6.57×10−3 2.52×10−2 1.39×10−1 1.34
4He –12C 7.01×10−3 9.08×10−4 1.09×10−2 1.17×10−1 1.41
12C –16O 9.95×10−5

−6.35×10−6 1.61×10−3 3.96×10−2 1.48
16O –79Se 7.22×10−5 5.00×10−5 1.14×10−4 1.33×10−1 1.38

Table A.2
Fit errors: the rms deviation δrms and the maximum relative fit error δmax . The last column gives the point, where the
error reaches maximum.
Mixture δrms δmax (x1,Γ0)max

1H –4He 0.031 0.10 (0.7, 0.4)
1H –12C 0.056 0.18 (0.99, 0.729)
4He –12C 0.040 0.13 (0.9, 5.785)
12C –16O 0.026 0.10 (0.9, 0.015)
16O –79Se 0.041 0.16 (0.9, 0.187)

Table A.3
Grid points Γ0 used for calculating and fitting Λeff . For each binary mixture the grid points are divided into three
groups I, II and III; ∆+ and ∆× determine distance between two neighboring points in every group (see the text for
details). The lower boundary of each group is given exactly, while the upper boundary is given approximately.
Group Γ0 in group I Γ0 in group II Γ0 in group III
1H –4He [10−4, 0.05],∆+

=0.002 [0.4, 1.6],∆×
=1.25 [1.7, 52],∆×

=1.3
1H –12C [10−4, 0.01],∆+

=0.001 [0.15, 0.4],∆×
=1.2 [0.4, 6],∆×

=1.35
4He –12C [10−4, 0.005],∆+

=3.5×10−4
[0.06, 0.2],∆×

=1.25 [0.2, 5.8],∆×
=1.4

12C –16O [10−4, 0.003],∆+
=10−4

[0.015, 0.05],∆×
=1.35 [0.055, 3.2],∆×

=1.4
16O –79Se [10−5, 2.5×10−4

],∆+
=10−5

[0.003, 0.01],∆×
=1.22 [0.01, 0.2],∆×

=1.34

Appendix A. Analytic approximations for Coulomb logarithm

In order to approximate the Coulomb logarithm Λeff, which determines the diffusion coefficient D∗

12 [Eq. (6.49)], we
se the expression

Λeff (Γ0, x1) = ln

(
1 +

p1x21 + p2x22 + p3
Γ

p4x1+p5
0

)
, (A.1)

containing five parameters p1, . . . , p5. These parameters are listed in Table A.1. Table A.2. gives the root mean squared
(rms) relative deviation δrms and the maximum relative error δmax.

For each mixture, all fit parameters have been determined from the values of Λeff computed on some grid points
(Γ0, x1). The target function to minimize has been δrms. The grid of x1 points has been chosen as x1 = 0.01, 0.1, 0.2, 0.3, . . . ,
0.9, 0.99; the grid of Γ0 points has been different for each binary mixture. It is presented in Table A.3. For each binary
mixture, these grid points have been divided into three intervals of Γ0, denoted in Table A.3 as I, II, and III. These ranges
refer to the weak, intermediate, and strong Coulomb coupling of ions, respectively. Note that the real measure of the
Coulomb coupling is Γ̄ (not Γ0). In interval I, the grid points are distributed uniformly (each next point is larger than the
previous one by ∆+). In intervals II and III, logarithmic scale has been used (each next point is larger than the previous
one by a factor of ∆×).

Appendix B. Analytic approximations of Tb − Ts relations

For convenience of using the Tb(Ts, ρ∗) relations in applications, all these relations (Section 7) have been approximated
by analytic expressions of the form

Tb
(
Y , ρ∗

)
= 107 K ×

⎛⎝f4(Y ) + (f1(Y ) − f4(Y ))

[
1 +

(
ρ∗

f2(Y )

)f3(Y )
]f5(Y )

⎞⎠ , (B.1)
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able B.1
it parameters for the Tb(Ts) relations for different mixture types and bottom densities (ρb in g cm−3).
ρb H–He mixtures, Eq. (B.2) He–C mixtures, Eq. (B.3) C–Fe mixtures, Eq. (B.4)

108 108 109 1010 108 109 1010

p1 3.150 5.161 5.296 5.386 0.2420 0.1929 0.1686
p2 1.546 0.03319 0.07402 0.1027 0.4844 0.4239 0.3967
p3 0.3225 1.654 1.691 1.719 38.35 48.72 55.94
p4 1.132 3.614 3.774 3.872 0.8680 1.423 1.992
p5 1.621 0.02933 0.08210 0.1344 5.184 5.218 5.208
p6 1.083 1.652 1.712 1.759 1.651 1.652 1.651
p7 7.734 1.061×105 1.057×105 1.056×105

−0.04390 0.001037 0.03235
p8 1.894 1.646 1.915 1.881 0.001929 0.004236 0.005417
p9 2.335×105 3.707 3.679 3.680 3.462×104 3.605×104 3.652×104

p10 7.071 4.011 3.878 3.857 2.728 2.119 1.691
p11 5.202 1.153 1.110 1.102 4.120 4.014 3.930
p12 10.01 – – – 2.161 1.943 2.021
p13 2.007 – – – 2.065 1.788 1.848
p14 0.4703 – – – 0.008442 0.01758 0.02567

where the functions f1, . . . , f5 are different for any binary mixture, and Y = (Ts/1 MK) × (gs0/gs) 1/4 . The expression
for Y allows one to rescale the values of Tb for any value of the surface gravity gs (see, e.g., Gudmundsson et al. 1983);
s0 = 2.4271 × 1014 cm s−2 is the surface gravity for the canonical neutron star model; Y has meaning of the surface
emperature (expressed in MK) for a star with gs = gs0.

For H–He envelopes,

f1(Y ) = p1Y p2
√
1 + p3Y p4 , f4(Y ) = p5Y p6

√
1 + p7Y p8 ,

f2(Y ) =
p9Y p10(

1 − p11Y + p12Y 2
)2 , f3(Y ) = p13Y−p14 , f5(Y ) = −0.3. (B.2)

For He–C envelopes,

f1(Y ) = p1Y p2 lg Y+p3 , f4(Y ) = p4Y p5 lg Y+p6 ,

f2(Y ) = p7Y p8(lg Y )2+p9 , f3(Y ) = p10

√
Y

Y 2 + p211
, f5(Y ) = −0.2.

(B.3)

For C–Fe envelopes,

f1(Y ) = p1Y−p2
(
p3Y 2

+ p4Y 4
− 1

)
, f4(Y ) = p5Y p6

(
1 + p7Y 2

− p8Y 4) ,
f2(Y ) = p9Y p11−p10(lg Y )2 ,

f3(Y ) = p12

√
1

Y 2 + p213

(
1 − p14Y 2) , f5(Y ) = −0.4. (B.4)

All fit parameters and fit errors are listed in Tables B.1 and B.2, respectively; lgY = log10 Y .
For each binary mixture the fit parameters have been calculated from the values of Tb computed on a grid of (Y , ρ∗)

points. The target function to minimize has been the rms relative deviation. The range of the data has been as follows.
For all binary mixtures, the parameter Y has been varied from 0.32 to ≈ 2.865 with a uniform step in logarithmic scale,
with 24 grid points. The range of ρ∗ has been different for different mixtures. For the H–He mixture, ρ∗ has been varied
from ≈ 19.42 g cm−3 to ≈ 3.737 × 106 g cm−3 with non-uniform steps; 41 grid points in total. For He–C mixtures, ρ∗

has been varied from ≈ 280.5 g cm−3 to 108 g cm−3 (the largest span). Since helium cannot exist at ρ > 109 g cm−3, all
values ρ∗ > 108 g cm−3 have been excluded. Therefore, for different Y one has different number of grid points ρ∗. For
C–Fe mixtures, ρ∗ has been varied from ≈ 1459 g cm−3 to ≈ 109 g cm−3; 40 grid points ρ∗ in total.

Note that for all binary mixtures the grid points do not fill a rectangular region in the (Y , ρ∗) plane. This region
has the shape of a quadrilateral with two parallel sides (along Y axis). The ranges of ρ∗ mentioned above form
oundaries of the regions (for each specific Y the range is smaller and depends on Y ). However, this does not restrict
he applicability of the approximations. Because of their form (B.1), which describes a smooth temperature transition
rom f1 to f4, they can be safely extrapolated along ρ∗ outside the initial region. The extrapolation along Y should be done
ith care.
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Table B.2
Fit errors for H–He, He–C and C–Fe mixtures; δrms is the rms relative deviation, δmax is the maximum error. The last
column gives the points where the error is maximal.
Mixture log ρb δrms δmax (Y , ρ∗

[g cm−3
])

H–He 8.0 0.0031 0.015 (2.865, 3.345× 105)

He–C 8.0 0.0036 0.011
(
0.32, 1.245×103

)
He–C 9.0 0.0036 0.011

(
0.32, 1.657×103

)
He–C 10.0 0.0035 0.010

(
0.32, 1.245×103

)
C–Fe 8.0 0.0051 0.017

(
2.865, 1.528×104

)
C–Fe 9.0 0.0048 0.015

(
0.4259, 1.772×103

)
C–Fe 10.0 0.0047 0.014

(
0.3872, 1.637×103

)
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