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ABSTRACT

Electron conduction opacities are one of the main physics inputs for the calculation of low- and intermediate-mass stellar models.
A critical question considers how to devise a bridge when calculating both moderate and strong degeneracy, which are necessarily
performed adopting different methods. The density-temperature regime at the boundary between moderate and strong degeneracy is, in
fact, crucial for modelling the helium cores of red giant branch stars and the hydrogen-helium envelopes of white dwarfs. Prompted by
newly published, improved calculations of electron thermal conductivities and opacities for moderate degeneracy, we study different,
physically motivated prescriptions to bridge these new computations with well-established results in the regime of strong degeneracy.
We find that these varied prescriptions have a sizable impact on the predicted He-core masses at the He-flash (up to 0.01 M� for initial
total masses far from the transition to non-degenerate He-cores and up to ∼0.04 M� for masses around the transition), the tip of the
red giant branch (up to ∼0.1 mag), and the zero-age horizontal branch luminosities (up to 0.03 dex for masses far from the transition
and up to ∼0.2 dex around the transition), and white dwarf cooling times (up to 40–45% at high luminosities, and up to ∼25% at low
luminosities). Current empirical constraints on the tip of the red giant branch and the zero age horizontal branch absolute magnitudes
do not yet allow for the definitive exclusion of any of these alternative options for the conductive opacities. Tests against observations
of slowly-cooling faint WDs in old stellar populations will need to be performed to see whether they are capable of setting some more
stringent constraints on bridging calculations of conductive opacities for moderate and strong degeneracy.
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1. Introduction

Calculations of the thermal conductivity for degenerate electrons
and the corresponding electron conduction opacities are a crucial
input in the calculations involved in stellar evolution models.
When electron degeneracy sets in the stellar interiors, electron
conduction becomes the dominant energy transport mechanism
and the values of the electron conduction opacities are critical
for the accurate calculation of the models’ thermal stratifica-
tion (see, e.g., Cassisi & Salaris 2013, and references therein).
This is true for the interiors of brown dwarfs (see, e.g., Chabrier
& Baraffe 2000, for a review), the helium cores of low-mass
stars (masses below ∼2.0–2.3 M�) during their red giant branch
(RGB) evolution (see, e.g., Salaris et al. 2002, for a review
of RGB models), the carbon-oxygen cores of low- and inter-
mediate mass stars (masses below 6–7 M�) during the asymp-
totic giant branch (AGB) phase (see, e.g., Cassisi & Castellani
1993), the oxygen-neon cores of super-AGB stars with masses
between ∼6–7 and ∼10 M� (see, e.g., Garcia-Berro & Iben 1994;
Siess 2007), the cores and parts of the H-He envelopes of white
dwarfs (WDs – see, e.g., Fontaine et al. 2001), as well as the
envelopes of neutron stars (see, e.g., Beznogov et al. 2021, for
a review).

The calculation of the electron conduction opacity in astro-
physical plasmas is an ongoing enterprise, with a decades-long
history, starting with the works by Marshak (1941), Lee (1950),
Mestel (1950), elaborated upon in the seminal works by Spitzer
& Härm (1953), Chapman (1954), Braginskii (1958), and the
widely employed calculations by Hubbard & Lampe (1969) fur-
ther developed by Itoh and co-authors (Flowers & Itoh 1976,
1979, 1981; Itoh et al. 1984; Mitake et al. 1984; Itoh & Kohyama
1993), and Yakovlev and co-authors (Yakovlev & Urpin 1980;
Urpin & Yakovlev 1980; Raikh & Yakovlev 1982; Yakovlev
1987; Baiko & Yakovlev 1995; Baiko et al. 1998), which were
summarized, refined, and employed in extensive calculations by
Potekhin et al. (1999, hereafter P99).

Each of these sources of opacities carried its own limita-
tions and shortcomings. For instance, Spitzer & Härm (1953)
considered non-degenerate electrons, while Hubbard & Lampe
(1969) used different methods of calculations in cases of weak
and strong electron degeneracy, for instance, when T � TF and
T � TF, where T is the temperature and TF is the Fermi tem-
perature (see Sect. 2.1), leaving some gaps in the intermediate
range of partially degenerate electrons, where T ∼ TF. In addi-
tion, Hubbard & Lampe tabulations covered a very limited set
of chemical mixtures, and neither Spitzer & Härm nor Hubbard
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& Lampe took into account the relativistic effects or the regime
of dense matter where the stellar plasma solidifies. The work by
Itoh’s and Yakovlev’s research groups made significant improve-
ments over the previous results, taking into account the effects
of special relativity and more accurate structure factors for the
electron-ion plasmas, as well as the electron-phonon scattering
that replaces the electron-ion scattering in the solid phase. Their
results could be employed also to compute opacities for arbi-
trary chemical mixtures, however they covered only the case of
strong electron degeneracy, namely, a regime where T � TF,
which is not really fulfilled in the He-cores of RGB stars or the
envelopes of WDs (see e.g., Catelan 2007, and the next sections
for a deeper analysis of this issue).

For the conductive opacities due to the electron-ion (ei) scat-
tering, a consistent way of filling the gap between the domains
of weakly and strongly degenerate electrons is provided by
the thermal averaging procedure (see e.g., Cassisi et al. 2007,
hereafter C07), patterned after the method previously employed
by Potekhin & Yakovlev (1996) to compute finite-temperature
effects on the Shubnikov–De Haas oscillations of the elec-
tron transport coefficients of degenerate electron-ion plasmas in
quantizing magnetic fields1. Unfortunately, this method is not
applicable to the electron-electron (ee) scattering: to overcome
this difficulty, an interpolation formula has been proposed by
C07, who have also taken into account an improved treatment
of the ee scattering at high densities, which was suggested at the
time by Shternin & Yakovlev (2006).

The electron conduction theory has undergone substantial
progress in the last decade, enabling further refined studies
of the heat transport by partially degenerate electrons (e.g.,
Desjarlais et al. 2017; Daligault 2018; Shaffer & Starrett 2020,
and references therein). In particular, Shaffer & Starrett (2020)
demonstrated that the ee scattering affects the thermal conduc-
tivity in a non-trivial way at T ∼ TF, resulting in lower conduc-
tive opacities compared to the traditional approach. This effect is
especially pronounced for light chemical elements in the regime
of moderate coupling and moderate degeneracy. Based on this
theory, Blouin et al. (2020, hereafter B20) calculated the con-
ductive opacities for H and He compositions, finding a difference
by up to a factor 2.5–3 as compared to C07 near the boundary
of the temperature-density domain, where the new theory may
be applied. They have also shown that this decrease of the con-
ductive opacities has a sizable impact on the cooling times of
WD models with H and He envelopes, such that the age of the
coolest models is reduced by as much as ∼2 Gyr, as compared to
calculations with C07 opacities.

The important point to notice is, as also stated by Shaffer &
Starrett (2020) and B20, that the traditional (e.g., C07) results
are superior at a strong degeneracy because unlike B20, these
ensure the known asymptotic limits at T/TF � 1. In addi-
tion, the theory underlying the B20 results is non-relativistic
and, therefore, it is restricted to mass densities ρ . 106 g cm−3.
Therefore, we need to bridge B20 results for mildly degenerate,
non-relativistic plasmas and the traditional opacities at higher
densities. This introduces some uncertainty, which can affect the
calculation of both WD and RGB models, for sizable portions of
the helium cores of RGB models and of the H and He envelopes

1 We note that here we consider non-magnetized plasmas and focus
on their thermal conductivity in the liquid phase. For a more general
overview of the recent progress in the theory of conductivities in the
Coulomb plasmas, including the solid phase and the magnetized plas-
mas, see e.g., Potekhin et al. (2015) and references therein.

of WD models, covering a range of the degeneracy parameter
θ ≡ T/TF that extends from a few times 0.01 to a few times 0.10
and above.

The purpose of this paper is to investigate different possible
ways to merge B20 results at θ ∼ 1 with the opacities at θ � 1,
studying their impact on the cooling times of WD models and
on the mass of the electron degenerate helium cores of low-mass
stellar models at the He-flash, as well as the resulting effect on
the RGB lifetime, the luminosities of the tip of the RGB, and the
start of quiescent core He-burning after the degeneracy has been
lifted. These luminosities are traditionally used to constrain the
distance of old stellar populations (ages above 1–2 Gyr).

The plan of the paper is as follows. In Sect. 2, we summarise
the theoretical background to the calculations of conductive
opacities, give an overview of the recent updates for the partially
degenerate domain, and discuss possible ways to treat the tran-
sition to the strong degeneracy regime. Section 3 presents our
stellar evolution calculations and discusses the impact of the new
conductive opacities and the related uncertainties on the results.
Our summary and conclusions follow in Sect. 4.

2. Conductive opacities

In stationary and non-convective layers of a star, the heat trans-
port is governed by the Fourier law F = −λ∇T, where F is the
heat flux, T is the temperature, and λ the thermal conductivity.
The last quantity is related to the opacity κ by the equation (see
e.g., Kippenhahn et al. 2012)

κ =
16σT 3

3ρλ
, (1)

where σ is the Stefan-Boltzmann constant and ρ is the mass den-
sity.

In general, radiative and conductive energy transports work
in parallel; hence, the total thermal conductivity is the sum λ =
λr + λe, where λr and λe denote the radiative (r) and electron (e)
components of the thermal conductivity λ. Accordingly, κ−1 =
κ−1

r + κ−1
c , where the radiative (r) and conductive (c) opacities are

related, respectively, to λr and λe by Eq. (1).
The transport coefficients of the electron-ion plasmas in

the case of non-degenerate and non-relativistic electrons (T �
TF, xr � 1), and weakly coupled ions (Γi � 1, where
Γi = (4πnion/3)1/3(Ze)2/kBT ≈ (2.275 × 107K/T ) Z5/3xr is the
Coulomb coupling parameter) were calculated long ago (e.g.,
Spitzer & Härm 1953; Chapman 1954; Braginskii 1958) using
the classical theory by Chapman & Cowling (1970). The theory
of the thermal conduction by electrons of arbitrary degeneracy
in the fully ionized non-relativistic stellar interior was reviewed
by Hubbard & Lampe (1969). An extension to the degenerate
electron gas with allowance for the special relativity effects was
described in detail by Flowers & Itoh (1976).

2.1. Theoretical background

When dealing with electron conduction, according to the ele-
mentary theory based on the kinetic method and on the assump-
tion that the effective electron scattering rate ν does not depend
on the electron energy, λe can be written as (Ziman 1960):

λe =
3
2

nek2
BT

m∗eν
at T � TF, λe =

π2

3
nek2

BT
m∗eν

at T � TF, (2)

where ne is the electron number density, m∗e is the effective
dynamical electron mass, kB is the Boltzmann constant, c is
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the speed of light, and TF is the electron Fermi temperature. At
T � mec2/kB = 5.93×109 K, the effective electron mass is given
by m∗e = me

√
1 + x2

r , where me is the true electron mass, and xr
is the relativity parameter:

xr ≡
pF

mec
≈

(
ρ6

Z
A

)1/3

. (3)

Here, ρ6 ≡ ρ/106 g cm−3, pF = ~(3π2ne)1/3 is the Fermi momen-
tum, Z and A are, respectively, the ion charge and mass numbers.
In mixtures of elements with different charge numbers Z j, they
should be averaged using the number fractions x j = n j/nion of
the components as weights, viz. 〈Z〉 ≡

∑
j x jZ j (where n j is the

number of ions of species j and nion = ne〈Z〉−1 the total num-
ber of ions, per unit volume); the same holds for A j. The Fermi
temperature:

TF =
mec2

kB

(√
1 + x2

r − 1
)

(4)

determines whether the electrons are non-degenerate (TF � T ),
strongly degenerate (TF � T ), or mildly degenerate (TF ∼ T ).
In the non-relativistic theory, which is valid at xr � 1, we have
m∗e = me and TF ≈ 3 × 109 (ρ6 Z/A)2/3 K.

Beyond the elementary transport theory, it is still convenient
to use Eq. (2), but in this case ν is some ‘effective’ collision
frequency. In the fully ionized gas or liquid, the electron heat
conduction is limited by the ei and ee scattering; the assumption
that the scattering rates of different kinds are mutually indepen-
dent results in the so called Matthiessen’s rule, positing that the
collision frequencies simply add up. Then, in the fully ionized
liquid or gas,

ν = νei + νee, (5)

where νei and νee are the frequencies of the electron scattering
on the ions and on the electrons, respectively.

The ei collision frequency in a strongly degenerate Cou-
lomb liquid can be written in the form (e.g., Yakovlev & Urpin
1980):

νei = 4πZ2e4nion m∗e p−3
F Λ(pF), (6)

where Λ(pF) is a dimensionless Coulomb logarithm. It is possi-
ble to compute conductivities determined by elastic ei scattering
at arbitrary degeneracy, using a specific thermal averaging,
which involves an energy-dependent effective collision fre-
quency, described by Eq. (6) at every isoenergetic surface, cor-
responding to a given pF (e.g., C07; Potekhin & Yakovlev 1996;
Ventura & Potekhin 2001).

Although the ei scattering is usually most important for
degenerate plasmas, the ee scattering is non-negligible for Z .
10, which is especially important for H and He. Lampe (1968a)
treated the ee scattering using the Chapman-Enskog solution
of the quantum Lenard-Balescu kinetic equation for the system
of degenerate electrons and point-like, non-degenerate, weakly
coupled classical ions. The dynamical screening of the electrons
was treated in the random-phase approximation, applicable at
T � TF. The author showed that the character of the scattering
is different at temperatures T � Tpl and Tpl � T � TF, where

Tpl =
~

kB

(
4πnee2

m∗e

)1/2

(7)

is the electron plasma temperature. In a subsequent paper,
Lampe (1968b) applied the Chapman-Enskog solution of the

quantum Lenard-Balescu kinetic equation to the non-degenerate
and weakly degenerate electrons.

Hubbard & Lampe (1969) combined these calculations with
the earlier results of Hubbard (1966), who considered the ei
opacities, κei, in a non-relativistic degenerate electron gas, tak-
ing into account the ion-ion correlations. Hubbard and Lampe
provided conductive opacities in tabular form for various chemi-
cal compositions. Due to the use of different approximations for
non-degenerate and degenerate electrons, their tables for these
two cases do not match each other smoothly and thus contain
gaps at sufficiently low temperatures (see more details in C07).

Hubbard and Lampe used the non-relativistic theory. The
expression of νee for the relativistic degenerate electrons was
obtained by Flowers & Itoh (1976) at T � Tpl, and extended
by Urpin & Yakovlev (1980) to higher temperatures, where
Tpl . T � TF. Shternin & Yakovlev (2006) reconsidered the
problem including the Landau damping of transverse plasmons,
neglected by the previous authors. They showed that the Landau
damping strongly increases νee in the domain of xr & 1, θ � 1,
and T � Tpl. Their fit to to νee is widely used in studies of
degenerate stars and, in particular, it was employed by C07.

2.2. Suppression of opacities in partially degenerate plasmas

Matthiessen’s rule (see Eq. (5)) results in the additivity of the ei
and ee opacities:

κc = κei + κee, (8)

and can be derived in the lowest (one-polynomial) approx-
imation of the Chapman-Enskog method (Chapman 1954;
Hubbard & Lampe 1969). However, as stated by Hubbard
& Lampe (1969), at least the two-polynomial approximation
should be used to obtain accurate results, the accuracy provided
by the Matthiessen’s rule was deemed to be sufficient for astro-
physical applications because using the variational principle of
the kinetic theory, it can be shown that νei+νee ≤ ν ≤ νei+νee+δν,
where δν � min(νei, νee) (see e.g., chapter 7 of Ziman 1960).
However, this relation implies that the shape of the electron dis-
tribution function is the same with and without the ee collisions.
In fact, the electron distribution function takes on a different
shape depending on whether or not the ee collisions occur.

Desjarlais et al. (2017) posited a modified Matthiessen’s rule
in the form:

κc = S κκei + κee, (9)

where S κ is a ‘reshaping correction’, representing the indi-
rect modification of the ei scattering term due to the ee inter-
action. Desjarlais et al. (2017) computed hydrogen electri-
cal and thermal conductivities by the QMD method using the
Kohn-Sham density-functional theory together with a Kubo-
Greenwood response framework and compared the results with
the quantum Lenard-Balescu solution in the regime of weak ion
coupling (Γi � 1) and moderate degeneracy (T ∼ TF), where
both methods are applicable. They found that the reshaping fac-
tor can be as low as S κ ∼ 0.6.

Daligault (2016, 2017, 2018) extended the formulas for
the transport coefficients of classical plasmas inside the dense
plasma regime by applying the Chapman-Enskog method to
solve the quantum Landau-Fokker-Planck (qLFP) kinetic equa-
tion. The qLFP equation extends the classical LFP equation by
accounting for the Pauli principle while retaining the small-
angle collision approximation. This extension has become pos-
sible due to modifications to the classical Chapman-Enskog
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method. In particular, Daligault (2018) replaced the expansion
over the classical Sonine polynomials by a set of orthogonal
‘quantum’ polynomials. Moreover, he derived practical formulas
for the calculation of transport coefficients (electrical and ther-
mal conductivities, viscosity, diffusion coefficients) based on this
new polynomial expansion. He has demonstrated that with his
method we can extend the range of validity of the classical LFP
equation, determined by the strong inequality T � TF, to lower
temperatures. For example (see Fig. 1 in Daligault 2018, where
rs = 0.014/xr), the 10% accuracy is ensured by the classical LFP
approximation at T > 4TF, while the qLFP approximation pro-
vides the same accuracy at T > 1.7TF and xr > 0.005, at T > TF
and xr > 0.16, and also at T > 0.3TF and xr > 0.25.

In both LFP and qLFP cases the plasma was assumed to be
weakly coupled and non-relativistic, and these approximations
impose supplementary restrictions on the validity domain, which
can be roughly put as Γi � 1 and xr . 1. In addition, the effects
of electron exchange are neglected. The exchange effects always
reduce the electron scattering rate, but no more than by a factor
of two (see Daligault 2017).

Very recently, Shaffer & Starrett (2020) have combined the
qLFP theory with the concept of mean-force scattering, where
the scattering cross-sections are calculated using the potential
of mean force as the interaction potential. This way they can
account for strong coupling effects in a plasma kinetic frame-
work and alleviate the constraint Γi � 1. They found a signif-
icant suppression of the effective ee scattering rate in a finite
temperature interval, caused by non-monotonicities in the ee
mean-force potential as an indirect effect of strong ion coupling.
The inclusion or omission of ee collisions in qLFP is rather
unimportant for the electrical conductivity at low temperatures,
whereas the thermal conductivity still depends on ee collisions
at any temperature. In the limit of a fully degenerate electron
gas, T/TF → 0, the thermal conductivity obtained with this
method is identical to that of an electron gas, which is clearly
unrealistic. Shaffer & Starrett (2020) concluded that this unphys-
ical behavior at low temperatures is an artifact of the small-
angle approximation and these authors traced a connection to
the argument by Lampe (1968a), who noted that large-angle ee
collisions are more strongly Pauli blocked than ei ones, whereas
small-angle collisions are less so. Therefore, the qLFP method,
while successful over a wide range of temperatures, still breaks
down for sufficiently degenerate plasmas, in agreement with the
above-mentioned considerations by Daligault (2017, 2018). In
addition, the method may fail in the case of very strongly cou-
pled Coulomb plasmas, where an accurate ion structure factor is
needed to grasp the long-range order effects (Baiko et al. 1998;
Wetta & Pain 2020).

2.3. Bridging the opacities of mildly and strongly degenerate
H and He plasmas

B20 applied the method of Shaffer & Starrett (2020) to the cal-
culation of conductive opacities for pure H and He composi-
tions. In case of heavier elements, the electron-electron inter-
actions are less important, so that this method is expected to pro-
duce results more similar to the conductive opacities κc obtained
using the Matthiessen’s rule, that is, by assuming S κ = 1. Here-
after, following B20, we denote the latter opacities as κIoffe

c . They
are essentially the C07 opacities but improved as described in
Potekhin et al. (2015); the differences with the original C07
opacities for liquid H and He plasmas are at most within 2%.

B20 found a substantial reduction of the conductive opacities
(corresponding to an enhancement of the thermal conductivity)

Fig. 1. Thermal conductivity for hydrogen as function of mass den-
sity for several constant temperatures T . Dashed lines show the tradi-
tional conductivities λIoffe

e , and dotted lines display the conductivities
λB20

e = FλIoffe
e enhanced by the F factor in Eq. (11). The solid and

dot-dashed lines show the conductivities with the weakly and strongly
damped corrections given by Eq. (12), λB20wd

e and λB20sd
e , respectively.

They provide two different transitions from the new calculations for
partially degenerate electrons λB20

e to the traditional results λIoffe
e in the

strong degeneracy regime (see details in the text). Numbers near the
curves mark log T (K) values.

in the domain of partial degeneracy, compared to κIoffe
c . Their

Tables 1 and 2 provide κc for pure H and pure He compositions,
which at fixed temperature, T, reach densities corresponding
to θ ≡ T/TF generally between 0.2 and 0.1. The difference
with κIoffe

c exceeds a factor of 2 on the verge of this density-
temperature domain.

To facilitate the implementation of their new opacity calcula-
tions in stellar evolution codes, B20 devised an analytic expres-
sion for the factor (denoted hereafter by F) to reduce the the
traditional opacity to fit their numerical results. Accordingly, the
reduced conductive opacity and enhanced thermal electron con-
ductivity is given as:

κc = κIoffe
c /F, λe = FλIoffe

e . (10)

The correction factor is written as:

F = 1 + g(x, y)H(g(x, y)), (11)

where x = log(ρ/ρ0), y = log(T/T0), ρ0 = 105.45 g cm−3 and
T0 = 108.40 K for hydrogen, ρ0 = 106.50 g cm−3 and T0 = 108.57 K
for helium, function g(x, y) is a tilted scaled Gaussian, and
H(g) is a correction to the Gaussian shape at large g (see the
explicit formulas given in B20). This fit accurately reproduces
the numerical B20 results at θ > 0.1 and ensures that the cor-
rection vanishes when θ → 0. Hereafter κB20

c and λB20
e denote,

respectively, the opacities and thermal conductivities given by
Eqs. (10) and (11).

The electron thermal conductivities calculated with and
without the correction factor by B20 are shown in Fig. 1 for
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Fig. 2. Thermal conductivity for helium as a function of mass density
for several constant temperatures T . The meaning of the various lines is
the same as in Fig. 1.

hydrogen, and in Fig. 2 for helium, in the relevant T and ρ
ranges. The convergence of λB20

e to the traditional estimate λIoffe
e

is rather slow at high densities, if the temperature is also high.
In this case the B20 correction does not vanish until T � 0.1TF,
which is certainly far beyond the range of validity of Shaffer &
Starrett (2020) method and most likely overestimates the true
enhancement of the conductivities in these cases.

This is shown even more clearly in Figs. 3 and 4, which dis-
play the ratio λB20

e /λIoffe
e as a function of ρ for several temper-

atures T ; densities corresponding to θ = 0.1 and 1.0 are also
marked. For example, at T > 107 K convergence is reached
only at densities corresponding to TF values well above 10 T ,
that is, at θ � 0.1. In addition, broad differences between the
dashed and dotted lines are observed in the case of helium at
ρ > 106 g cm−3, where the electrons are relativistic.

To achieve a faster convergence to the degenerate asymptote
in the regime of strong degeneracy, we introduced a damping
factor D(θ) = (1+aθ−b)−1 (θ ≡ T/TF). The damped enhancement
factor F for the electron thermal conductivity (a reduction factor
for the conductive opacities) then reads

F = 1 +
g(x, y)H(g(x, y))

1 + a (TF/T )b . (12)

Given that the qLFP equation is non-relativistic, we use the non-
relativistic approximation for TF in Eq. (12). We have made two
choices of the parameters a and b. A conservative choice (that
we denote as ‘weak damping’) is to ensure that D(θ) does not
change F by more than 1% at T > TF and that it does not exceed
1% (ensuring that F ≈ 1) at T < 0.01TF. These conditions are
fulfilled for a = 0.01 and b = 2. The electron conductivities
obtained using this weakly damped enhancement factor, which
we denote by λB20wd

e are shown in Figs. 1 and 2 (the correspond-
ing opacities will be denoted by κB20wd

c ), while the ratio of λB20wd
e

to λIoffe
e as a function of ρ is shown in Figs. 3 and 4.
We can see that λB20

e and λB20wd
e almost coincide at T > TF

(to the left of the left vertical line in Figs. 3 and 4), ensuring that

Fig. 3. Ratio of the electron thermal conductivity for hydrogen
enhanced according to B20 (λB20

e ) to λIoffe
e results, as a function of

log ρ (dotted lines), for the labelled values of log T , with T given in
Kelvin. Solid lines display the analogous ratio for the thermal conduc-
tivities λB20wd

e obtained using the weakly damped enhancement factor F.
Dot-dashed lines show the corresponding ratio for the strong damping,
λB20sd

e . The vertical lines mark the boundaries of the range of densities
corresponding to θ = 1 and θ = 0.1 (higher ρ implies lower θ, at con-
stant T ).

our damping does not distort the B20 results in the domain where
the underlying approximations are reliable. The weak damping
is seen to provide a good agreement with B20 results for T down
to 0.5 TF, while at the same time it almost fully converges to
the traditional results at T . 0.03 TF. The ratio λB20wd

e /λIoffe
e is

however sometimes still quite substantial (up to a factor of ∼1.5)
at T ∼ 0.1TF, where λIoffe

e may be already preferable, as dis-
cussed also by B20. Indeed, as we see in Sect. 2.2, the results and
discussions from Daligault (2017, 2018) and Shaffer & Starrett
(2020) prompt the assumption that these approximations, which
are inherent to the qLFP method (in particular, the small-angle
scattering approximation) may lead to an uncertainty of ∼10%
at T = TF and to implausible results at T � TF.

We cannot therefore exclude that in reality the conductivity
should converge to λIoffe

e more rapidly in the transitional range
0.1TF . T . TF. To this end, we considered a much more
extreme, but probably still realistic ‘strong damping’ choice,
defined by the requirements that D(θ) does not affect F by more
than 10% at T > TF and that D(θ) does not exceed 1% at
T < 0.1TF. In this case, a = 0.1 and b = 3 in Eq. (12). The con-
ductivities (see Figs. 1 and 2) and opacities obtained with such
strongly damped enhancement factor will be denoted by λB20sd

e
and κB20sd

c , respectively.
The ratio of λB20sd

e to λIoffe
e as a function of ρ is also displayed

in Figs. 3 and 4, which show how λB20sd
e converges to λIoffe

e at
T ∼ 0.1 TF, whilst it is almost equal to λB20

e at T > TF. The
values of λB20sd

e may noticeably (up to ∼30%) differ from the
B20 calculations already at T ∼ 0.5 TF; however, we believe that
this strong damping option is a plausible extreme choice. As we
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Fig. 4. Ratio of the electron thermal conductivity for helium enhanced
according to B20 to λIoffe

e , as a function of logρ, for the labelled values
of log(T ). The meaning of the various lines is the same as in Fig. 3.

Fig. 5. Run of the ratio θ ≡ T/TF as a function of the mass (in solar
units) enclosed within a distance r from the centre, for the He-core
at three different stages of the RGB evolution of a model with the
labelled total mass, initial helium mass fraction Y and a metal mass
fraction Z (metal distribution α-enhanced, with [α/Fe] = 0.4, typical of
Galactic halo stars) corresponding to [Fe/H] =−1.5. The discontinuity
at Mr ≈ 0.2 M� in the structure corresponding to the TRGB stellar
model is due to off-center He-burning ignition that starts removing the
electron degeneracy.

have discussed in Sect. 2.2, the inaccuracy of the qLFP method
may reach 10% at T ∼ TF, hence, it is not unrealistic to assume
still greater inaccuracies at T ∼ 0.5 TF.

The differences between these three choices of the elec-
tron conductivity (B20, B20 with weak damping, and B20 with
strong damping) are, by construction, maximal around θ ∼ 0.1
(within a factor of 3), which is a θ range encountered in RGB
He-cores and WD envelopes, as shown in Figs. 5 and 6.

Fig. 6. Evolution with the surface luminosity L of selected physical and
chemical quantities across WD models with masses equal to 0.55 and
1 M�. The vertical axis displays the logarithm of the mass mr enclosed
between the surface and a point at a distance r from the centre, nor-
malised to the total WD mass MWD. Dashed lines mark the boundaries
of the carbon-oxygen core as well as the helium and the hydrogen enve-
lope. The lower boundary of surface convection is denoted by dotted
lines. The solid lines show the position of the mass layers where θ= 1
and 0.1.

Figure 5 displays the run of θ across the structure of the
He-core at three selected luminosities during the RGB evolution
of a typical low-mass (0.8 M�), metal poor stellar model (from
Pietrinferni et al. 2021). In all three cases, T/TF ranges between
∼0.05 at the centre of the He-core and ∼1 at its outer edge.

A sketch of the internal structures of two WD models (for
DA WDs with He and H envelopes, from Salaris et al. 2010) and
their evolution with the surface luminosity is shown in Fig. 6, for
masses equal to 0.55 and 1 M�, bracketing the typical mass range
of carbon-oxygen WDs. For both masses, the layers where T/TF
is around 0.1 are located in the He or the H layers, depending on
the model luminosity. The same is true in models with just He
envelopes (for DB WDs).

3. Effects on stellar models

In this section, we quantify the effect of using alternatively κIoffe
c

(C07), κB20
c (B20), κB20sd

c (B20sd), and κB20wd
c (B20wd) opacities

on RGB (and the following horizontal branch stage) and WD
models. For the RGB computations, we relied on the same stel-
lar evolution code, physical assumptions (including atomic dif-
fusion), and input physics adopted by Pietrinferni et al. (2021).
The calculations by Pietrinferni et al. (2021) make use of C07
conductive opacities, hence, they are taken as a reference in the
following discussion. For the WD models, we employed the code
and physics inputs described by Salaris et al. (2010).

3.1. Red giant branch and horizontal branch models

We computed models for initial masses in the range 0.8–2.4 M�
and various chemical compositions, from the pre-main sequence
stage until the He-burning ignition at the tip of the RGB (TRGB),
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Fig. 7. Theoretical TRGB absolute magnitudes in the I (Cousins) and
JHK (Bessel & Brett system) filters as a function of [Fe/H], for the four
choices of conductive opacities discussed in this section (see labels and
text for details). We also show (circles with error bars) the measured
TRGB absolute magnitude in the Galactic globular clusters 47 Tuc and
ω Centauri.

employing the same combinations of metallicity Z and initial
helium abundance Y as in Pietrinferni et al. (2021).

We begin by analysing the results for the lower-end of the
explored mass regime, that is, for the 0.8 M� models, which are
characterised by a stronger electron degeneracy in their helium
cores. The different choices of conductive opacities have a neg-
ligible impact on the RGB lifetime but, as expected, a sizable
effect on the He-core mass at helium ignition (McHe). Going
from C07 to B20 opacities increases McHe by ∼0.01 M�, inde-
pendent of Z. If the opacities with weak damping B20wd are
used instead, McHe increases by ∼0.007 M� compared to calcula-
tions with C07. Finally, the opacities with strong damping B20sd
increase McHe by just ∼0.001 M�.

Given that the TRGB brightness depends on the He-core
mass at the He ignition, these differences translate to changes
in the magnitude of the TRGB, an observable quantity, also
used to determine distances to old stellar populations in galax-
ies. Figure 7 displays the IJHK TRGB absolute magnitudes
obtained from our calculations, for models with an age of 12–
13 Gyr at the TRGB, and a large range of initial metallicities.
Moving from C07 to B20 opacities makes the TRGB brighter
by about 0.1 mag in all filters (because of the larger He-core
masses), an increase which is reduced to about 0.07 mag when
calculations with κB20wd

c are considered instead. The use of κB20sd
c

instead of the C07 opacities has a negligible impact of the TRGB
brightness of the models.

For the sake of comparison, we also show in Fig. 7 the abso-
lute magnitudes of the TRGB determined for the Galactic glob-
ular clusters ω Centauri and 47 Tuc. We display Bellazzini et al.
(2004) results, with small adjustments to take into account the
recent distance determinations by Baumgardt & Vasiliev (2021).

The calculations using B20 and B20wd opacities predict
TRGBs marginally brighter than the observed TRGB magni-
tudes in the I band – which, incidentally, have smaller measure-

Fig. 8. The trend of selected structural and evolutionary properties for
various assumptions about the conductive opacities. Upper panel: He-
core mass at He-ignition as a function of the initial total mass for models
with Z = 0.001 and Y = 0.248; lower panel: as the upper panel but for
the bolometric luminosity at the beginning of the quiescent core He-
burning, after the electron degeneracy has been lifted.

ment errors compared to the infrared data – when taking into
account observational errors, while in JHK bands all sets of
models are compatible with observations within the error bars.
On balance these TRGB observations cannot definitely exclude
any of the displayed four choices of conductive opacities. The
marginal discrepancy with the more precise I-band data could
for example be ascribed to some small (on the order of 0.01 mag)
systematic errors in the calculations of the bolometric correc-
tions, which might affect less severely the infrared bands.

We also investigated the impact of these different sets of
opacities on RGB models with initial masses around the tran-
sition for the onset of electron degeneracy in the He-core. The
upper panel of Fig. 8 shows McHe at the ignition of core He-
burning for models with Z = 0.001 and Y = 0.248, and masses
between 1.4 and 2.4 M�. For masses larger than ∼1.4 M�, the
effect of choosing a different set of opacities increases, reaching
a maximum between 2.1 and 2.2 M�, to then vanish for larger
masses, that do not develop electron degeneracy after the main
sequence. For an initial mass of 2.1–2.2 M�, the B20wd and B20
opacities increase McHe by ∼0.035 M� and ∼0.043 M�, respec-
tively. These differences still hold at other metallicities, the only
change being systematic shifts of the values of the initial masses
of the models around the transition, due to the effect of the ini-
tial metallicity (and He abundance) on the mass threshold for the
onset of electron degeneracy.

These variations of the degenerate He-core masses at helium
ignition affect the properties of the following core He-burning
phase, as shown in both Figs 8 and 9. The lower panel of
Fig. 8 shows the luminosity at the beginning of quiescent He
burning, after the degeneracy has been lifted, for the models
with initial masses between 1.4 and 2.4 M� and the labelled
initial composition (we denote this stage by zero-age horizon-
tal branch (ZAHB), as for the lower mass models, which are
the theoretical counterpart of the stars that populate the hor-
izontal branches of globular clusters) and the labelled initial
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Fig. 9. Trend of the ZAHB brightness at the typical temperature of
the RR Lyrae instability strip, as a function of [Fe/H] for the labelled
choices of the conductive opacities. Points with error bars display
semiempirical data for a sample of Galactic globular clusters (see text
for details).

composition. The variation of this luminosity with varying
choices of the conductive opacities mirrors qualitatively that of
McHe, as expected. The effect is maximised for masses around
2.2 M�, where ∆ log(L/L�) ∼ 0.2 dex when passing from C07
to B20 opacities (the corresponding ∆ log(L/L�) for the 1.4 M�
models is equal to ∼0.03 dex) and ∼0.1 when B20wd opacities
are used instead of C07.

The change in luminosity directly impacts on the core He-
burning lifetime: For models with 1.4 M� the maximum effect
amounts to a reduction on the order of 7% when B20 opacities
are employed instead of C07, which increases to about 18% for
models with mass around 2.2 M�.

Figure 9 displays the theoretical ZAHB luminosity of lower
mass models, at the typical temperature of the RR Lyrae insta-
bility strip (log Teff = 3.85, with Teff in K) as a function of the
initial [Fe/H], obtained using alternatively the same four sets of
conductive opacities. Again, the trends reflect the behaviour of
McHe at He-ignition. Models calculated with the C07 opacities
are the faintest ones, whilst those calculated with B20 opaci-
ties are about ∆ log(L/L�) = 0.03 more luminous. The calcu-
lations with the B20sd opacities are basically identical to the
C07 ones, while the B20wd opacities provide ZAHB models
∆ log(L/L�) ∼ 0.02 brighter than the C07 ones. The correspond-
ing core He-burning lifetimes are affected at the level of at most
6–8% when adopting these different opacities.

The same figure also displays the semiempirical ZAHB
luminosities for a sample of Galactic globular clusters, as deter-
mined by de Santis & Cassisi (1999), from the pulsational prop-
erties of their RR Lyrae stars. Due to the small sample size and
the associated error bars, the comparison with the models does
not set any definitive constraint on the appropriate way to bridge
the regimes of moderate and strong degeneracy. Models based
on C07 and the extreme case of the B20sd opacities, but also
those based on B20 and B20wd opacities are to various degrees
consistent with the data.

3.2. White dwarf models

B20 have already shown how WD cooling models are strongly
affected by replacing κIoffe

c opacities in the calculations with the
smaller κB20

c values. Here, we make similar comparisons, but
including also the cases of B20wd and B20sd opacities. We have
considered a WD model with mass MWD = 1.0 M�, made of a
carbon-oxygen core with chemical stratification taken from the

Fig. 10. Relative differences of the cooling times as a function of the
surface luminosity, among different evolutionary models of a 1.0 M�
DA WD. The dotted line displays the difference between calculations
with C07 and B20 opacities (B20 cooling times minus C07 values at
the same luminosity), the dot-dashed line the difference between B20sd
and C07 calculations, and the solid line the difference between B20wd
and C07 models.

solar progenitors’ models by Salaris et al. (2010), surrounded
by a helium envelope with mass equal to 10−2MWD, and a more
external hydrogen envelope with mass equal to 10−4MWD. The
code and input physics (except for the conductive opacities) are
described in Salaris et al. (2010) and references therein. Such a
high mass WD model is expected to display the strongest sensi-
tivity to changes of the conductive opacities, as shown by B20.

Figure 10 shows the relative differences of the cooling times
as a function of the surface luminosity, among our calculations
with different opacity choices. Models calculated with B20 opac-
ities have longer cooling times than C07 calculations – by up to
about 40% – at luminosities above log(L/L�) ∼ −1.5, where
neutrino cooling is very efficient. As discussed by B20 (see also
Salaris et al. 2013), the lower conductive opacities cause a faster
cooling of the core, which reduces the efficiency of neutrino
cooling and increases the cooling times at a given luminosity.
In absolute terms, the cooling times in this phase are relatively
short, on the order of at most 100 Myr when log(L/L�) = −1.5.

With decreasing luminosities, the cooling times with B20
opacities become increasingly shorter than C07 calculations,
because of the faster cooling of the structure. This trend is tem-
porarily broken in a narrow range of luminosities centred around
log(L/L�) ∼ −2.6, due to the earlier start of the crystallization in
the models with B20 opacities, and the associated earlier onset
of the release of latent heat and the extra energy due to carbon-
oxygen phase separation (see e.g., Salaris et al. 2010, and refer-
ences therein). At the typical luminosity of the faintest observed
WDs (log(L/L�) ∼ −4.5) the model calculated with B20 opac-
ities has a cooling age of ∼9.5 Gyr, about 2.5 Gyr shorter than
the corresponding calculations with C07 opacities. These differ-
ences are consistent with the results obtained by B20.

Calculations using the B20wd opacities display differences
compared to C07 models, which are reduced by about 5-10%
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compared to the previous case of using B20 opacities. As for
RGB models and their core He-burning progeny, calculations
with the B20sd opacities provide results almost identical to C07
models, with differences of the cooling times within ±5%.

4. Summary and conclusions

Electron conduction opacities are a key ingredient in the calcula-
tion of stellar models for low- and intermediate-mass stars, and
a critical issue is centred on ways to bridge computations of con-
ductive opacities in the regimes of moderate (θ ∼ 1) and strong
(θ . 0.1) degeneracy, which are necessarily calculated adopt-
ing different methods. In fact, the density-temperature regime at
the transition between moderate and strong degeneracy is crucial
for modelling the helium cores of RGB stars and the envelopes
of WDs.

We discuss the case of bridging the new, improved con-
ductive opacities calculated by B20 for the regime of moderate
degeneracy and the calculations by C07 in the regime of strong
degeneracy. We first considered B20 own analytical approxima-
tion, which, however, converges to C07 results only at θ �0.1,
well into the regime of strong degeneracy. We then modified
the B20 formula by introducing a physically motivated damp-
ing factor, which depends on the ratio θ = T/TF, tuned in two
alternative ways (weak and strong damping) to converge faster
than the B20 fit to C07 results in the regime of strong degener-
acy. Both damping prescriptions keep the B20 fit almost intact at
θ > 1. The weak damping option provides opacities still different
from C07 at θ = 0.1, whilst the more extreme strong damping
converges to C07 opacities at θ = 0.1, but it changes the B20
calculations already by 30% at θ ∼ 0.5, in the moderate degen-
eracy regime. As a consequence, these three sets of conductive
opacities have large differences (up to a factor of ∼2) in the crit-
ical region around θ ∼ 0.1, which, in turn, have a major impact
on the predicted RGB He-core masses (up to 0.01 M� for low-
mass models far from the transition regime to non-degenerate
He-cores, and up to ∼0.04 M� for masses around the transition),
TRGB (up to ∼0.1 mag) and ZAHB luminosities (up to 0.03 dex
for masses far from the transition, and up to ∼0.2 dex around the
transition), and WD cooling times (up to 40–45% at high lumi-
nosities, and up to ∼25% at low luminosities).

Current observational constraints on the TRGB and ZAHB
absolute magnitudes do not allow us to categorically exclude
any of these options for the conductive opacities, also taking
into account that there might be other sources of uncertainties on
the theoretical predictions for these quantities. The much shorter
cooling times predicted for faint, slowly evolving WDs by calcu-
lations with both the B20 fit and the weak damping option (com-
pared to models calculated with opacities including the strong
damping) will need to be tested against observations of WDs in
old stellar populations.

We updated the table of non-magnetic electron conductivi-
ties available at the Ioffe Institute website2 by implementing the
correction factor in Eq. (12). We use the weak damping as our
fiducial choice by default, but we consider also the strong damp-
ing as a realistic, albeit extreme possibility. We did not imple-
ment this correction directly in the computer code presented by
the institute on their website, but we provided the corresponding
subroutine and envisioned a possibility for its use (in the absence
of a strong magnetic field) to correct the result of the main
computation.

2 http://www.ioffe.ru/astro/conduct/index.html
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