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ABSTRACT
Recent observations of thermally emitting isolated neutron stars revealed spectral features that

could be interpreted as radiative transitions of He in a magnetized neutron star atmosphere.

We present Hartree–Fock calculations of the polarization-dependent photoionization cross-

sections of the He atom in strong magnetic fields ranging from 1012 to 1014 G. Convenient

fitting formulae for the cross-sections are given along with the related oscillator strengths for

various bound–bound transitions. The effects of finite nucleus mass on the radiative absorption

cross-sections are examined using perturbation theory.
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1 I N T RO D U C T I O N

An important advance in neutron star (NS) astrophysics in the last

few years has been the detection and detailed studies of surface emis-

sion from a large number of isolated NSs, including radio pulsars,

magnetars and radio-quiet NSs (e.g. Harding & Lai 2006; Kaspi,

Roberts & Harding 2006). This was made possible by X-ray tele-

scopes such as Chandra and XMM–Newton. Such studies can po-

tentially provide invaluable information on the physical properties

and evolution of NSs (e.g. equation of state at super-nuclear den-

sities, cooling history, surface magnetic field and composition). Of

great interest are the radio-quiet, thermally emitting NSs (e.g. Haberl

2006): they share the common property that their spectra appear to

be entirely thermal, indicating that the emission arises directly from

the NS surfaces, uncontaminated by magnetospheric emission. The

true nature of these sources, however, is unclear at present: they

could be young cooling NSs, or NSs kept hot by accretion from the

interstellar medium, or magnetar descendants. While some of these

NSs (e.g. RX J1856.5−3754) have featureless X-ray spectrum re-

markably well described by blackbody (e.g. Burwitz et al. 2003)

or by emission from a condensed surface covered by a thin atmo-

sphere (Ho et al. 2007), single- or multiple-absorption features at

E � 0.2–1 keV have been detected from several sources (see van

Kerkwijk & Kaplan 2007): e.g. 1E 1207.4−5209 (0.7 and 1.4 keV,

possibly also 2.1, 2.8 keV; Sanwal et al. 2002; De Luca et al. 2004;

Mori, Chonko & Hailey 2005), RX J1308.6+2127 (0.2–0.3 keV;

Haberl et al. 2003), RX J1605.3+3249 (0.45 keV; van Kerkwijk

et al. 2004), RX J0720.4−3125 (0.27 keV; Haberl et al. 2006) and

possibly RBS 1774 (∼0.7 keV; Zane et al. 2005). The identifica-

tions of these features, however, remain uncertain, with suggestions

ranging from proton cyclotron lines to atomic transitions of H, He or

�E-mail: zach@astro.cornell.edu

mid-Z atoms in a strong magnetic field (see Sanwal et al. 2002; Ho &

Lai 2004; Pavlov & Bezchastnov 2005; Mori & Ho 2007). Clearly,

understanding these absorption lines is very important as it would

lead to direct measurement of the NS surface magnetic fields and

compositions, shedding light on the nature of these objects. Mul-

tiple lines also have the potential of constraining the mass–radius

relation of NSs (through the measurement of gravitational redshift).

Since the thermal radiation from a NS is mediated by its atmo-

sphere (if T is sufficiently high so that the surface does not con-

dense into a solid; see e.g. van Adelsberg et al. 2005; Medin &

Lai 2006, 2007), detailed modelling of radiative transfer in mag-

netized NS atmospheres is important. The atmosphere composition

of the NS is unknown a priori. Because of the efficient gravita-

tional separation of light and heavy elements, a pure H atmosphere

is expected even if a small amount of fallback or accretion occurs

after NS formation. A pure He atmosphere results if H is com-

pletely burnt out, and a heavy-element (e.g. Fe) atmosphere may

be possible if no fallback/accretion occurs. The atmosphere com-

position may also be affected by (slow) diffusive nuclear burning in

the outer NS envelope (Chang, Arras & Bildsten 2004), as well as

by the bombardment on the surface by fast particles from NS mag-

netospheres (e.g. Beloborodov & Thompson 2007). Fully ionized

atmosphere models in various magnetic field regimes have been ex-

tensively studied (e.g. Shibanov et al. 1992; Ho & Lai 2001; Zane

et al. 2001), including the effect of vacuum polarization (see Lai

& Ho 2002, 2003; Ho & Lai 2003; van Adelsberg & Lai 2006).

Because a strong magnetic field greatly increases the binding ener-

gies of atoms, molecules and other bound species (for a review,

see Lai 2001), these bound states may have appreciable abun-

dances in the NS atmosphere, as guessed by Cohen, Lodenquai &

Ruderman (1970) and confirmed by calculations of Lai & Salpeter

(1997) and Potekhin, Chabrier & Shibanov (1999). Early consid-

erations of partially ionized and strongly magnetized atmospheres

(e.g. Rajagopal, Romani & Miller 1997) relied on oversimplified
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treatments of atomic physics and plasma thermodynamics (ioniza-

tion equilibrium, equation of state and non-ideal plasma effects).

Recently, a thermodynamically consistent equation of state and

opacities for magnetized (B = 1012–1015 G), partially ionized H

plasma have been obtained (Potekhin & Chabrier 2003, 2004), and

the effect of bound atoms on the dielectric tensor of the plasma has

also been studied (Potekhin et al. 2004). These improvements have

been incorporated into partially ionized, magnetic NS atmosphere

models (Ho et al. 2003, 2007; Potekhin et al. 2004, 2006). Mid-Z
element atmospheres for B ∼ 1012–1013 G were recently studied by

Mori & Ho (2007).

In this paper, we focus on He atoms and their radiative transitions

in magnetic NS atmospheres. It is well known that for B � Z2B0,

where Z is the charge number of the nucleus and B0 = e3m2
e/h- 3

c = 2.35 × 109 G, the binding energy of an atom is significantly

increased over its zero-field value. In this strong-field regime, the

electrons are confined to the ground Landau level, and one may ap-

ply the adiabatic approximation, in which electron motions along

and across the field are assumed to be decoupled from each other

(see Section 2.1). Using this approximation in combination with the

Hartree–Fock method (‘1DHF approximation’), several groups cal-

culated binding energies for the helium atom (Pröschel et al. 1982;

Thurner et al. 1993) and also for some other atoms and molecules

(Neuhauser, Langanke & Koonin 1986; Neuhauser, Koonin &

Langanke 1987; Miller & Neuhauser 1991; Lai, Salpeter & Shapiro

1992). Mori & Hailey (2002) developed a ‘multiconfigurational

perturbative hybrid Hartree–Fock’ approach, which is a perturba-

tive improvement of the 1DHF method. Other methods of calcula-

tion include Thomas–Fermi-like models (e.g. Abrahams & Shapiro

1991), the density functional theory (e.g. Relovsky & Ruder 1996;

Medin & Lai 2006), variational methods (e.g. Müller 1984; Vincke

& Baye 1989; Jones, Ortiz & Ceperley 1999; Turbiner & Guevara

2006) and 2D Hartree–Fock mesh calculations (Ivanov 1994; Ivanov

& Schmelcher 2000) which do not directly employ the adiabatic

approximation.

In strong magnetic fields, the finite nuclear mass and centre-of-

mass motion affect the atomic structure in a non-trivial way (e.g. Lai

2001; see Section 5). The stronger B is, the more important the

effects of finite nuclear mass are. Apart from the H atom, these

effects have been calculated only for the He atom which rests as a
whole, but has a moving nucleus (Al-Hujaj & Schmelcher 2003a,b),

and for the He+ ion (Bezchastnov, Pavlov & Ventura 1998; Pavlov

& Bezchastnov 2005).

There were relatively few publications devoted to radiative tran-

sitions of non-hydrogenic atoms in strong magnetic fields. Several

authors (Miller & Neuhauser 1991; Thurner et al. 1993; Jones et al.

1999; Mori & Hailey 2002; Al-Hujaj & Schmelcher 2003b) cal-

culated oscillator strengths for bound–bound transitions; Miller &

Neuhauser (1991) also presented a few integrated bound–free os-

cillator strengths. Rajagopal et al. (1997) calculated opacities of

strongly magnetized iron, using photoionization cross-sections ob-

tained by M. C. Miller (unpublished). To the best of our knowledge,

there were no published calculations of polarization-dependent

photoionization cross-sections for the He atom in the strong-field

regime, as well as the calculations of the atomic motion effect on

the photoabsorption coefficients for He in this regime. Moreover,

the subtle effect of exchange interaction involving free electrons

and the possible role of two-electron transitions (see Section 3.2)

have not been discussed before.

In this paper, we perform detailed calculations of radiative tran-

sitions of the He atom using the 1DHF approximation. The to-

tal error introduced into our calculations by the use of these two

approximations, the Hartree–Fock method and the adiabatic ap-

proximation is of the order of 1 per cent or less, as can be seen

by the following considerations: the Hartree–Fock method is ap-

proximate because electron correlations are neglected. Due to their

mutual repulsion, any pair of electrons tends to be more distant

from each other than the Hartree–Fock wavefunction would indi-

cate. In zero-field, this correlation effect is especially pronounced

for the spin-singlet states of electrons for which the spatial wave-

function is symmetrical. In strong magnetic fields (B � B0), the

electron spins (in the ground state) are all aligned antiparallel to the

magnetic field, and the multielectron spatial wavefunction is anti-

symmetric with respect to the interchange of two electrons. Thus,

the error in the Hartree–Fock approach is expected to be less than

the 1 per cent accuracy characteristic of zero-field Hartree–Fock

calculations (Neuhauser et al. 1987; for B = 0 see Scrinzi 1998;

Schmelcher, Ivanov & Becken 1999). The adiabatic approxima-

tion is also very accurate at B � Z2B0. Indeed, a comparison of

the ground-state energy values calculated here to those of Ivanov

(1994) (who did not use the adiabatic approximation) shows an

agreement to within 1 per cent for B = 1012 G and to within

0.1 per cent for B = 1013 G.

This paper is organized as follows. Section 2 describes our calcu-

lations of the bound states and continuum states of the He atom, and

Section 3 contains relevant equations for radiative transitions. We

present our numerical results and fitting formulae in Section 4 and

examine the effects of finite nucleus mass on the photoabsorption

cross-sections in Section 5.

2 B O U N D S TAT E S A N D S I N G LY I O N I Z E D
S TAT E S O F H E L I U M ATO M S I N S T RO N G
M AG N E T I C F I E L D S

2.1 Bound states of the helium atom

To define the notation, we briefly describe 1DHF calculations for

He atoms in strong magnetic fields. Each electron in the atom is

described by a one-electron wavefunction (orbital). If the magnetic

field is sufficiently strong (e.g. B � 1010 G for He ground state),

the motion of an electron perpendicular to the magnetic field lines

is mainly governed by the Lorentz force, which is, on the average,

stronger than the Coulomb force. In this case, the adiabatic approx-

imation can be employed – i.e. the wavefunction can be separated

into a transverse (perpendicular to the external magnetic field) com-

ponent and a longitudinal (along the magnetic field) component:

φmν(r ) = fmν(z)Wm(r⊥). (1)

Here, Wm is the ground-state Landau wavefunction (e.g. Landau &

Lifshitz 1977) given by

Wm(r⊥) = 1

ρ0

√
2πm!

(
ρ√
2ρ0

)m

exp

(−ρ2

4ρ2
0

)
e−imϕ, (2)

where (ρ, ϕ) are the polar coordinates of r⊥, ρ0 = (h-c/eB)1/2 is

the magnetic length and fmν is the longitudinal wavefunction which

can be calculated numerically. The quantum number m (�0 for

the considered ground Landau state) specifies the negative of the

z-projection of the electron orbital angular momentum. We restrict

our consideration to electrons in the ground Landau level; for these

electrons, m also specifies the (transverse) distance of the guiding

centre of the electron from the ion, ρm = (2m + 1)1/2ρ0. The quan-

tum number ν specifies the number of nodes in the longitudinal

wavefunction. The spins of the electrons are taken to be aligned

antiparallel with the magnetic field, and so do not enter into any
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of our equations. In addition, we assume that the ion is completely

stationary (the ‘infinite ion mass’ approximation). In general, the

latter assumption is not necessary for the applicability of the adia-

batic approximation (see e.g. Potekhin 1994). The accuracy of the

infinite ion mass approximation will be discussed in Section 5.

Note that we use non-relativistic quantum mechanics in our cal-

culations, even when h-ωBe � me c2 or B � BQ = B0/α
2 = 4.414 ×

1013 G. This is valid for two reasons: (i) the free-electron energy in

relativistic theory is

E =
[

c2 p2
z + m2

ec4

(
1 + 2nL

B

BQ

)]1/2

. (3)

For electrons in the ground Landau level (nL = 0), equation (3) re-

duces to E � mec2 + p2
z /(2me) for pzc � mec2; the electron remains

non-relativistic in the z direction as long as the electron energy is

much less than me c2; (ii) it is well known (e.g. Sokolov & Ternov

1986) that equation (2) describes the transverse motion of an elec-

tron with nL = 0 at any field strength, and thus equation (2) is valid in

the relativistic theory. Our calculations assume that the longitudinal

motion of the electron is non-relativistic. This is valid for helium at

all field strengths considered in this paper. Thus, relativistic correc-

tions to our calculated electron wavefunctions, binding energies and

transition cross-sections are all small. Our approximation is justified

in part by Chen & Goldman (1992), who find that the relativistic

corrections to the binding energy of the hydrogen atom are of the

order of 	E/E ∼ 10−5.5–10−4.5 for the range of field strengths we

are considering in this work (B = 1012–1014 G).

A bound state of the He atom, in which one electron occupies the

(m1ν1) orbital, and the other occupies the (m2ν2) orbital, is denoted

by |m1ν1, m2ν2〉 = |Wm1
fm1ν1

, Wm2
fm2ν2

〉 (clearly, |m1ν1, m2ν2〉 =
|m2ν2, m1ν1〉). The two-electron wavefunction is


m1ν1,m2ν2
(r 1, r 2) = 1√

2

[
Wm1

(r 1⊥) fm1ν1
(z1)

×Wm2
(r 2⊥) fm2ν2

(z2)

− Wm2
(r 1⊥) fm2ν2

(z1) Wm1
(r 2⊥) fm1ν1

(z2)
]
. (4)

The one-electron wavefunctions are found using Hartree–Fock

theory, by varying the total energy with respect to the wavefunctions.

The total energy is given by (see e.g. Neuhauser et al. 1987)

E = EK + EeZ + Edir + Eexc, (5)

where

EK = h- 2

2me

∑
mν

∫
dz | f ′

mν(z)|2, (6)

EeZ = −Ze2
∑

mν

∫
dz | fmν(z)|2Vm(z), (7)

Edir = e2

2

∑
mν,m′ν′

∫ ∫
dz dz′ | fmν(z)|2 | fm′ν′ (z′)|2

×Dmm′ (z − z′), (8)

Eexc = − e2

2

∑
mν,m′ν′

∫ ∫
dz dz′ f ∗

m′ν′ (z) fmν(z)

× f ∗
mν(z′) fm′ν′ (z′)Emm′ (z − z′) (9)

and

Vm(z) =
∫

dr⊥
|Wm(r⊥)|2

r
, (10)

Dmm′ (z − z′) =
∫ ∫

dr⊥ dr ′⊥
|Wm(r⊥)|2|Wm′ (r ′⊥)|2

|r ′ − r | , (11)

Emm′ (z − z′) =
∫ ∫

dr⊥ dr ′⊥
1

|r ′ − r |
×W ∗

m′ (r⊥)Wm(r⊥)W ∗
m(r ′⊥)Wm′ (r ′⊥). (12)

Variation of equation (5) with respect to fmν(z) yields[
− h- 2

2me

d2

dz2
− Ze2Vm(z)

+ e2
∑
m′ν′

∫
dz′ | fm′ν′ (z′)|2 Dmm′ (z − z′) − εmν

]
fmν(z)

= e2
∑
m′ν′

∫
dz′ f ∗

mν(z′) fm′ν′ (z′)Emm′ (z − z′) fm′ν′ (z). (13)

In these equations, asterisks denote complex conjugates, and

f ′
mν(z) ≡ dfmν/dz. The wavefunctions fmν(z) must satisfy appropriate

boundary conditions, i.e. fmν → 0 as z → ±∞, and must have the

required symmetry [fmν(z) = ±fmν(−z)] and the required number of

nodes (ν). The equations are solved iteratively until self-consistency

is reached for each wavefunction fmν and energy εmν . The total en-

ergy of the bound He state |m1ν1, m2ν2〉 can then be found, using

either equation (5) or

E =
∑

mν

εmν − Edir − Eexc. (14)

2.2 Continuum states of the helium atom

The He state in which one electron occupies the bound (m3ν3)

orbital, and other occupies the continuum state (m4k) is denoted

by |m3ν3, m4k〉 = |Wm3
fm3ν3

, Wm4
fm4k〉. The corresponding two-

electron wavefunction is


m3ν3,m4k(r 1, r 2) = 1√
2

[
Wm3

(r 1⊥) fm3ν3
(z1)

×Wm4
(r 2⊥) fm4k(z2)

−Wm4
(r 1⊥) fm4k(z1)Wm3

(r 2⊥) fm3ν3
(z2)

]
. (15)

Here, fm4k(z) is the longitudinal wavefunction of the continuum

electron and k is the z-wavenumber of the electron at |z| → ∞ (far

away from the He nucleus).

We can use Hartree–Fock theory to solve for the ionized He states

as we did for the bound He states. Since the continuum electron

wavefunction fm4k(z) is non-localized in z, while the bound elec-

tron wavefunction fm3ν3
(z) is localized around z = 0, it is a good

approximation to neglect the continuum electron’s influence on the

bound electron. We therefore solve for the bound electron orbital

using the equation[
− h- 2

2me

d2

dz2
− Ze2Vm3

(z)

]
fm3ν3

(z) = εm3ν3
fm3ν3

(z). (16)

The continuum electron, however, is influenced by the bound elec-

tron, and its longitudinal wavefunction is determined from[
− h- 2

2me

d2

dz2
− Ze2Vm4

(z)

+ e2

∫
dz′ | fm3ν3

(z′)|2 Dm3m4
(z − z′) − εf

]
fm4k(z)

= e2

∫
dz′ f ∗

m4k(z′) fm3ν3
(z′)Em3m4

(z − z′) fm3ν4
(z), (17)
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where εf = εm4k = h- 2k2/(2me). Here, the bound electron orbital |
m3ν3〉 satisfies the same boundary conditions as discussed in Sec-

tion 2.1. The shape of the free electron wavefunction is determined

by the energy of the incoming photon and the direction the electron

is emitted from the ion. We will discuss this boundary condition in

the next section. The total energy of the ionized He state | m3ν3,

m4k〉 is simply

E = εm3ν3
+ εf. (18)

Note that the correction terms Edir and Eexc that appear in equa-

tion (14) do not also appear in equation (18). The direct and exchange

energies depend on the local overlap of the electron wavefunctions,

but the non-localized nature of the free electron ensures that these

terms are zero for the continuum states.

3 R A D I AT I V E T R A N S I T I O N S

We will be considering transitions of helium atoms from two initial

states: the ground state, |00, 10〉, and the first excited state, |00, 20〉.
In the approximation of an infinitely massive, point-like nucleus,

the Hamiltonian of the He atom in electromagnetic field is (see

e.g. Landau & Lifshitz 1977)

H =
∑
j=1,2

1

2me

[
p j + e

c
Atot(r j )

]2

−
∑
j=1,2

2e2

r 2
j

+ e2

|r 1 − r 2| , (19)

where p j = −ih-∇ j is the canonical momentum operator, acting on

the jth electron, rj is the jth electron radius vector, measured from

the nucleus, and Atot(r) is the vector potential of the field. In our

case, Atot(r ) =AB(r ) +Aem(r ), where AB(r) and Aem(r) are vector

potentials of the stationary magnetic field and electromagnetic wave,

respectively. The interaction operator is Hint = H − H0, where H0

is obtained from H by setting Aem(r ) = 0. The unperturbed Hamil-

tonian H0 is responsible for the stationary states of He, discussed

in Section 2. The vector potential and the wavefunctions may be

subject to gauge transformations; the wavefunctions presented in

Section 2 correspond to the cylindrical gauge AB(r ) = 1
2

B × r .

Neglecting non-linear (quadratic in Aem) term, we have

Hint ≈ e

2mec

∑
j=1,2

[π j · Aem(r j ) + Aem(r j ) · π j ], (20)

where

π = p + e

c
AB(r ) (21)

is the non-perturbed kinetic momentum operator: π = meṙ =
me(i/h- )[H0 r − r H0].

For a monochromatic wave of the form Aem(r) ∝ εeiq·r, where ε
is the unit polarization vector, applying the Fermi’s Golden Rule

and assuming the transverse polarization (ε · q = 0), one obtains

the following general formula for the cross-section of absorption

of radiation from a given initial state |a〉 (see e.g. Armstrong &

Nicholls 1972):

σ (ω, ε) =
∑

b

4π2

ωc
|ε · 〈b|eiq·r j |a〉|2 δ(ω − ωba), (22)

where |b〉 is the final state, ω = qc is the photon frequency,

ωba = (Eb − Ea)/h- and j is the electric current operator. In our

case, j = (−e/me) (π1 + π2).

We will calculate the cross-sections in the dipole approximation –

i.e. drop eiq·r from equation (22). This approximation is sufficiently

accurate for the calculation of the total cross-section as long as

h-ω � mec2 (cf. e.g. Potekhin & Pavlov 1993, 1997 for the case of

H atom). In the dipole approximation, equation (22) can be written

as

σ (ω, ε) =
∑

b

2π2e2

mec
fbaδ(ω − ωba), (23)

where

fba = 2

h-ωbame

|〈b|ε · π|a〉|2 = 2meωba

h-
|〈b|ε · r |a〉|2 (24)

is the oscillator strength. In the second equality, we have passed

from the ‘velocity form’ to the ‘length form’ of the matrix element

(cf. e.g. Chandrasekhar 1945). These representations are identical

for the exact wavefunctions, but it is not so for approximate ones. In

the adiabatic approximation, the length representation (i.e. the right-

hand side of equation 24) is preferable (see Potekhin & Pavlov 1993;

Potekhin, Pavlov & Ventura 1997).

To evaluate the matrix element, we decompose the unit polariza-

tion vector ε into three cyclic components,

ε = ε−ê+ + ε+ê− + ε0ê0, (25)

with ê0 = êz along the external magnetic field direction (the z-axis),

ê± = (êx ± iêy)/
√

2 and εα = êα · ε (with α = ±, 0). Then we can

write the cross-section as the sum of three components,

σ (ω, ε) = σ+(ω)|ε+|2 + σ−(ω)|ε−|2 + σ0(ω)|ε0|2, (26)

where σα has the same form as equation (23), with the corresponding

oscillator strength given by

f α
ba = 2meωbaρ

2
0

h-
|Mba |2 = 2ωba

ωc

|Mba |2, (27)

with

Mba = 〈b|ê∗
α · r̄ |a〉, (28)

where r̄ = r/ρ0 and ωc = eB/(mec) is the electron cyclotron fre-

quency.

3.1 Bound–bound transitions

Consider the electronic transition

|a〉 = |mν, m2ν2〉 = |Wm fmν, Wm2
fm2ν2

〉
−→ |b〉 = |m ′ν ′, m2ν2〉 = |Wm′ gm′ν′ , Wm2

gm2ν2
〉. (29)

The selection rules for allowed transitions and the related matrix

elements are

σ0 : 	m = 0, 	ν = odd,

Mba = 〈gmν′ |z̄| fmν〉〈gm2ν2
| fm2ν2

〉, (30)

σ+ : 	m = 1, 	ν = even,

Mba = √
m + 1 〈gm′ν′ | fmν〉〈gm2ν2

| fm2ν2
〉, (31)

σ− : 	m = −1, 	ν = even,

Mba = √
m 〈gm′ν′ | fmν〉〈gm2ν2

| fm2ν2
〉, (32)

where 	m = m′ − m, 	ν = ν ′ − ν. The oscillator strengths for

bound–bound transitions from the states |00, 10〉 and |00, 20〉 are

given in Table 1.

The selection rules (30)–(32) are exact in the dipole approxima-

tion. The selection rules in m follow from the conservation of the

z-projection of total (for the photon and two electrons) angular mo-

mentum. Technically, in the adiabatic approximation, they follow

from the properties of the Landau functions (e.g. Potekhin & Pavlov
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Table 1. Bound–bound transitions |a〉 → |b〉: the photon energy h-ωba = Eb − Ea (in eV) and the oscillator strength fαba
for different polarization components α (see equation 27). All transitions 	ν � 1 from the initial states | 00, 10〉 and |00,

20〉 are listed, for several magnetic field strengths B12 = B/(1012 G). The last two columns list the transition energies

h-ω∗
ba and oscillator strengths f∗ba, corrected for the finite mass of the nucleus, according to Section 5.1.

B12 σ |a〉 → |b〉 h-ωba fba h-ω∗
ba f∗ba

1 0 |00, 10〉 → |00, 11〉 147.5 0.234 – –

→ |10, 01〉 271.8 0.124 – –

+ → |00, 20〉 43.11 0.0147 44.70 0.0153

0 |00, 20〉 → |00, 21〉 104.4 0.312 – –

→ |20, 01〉 277.7 0.115 – –

+ → |00, 30〉 18.01 0.00930 19.60 0.0101

→ |20, 10〉 100.7 0.0170 102.3 0.0172

5 0 |00, 10〉 → |00, 11〉 256.2 0.127 – –

→ |10, 01〉 444.8 0.0603 – –

+ → |00, 20〉 66.95 0.00459 74.89 0.00512

0 |00, 20〉 → |00, 21〉 189.2 0.176 – –

→ |20, 01〉 455.0 0.0537 – –

+ → |00, 30〉 28.94 0.00299 36.88 0.00381

→ |20, 10〉 151.1 0.00512 159.0 0.00539

10 0 |00, 10〉 → |00, 11〉 318.9 0.0974 – –

→ |10, 01〉 540.8 0.0457 – –

+ → |00, 20〉 79.54 0.00273 95.42 0.00327

0 |00, 20〉 → |00, 21〉 239.4 0.136 – –

→ |20, 01〉 553.3 0.0405 – –

+ → |00, 30〉 34.84 0.00179 50.72 0.00261

→ |20, 10〉 177.0 0.00301 192.9 0.00328

50 0 |00, 10〉 → |00, 11〉 510.9 0.0557 – –

→ |10, 01〉 822.2 0.0266 – –

+ → |00, 20〉 114.2 7.85e−4 193.6 0.00133

0 |00, 20〉 → |00, 21〉 396.7 0.0776 – –

→ |20, 01〉 841.1 0.0235 – –

+ → |00, 30〉 51.92 5.37e−4 131.3 0.00136

→ |20, 10〉 246.5 8.41e−4 325.9 0.00111

100 0 |00, 10〉 → |00, 11〉 616.4 0.0452 – –

→ |10, 01〉 971.4 0.0221 – –

+ → |00, 20〉 131.4 4.52e−4 290.2 9.98e−4

0 |00, 20〉 → |00, 21〉 485.0 0.0626 – –

→ |20, 01〉 993.4 0.0195 – –

+ → |00, 30〉 60.57 3.13e−4 219.4 0.00114

→ |20, 10〉 280.7 4.80e−4 439.5 7.51e−4

1993). The selection rules in ν follow from the fact that the func-

tions gm′ν′ and fmν have the same parity for even ν ′ − ν and opposite

parity for odd ν ′ − ν.

In addition to these selection rules, there are approximate selec-

tion rules which rely on the approximate orthogonality of functions

gm′ν′ and fmν (for general ν �= ν ′). Because of this approximate or-

thogonality, which holds better the larger B is, we have

〈gm′ν′ | fmν〉〈gm2ν2
| fm2ν2

〉 = δν,ν′ + ε, (33)

where |ε| � 1 and ε → 0 as 	ν → ±∞. Therefore, the oscillator

strengths for transitions with α = ± and 	ν = 2, 4, . . . are small

compared to those with 	ν = 0. The latter oscillator strengths can

be approximated, according to equations (27), (31), (32) and (33),

by

f +
ba ≈ 2(m + 1) ωba/ωc, f −

ba ≈ 2m ωba/ωc (34)

(α = 	m = ±1, ν ′ = ν).

The same approximate orthogonality leads to the smallness

of matrix elements for transitions of the type |mν, m2ν2〉 −→
|m ′ν ′, m2ν

′
2〉 with ν ′

2 �= ν2 for α = ± and the smallness of cross

terms in the matrix elements of the form 〈gm2ν2
| fmν〉〈gm′ν′ | fm2ν2

〉
when m′ = m2 (i.e. the so-called ‘one-electron jump rule’); we have

therefore excluded such terms from the selection rule equations

above (equations 30–32).

3.2 Photoionization

The bound–free absorption cross-section for the transition from the

bound state |b〉 to the continuum state |f〉 is given by equation (22)

with obvious substitutions |a〉 → | b〉, |b〉 → |f〉 and

∑
f

→ (Lz/2π)

∫ ∞

−∞
dk, (35)

where Lz is the normalization length of the continuum electron

[
∫ Lz/2

−Lz/2
dz |gmk(z)|2 = 1] and k is the wavenumber of the outgo-

ing electron (Section 2.2). Therefore, we have

σbf(ω, ε) = 2πe2 Lz

mech- 2ω f bk

{ ∣∣〈 fk|eiq·rε · π|b〉
∣∣2

+
∣∣〈 f−k|eiq·rε · π|b〉

∣∣2 }
, (36)

where k = √
2meεf/h- and |f±k〉 represents the final state where

the free electron has wavenumber ±k (here and hereafter we
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assume k > 0). The asymptotic conditions for these outgoing free

electrons are (cf. e.g. Potekhin et al. 1997) gmk(z) ∼ exp[iϕk(z)] at

z → ±∞, where ϕk(z) = |kz| + (ka0)−1 ln |kz| and a0 = h- 2/mee2

is the Bohr radius. Since we do not care about direction of the

outgoing electron, we can use for calculations a basis of symmet-

ric and antisymmetric wavefunctions of the continuum – that is, in

equation (36) we can replace 〈fk| and 〈f−k| by 〈feven| and 〈fodd|. The

symmetric state |feven〉 is determined by the free electron boundary

condition g′
mk,even(0) = 0 and the antisymmetric state |fodd〉 is deter-

mined by gmk,odd(0) = 0. Since the coefficients in equation (17) are

real, gmk,even(z) and gmk,odd(z) can be chosen real. At z → ±∞, they

behave as gmk,(even,odd)(z) ∼ sin [ϕ(z) + constant] (where the value

of constant depends on all quantum numbers, including k). We still

have the normalization
∫ Lz/2

−Lz/2
dz |gmk,(even,odd)(z)|2 = 1.

Similar to bound–bound transitions, we can decompose the

bound–free cross-section into three components (equation 26).

Thus, using the dipole approximation and the length form of the

matrix elements, as discussed above, we have for (α = ±, 0)-

components of the bound–free cross-section

σbf,α(ω) = 3

4
σTh

(
mec2

h-ω

)3
√

mec2

2εf

(
Lza0

ρ2
0

)(
ωρ0

c

)4

×
∣∣〈 f |ê∗

α · r̄ |b〉
∣∣2

, (37)

where |f 〉 = |f even〉 or | f 〉 = |f odd〉 depending on the parity of

the initial state and according to the selection rules, and σ Th =
(8π/3)(e2/mec2)2 is the Thomson cross-section. The selection rules

and related matrix elements for the bound–free transitions

|b〉 = |mν, m2ν2〉 = |Wm fmν, Wm2
fm2ν2

〉
−→ | f 〉 = |m ′k, m2ν2〉 = |Wm′ gm′k, Wm2

gm2ν2
〉 (38)

are similar to those for the bound–bound transitions (see equat-

ions 30–32):

σ0 : 	m = 0, 	ν = odd,

M f b = 〈gmk |z̄| fmν〉〈gm2ν2
| fm2ν2

〉, (39)

σ+ : 	m = 1, 	ν = even,

M f b = √
m + 1 (〈gm′k | fmν〉〈gm2ν2

| fm2ν2
〉

−δm′ν,m2ν2
〈gm2ν2

| fmν〉〈gm′k | fm2ν2
〉), (40)

σ− : 	m = −1, 	ν = even,

M f b = √
m (〈gm′k | fmν〉〈gm2ν2

| fm2ν2
〉

−δm′ν,m2ν2
〈gm2ν2

| fmν〉〈gm′k | fm2ν2
〉), (41)

In this case, the condition 	ν = odd means that gm′k and fmν must

have opposite parity, and the condition 	ν = even means that

gm′k and fmν must have the same parity. The oscillator strengths

for bound–free transitions from the states |00, 10〉 and |00, 20〉 are

given in Table 2.

Note that in equations (40) and (41), the second term in the matrix

element (of the form 〈gm2ν2
| fmν〉〈gm′k | fm2ν2

〉) corresponds to tran-

sitions of both electrons. This appears to violate the ‘one-electron

jump rule’ and other approximate selection rules discussed in Sec-

tion 3.1 (see equation 33). In fact, these approximate rules are not di-

rectly relevant for bound–free transitions, since the matrix elements

involving a continuum state are always small: 〈gm′k | fmν〉 → 0 as

the normalization length Lz → ∞. Rather, we use a different set of

selection rules to determine which of these ‘small’ matrix elements

are smaller than the rest. The first is that

〈gm′k | fmν〉〈gm2ν2
| fm2ν2

〉 � 〈gm′k | fmν〉〈gm2ν′
2
| fm2ν2

〉, (42)

when ν ′
2 �= ν2. This selection rule is similar to the bound–bound

transition case as 〈gm2ν′
2
| fm2ν2

〉 involves a bound electron transi-

tion, not a free electron transition. The second approximate selec-

tion rule that applies here is more complicated: terms of the form

〈gm′ν | fmν〉〈gm2k | fm2ν2
〉 are small, unless m′ = m2 and ν2 = ν. This

exception for m′ = m2 and ν2 = ν is due to the exchange term in

the differential equation for the free electron wavefunction (equa-

tion 17), which strongly (anti)correlates the two final wavefunctions

|gm′ν〉 and |gm2k〉. If m′ = m2 and ν = ν2, then since 〈gm′ν | fm2ν2
〉

is not small (in fact, it is of the order of 1), 〈gm2k | fm2ν2
〉 will not

be small but will be of the same order as other terms involving the

free electron wavefunction. In particular, the second selection rule

means, e.g., that the matrix element for the transition from |00, 10〉
to |00, 0k〉 is

M00,10→00,0k = 〈g0k | f10〉〈g00| f00〉 − 〈g00| f10〉〈g0k | f00〉, (43)

where the second term is non-negligible, but that the matrix element

for the transition from |00, 10〉 to |0k, 20〉, which is

M00,10→0k,20 = 〈g20| f10〉〈g0k | f00〉, (44)

is small compared to the other matrix elements and can be ignored

(see Fig. 1).

We make one final comment here about the effect of exchange

interaction on the free electron state. If the exchange term (the right-

hand side of equation 17) is neglected in the calculation of the free

electron wavefunction, then the cross terms (i.e. those involving

two-electron transitions) in the matrix elements of equations (40)

and (41) are small and can be neglected. One then obtains approx-

imate photoionization cross-sections which are within a factor of

2 of the true values in most cases and much better for σ 0 tran-

sitions. If the exchange term is included in equation (17) but the

cross terms in the matrix elements are ignored, significant errors in

the σ± photoionization cross-sections will result. To obtain reliable

cross-sections for all cases, both the exchange effect on the free

electron and the contribution of two-electron transitions must be

included.

4 R E S U LT S

Tables 1 and 2 give results for transitions of helium atoms from the

ground state (|00, 10〉) and the first excited state (|00, 20〉). Table 1

gives results (photon energies and oscillator strengths) for all possi-

ble bound–bound transitions with 	ν � 1, for the field strengths

B12 = 1, 5, 10, 50, 100, where B12 = B/(1012 G). Transitions

|a〉 → |b〉 for α = − are not listed separately, being equivalent

to transitions |b〉 → |a〉 for α = +. One can check that the oscillator

strengths fba presented in Table 1 for α = + are well described by

the approximation (34).

Table 2 gives results (threshold photon energies and cross-section

fitting formulae, see below) for all possible bound–free transitions.

Figure 1 shows partial cross-section curves for all bound–free transi-

tions from the ground state of helium for B12 = 1. The transition |00,

10〉 → |0k, 20〉 is an example of a ‘weak’ transition, whose oscil-

lator strength is small because of the approximate orthogonality of

one-electron wavefunctions, as discussed at the end of Section 3.1. It

is included in this figure to confirm the accuracy of our assumption.

Figs 2 and 3 show total cross-section curves for a photon polar-

ized along the magnetic field, for B12 = 1 and 100, respectively.
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Figure 1. Partial cross-sections σ (0,+,−) versus final ionized electron energy for photoionization of the ground state helium atom ((m1, m2) = (1, 0)). The field

strength is 1012 G. The transition |00, 10〉 → |0k, 20〉 in the bottom left panel is an example of a ‘weak’ transition. We have ignored these transitions in our

calculations of the total cross-sections.

Figs 4 and 5 show total cross-sections for the circular polarizations,

α = ±, for B12 = 1. Finally, Figs 6 and 7 show total cross-sections

for α = ± and B12 = 100.

4.1 Fitting formula

The high-energy cross-section scaling relations from Potekhin &

Pavlov (1993), which were derived for hydrogen photoionization in

strong magnetic fields, also hold for helium:

σbf,0 ∝
(

1

h-ω

)2mi +9/2

(45)

σbf,± ∝
(

1

h-ω

)2mi +7/2

, (46)

where mi is the m value of the initial electron that transitions to

the free state. In addition, we use similar fitting formulae for our

numerical cross-sections:

σbf,0 � C
(1 + Ay)2.5(1 + B(

√
1 + y − 1))4(mi +1)

σTh (47)

σbf,± � C(1 + y)

(1 + Ay)2.5(1 + B(
√

1 + y − 1))4(mi +1)
σTh (48)

where y = εf/h-ωthr and h-ωthr is the threshold photon energy for

photoionization. These formulae have been fit to the cross-section

curves with respect to the free electron energy εf in approximately

the 1–104 eV range (the curves are fit up to 105 eV for strong mag-

netic fields B12 = 50–100, in order to obtain the appropriate high-

energy factor). The data points to be fit are weighted proportional

to their cross-section values plus a slight weight toward low-energy

values, according to the formula (error in σ ) ∝ σεf
0.25.

Results for the three fitting parameters, A,B and C, are given

in Table 2 for various partial cross-sections over a range of mag-

netic field strengths. For photoionization in strong magnetic fields

(B12 � 50), the cross-section curves we generate for the σ+ and σ−
transitions have a slight deficiency at low electron energies, such that

the curves peak at εf � 10 eV, rather than at threshold as expected.

These peaks do not represent a real effect, but rather reflect the limits

on the accuracy of our code (the overlap of the wavefunction of the

transitioning electron pre- and post-ionization is extremely small

under these conditions). Because the cross-section values are not

correct at low energies, our fits are not as accurate for these curves.

In Table 2, we have marked with a ‘∗’ those transitions which are
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Table 2. Bound–free transitions |b〉 → |f〉: the threshold photon energy h-ωthr (in eV) and the fitting parameters A,B and

C used in the cross-section fitting formulae (equation 48). All transitions from the initial states |00, 10〉 and |00, 20〉 are

listed, for several magnetic field strengths B12 = B/(1012 G).

B12 σ |b〉 → |f〉 mi h-ωthr A B C

1 0 |00, 10〉 → |00, 1k〉 1 159.2 0.96 0.093 1.43e6

→ |10, 0k〉 0 283.2 0.89 0.20 8.83e5

+ → |00, 2k〉 1 159.2 0.70 0.061 7.95e2

→ |10, 1k〉 0 283.2 0.86 0.094 1.30e3

– → |00, 0k〉 1 159.2 0.62 0.030 8.89e2

0 |00, 20〉 → |00, 2k〉 2 116.0 1.00 0.062 1.78e6

→ |20, 0k〉 0 289.2 0.88 0.22 8.71e5

+ → |00, 3k〉 2 116.0 0.66 0.038 3.94e2

→ |20, 1k〉 0 289.2 0.54 0.14 6.48e2

– → |00, 1k〉 2 116.0 0.62 0.029 5.82e2

5 0 |00, 10〉 → |00, 1k〉 1 268.2 0.86 0.061 8.39e5

→ |10, 0k〉 0 456.4 0.69 0.16 4.60e5

+ → |00, 2k〉 1 268.2 0.68 0.036 1.14e2

→ |10, 1k〉 0 456.4 0.83 0.057 1.93e2

– → |00, 0k〉 1 268.2 0.60 0.020 1.36e2

0 |00, 20〉 → |00, 2k〉 2 201.2 0.92 0.039 1.11e6

→ |20, 0k〉 0 466.5 0.65 0.18 4.39e5

+ → |00, 3k〉 2 201.2 0.65 0.021 5.95e1

→ |20, 1k〉 0 466.5 0.54 0.084 9.13e1

– → |00, 1k〉 2 201.2 0.61 0.015 7.82e1

10 0 |00, 10〉 → |00, 1k〉 1 331.1 0.82 0.051 6.58e5

→ |10, 0k〉 0 552.5 0.63 0.15 3.51e5

+ → |00, 2k〉 1 331.1 0.67 0.029 4.94e1

→ |10, 1k〉 0 552.5 0.81 0.046 8.43e1

– → |00, 0k〉 1 331.1 0.59 0.016 6.00e1

0 |00, 20〉 → |00, 2k〉 2 251.6 0.88 0.033 8.77e5

→ |20, 0k〉 0 564.9 0.59 0.16 3.31e5

+ → |00, 3k〉 2 251.6 0.64 0.017 2.64e1

→ |20, 1k〉 0 564.9 0.53 0.069 3.97e1

– → |00, 1k〉 2 251.6 0.61 0.012 3.25e1

50 0 |00, 10〉 → |00, 1k〉 1 523.3 0.73 0.034 3.74e5

→ |10, 0k〉 0 834.2 0.54 0.11 1.96e5

+ → |00, 2k〉 1 523.3 0.63 0.020 7.15e0

→ |10, 1k〉 0 834.2 0.77 0.033 1.22e1

– → |00, 0k〉 1 523.3 0.57 0.012 8.94e0

0 |00, 20〉 → |00, 2k〉 2 409.1 0.79 0.021 5.02e5

→ |20, 0k〉 0 853.0 0.50 0.13 1.83e5

+ → |00, 3k〉 2 409.1 0.62 0.0104 4.04e0

→ |20, 1k〉 0 853.0 *0.52 0.052 5.88e0

– → |00, 1k〉 2 409.1 0.59 0.0058 4.13e0

100 0 |00, 10〉 → |00, 1k〉 1 628.8 0.69 0.029 2.96e5

→ |10, 0k〉 0 983.4 0.51 0.101 1.56e5

+ → |00, 2k〉 1 628.8 0.62 0.019 3.12e0

→ |10, 1k〉 0 983.4 0.75 0.031 5.33e0

– → |00, 0k〉 1 628.8 0.56 0.012 3.94e0

0 |00, 20〉 → |00, 2k〉 2 498.0 0.75 0.018 3.96e5

→ |20, 0k〉 0 1008 0.47 0.12 1.45e5

+ → |00, 3k〉 2 498.0 0.60 0.0092 1.81e0

→ |20, 1k〉 0 1008 *0.50 0.050 2.60e0

– → |00, 1k〉 2 498.0 0.58 0.0042 1.69e0

most inaccurately fit by our fitting formula, determined by cross-

section curves with low-energy dips greater than 5 per cent of the

threshold cross-section value.

5 F I N I T E N U C L E U S M A S S E F F E C T S

So far, we have used the infinite ion mass approximation. In this

section, we will evaluate the validity range of this approximation

and suggest possible corrections.

It is convenient to use the coordinate system which contains the

centre-of-mass coordinate Rcm and the relative coordinates {rj} of

the electrons with respect to the nucleus. Using a suitable canonical

transformation, the Hamiltonian H of an arbitrary atom or ion can

be separated into three terms (Vincke & Baye 1988; Baye & Vincke

1990; Schmelcher & Cederbaum 1991): H1 which describes the

motion of a free pseudo-particle with net charge Q and total mass M
of the ion (atom), the coupling term H2 between the collective and

internal motion, and H3 which describes the internal relative motion
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Figure 2. Total cross-section σ 0 versus photon energy for helium photoion-

ization, from initial states (m1, m2) = (1, 0) (solid lines) and (2, 0) (dashed

lines). The field strength is 1012 G. The dotted lines extending from each

cross-section curve represent the effect of magnetic broadening on these

cross-sections, as approximated in equation (55), for T = 104.5 K (steeper

lines) and 106 K (flatter lines).

Figure 3. Total cross-section σ 0 versus photon energy for helium photoion-

ization, from initial states (m1, m2) = (1, 0) (solid lines) and (2, 0) (dashed

lines). The field strength is 1014 G. The dotted lines extending from each

cross-section curve represent the effect of magnetic broadening on these

cross-sections, as approximated in equation (55), for T = 105.5 K (steeper

lines) and 106 K (flatter lines).

of the electrons and the nucleus. H1 and H2 are proportional to M−1,

so they vanish in the infinite mass approximation. It is important to

note, however, that H3 (the only non-zero term in the infinite mass

approximation) also contains a term that depends on M−1
0 , where

M0 ≈ M is the mass of the nucleus. Thus, there are two kinds of

non-trivial finite-mass effects: the effects due to H1 + H2, which can

be interpreted as caused by the electric field induced in the comoving

reference frame, and the effects due to H3, which arise irrespective

of the atomic motion. Both kinds of effects have been included

in calculations only for the H atom (Potekhin 1994; Potekhin &

Pavlov 1997, and references therein) and He+ ion (Bezchastnov

Figure 4. Total cross-section σ+ versus photon energy for helium photoion-

ization, from initial states (m1, m2) = (1, 0) (solid lines) and (2, 0) (dashed

lines). The field strength is 1012 G. The dotted lines extending from each

cross-section curve represent the effect of magnetic broadening on these

cross-sections, as approximated in equation (55), for T = 106 K.

Figure 5. The same as in Fig. 4, but for σ−.

et al. 1998; Pavlov & Bezchastnov 2005). For the He atom, only the

second kind of effects have been studied (Al-Hujaj & Schmelcher

2003a,b).

5.1 Non-moving helium atom

The state of motion of an atom can be described by pseudo-

momentum K, which is a conserved vector since Q = 0 (e.g. Vincke

& Baye 1988; Schmelcher & Cederbaum 1991). Let us consider

first the non-moving helium atom: K = 0.

According to Al-Hujaj & Schmelcher (2003a), there are triv-

ial normal mass corrections, which consist in the appearance

of reduced masses me/(1 ± me/M0) in H3, and non-trivial spe-
cific mass corrections, which originate from the mass polarization

operator.
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Figure 6. The same as in Fig. 4, but for B = 1014 G.

Figure 7. The same as in Fig. 6, but for σ−.

The normal mass corrections for the total energy E of the He state

|m1ν1, m2ν2〉 can be described as follows:

E(M0, B) = E(∞, (1 + me/M0)2 B)

1 + me/M0

+ h-�c

∑
j

m j , (49)

where �c = (me/M0)ωc (for He, h-�c = 1.588 B12 eV). The first term

on the right-hand side describes the reduced mass transformation.

The second term represents the energy shift due to conservation of

the total z component of the angular momentum. Because of this

shift, the states with sufficiently large values of m1 + m2 become

unbound (autoionizing, in analogy with the case of the H atom

considered by Potekhin et al. 1997). This shift is also important

for radiative transitions which change (m1 + m2) by 	m �= 0: the

transition energy h-ωba is changed by h-�c	m. The dipole matrix ele-

ments Mba are only slightly affected by the normal mass corrections,

but the oscillator strengths are changed with changing ωba accord-

ing to equation (27). The energy shift also leads to the splitting

of the photoionization threshold by the same quantity h-�c	m, with

	m = 0, ±1 depending on the polarization (in the dipole approxima-

tion). Clearly, these corrections must be taken into account, unless

�c � ωba or 	m = 0, as illustrated in the last two columns of

Table 1.

The specific mass corrections are more difficult to evaluate, but

they can be neglected in the considered B range. Indeed, calculations

by Al-Hujaj & Schmelcher (2003a) show that these corrections do

not exceed 0.003 eV at B � 104B0.

5.2 Moving helium atom

Eigenenergies and wavefunctions of a moving atom depend on

its pseudo-momentum K perpendicular to the magnetic field.

This dependence can be described by Hamiltonian components

(e.g. Schmelcher & Cederbaum 1991)

H1 + H2 = K 2

2M
+

∑
j

e

Mc
K · (B × r j ), (50)

where
∑

j is the sum over all electrons. The dependence on Kz is

trivial, but the dependence on the perpendicular component K⊥ is

not. The energies depend on the absolute value K⊥. For calculation

of radiative transitions, it is important to take into account that the

pseudo-momentum of the atom in the initial and final state differs

due to recoil: K ′ =K + h-q. Effectively, the recoil adds a term ∝ q
into the interaction operator (cf. Potekhin et al. 1997; Potekhin &

Pavlov 1997). The recoil should be neglected in the dipole approx-

imation.

The atomic energy E depends on K⊥ differently for different quan-

tum states of the atom. In a real NS atmosphere, one should integrate

the binding energies and cross-sections over the K⊥-distribution of

the atoms, in order to obtain the opacities.1 Such integration leads

to the specific magnetic broadening of spectral lines and ionization

edges. Under the conditions typical for NS atmospheres, the mag-

netic broadening turns out to be much larger than the conventional

Doppler and collisional broadenings (Pavlov & Potekhin 1995).

At present, the binding energies and cross-sections of a moving

helium atom have not been calculated. However, we can approx-

imately estimate the magnetic broadening for T � |(	E)min|/kB,

where (	E)min is the energy difference from a considered atomic

level to the nearest level admixed by the perturbation due to

atomic motion, and kB is the Boltzmann constant. In this case, the

K⊥-dependence of E can be approximated by the formula

E(K⊥) = E(0) + K 2
⊥

2M⊥
, (51)

where E(0) is the energy in the infinite mass approximation

and M⊥ = K⊥(∂E/∂K⊥)−1 is an effective ‘transverse’ mass,

whose value (M⊥ > M) depends on the quantum state considered

(e.g. Vincke & Baye 1988; Pavlov & Mészáros 1993).

Generally, at every value of K⊥ one has a different cross-section

σ (ω, K⊥). Assuming the equilibrium (Maxwell–Boltzmann) distri-

bution of atomic velocities, the K⊥-averaged cross-section can be

written as

σ (ω) =
∫ ∞

Emin

exp

(
E(0) − E(K⊥)

kBT

)
σ (ω, K⊥)

dE(K⊥)

kBT
, (52)

where Emin = −h-ω.

The transitions that were dipole-forbidden for an atom at rest due

to the conservation of the total z-projection of angular momentum

1 For the hydrogen atom, this has been done by Pavlov & Potekhin (1995) for

bound–bound transitions and by Potekhin & Pavlov (1997) for bound–free

transitions.
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become allowed for a moving atom. Therefore, the selection rule

	m = α (equations 30–32) does not strictly hold, and we must write

σ (ω, K⊥) =
∑

m′
σm′ (ω, K⊥), (53)

where the sum of partial cross-sections is over all final quantum

numbers m′ (with m′ � 0 and m′ �= m2 for 	ν = 0) which are

energetically allowed. For bound–bound transitions, this results in

the splitting of an absorption line at a frequency ωba in a multi-

plet at frequencies ωba + δm�c + (M−1
⊥,m′ − M−1

⊥ )K 2
⊥/2h- , where

δm ≡ m′ − m − α and M⊥,m′ is the transverse mass of final states.

For photoionization, we have the analogous splitting of the thresh-

old. In particular, there appear bound–free transitions at frequen-

cies ω < ωthr – they correspond to δm < K2
⊥/(2M⊥h-�c). Here, ωthr

is the threshold in the infinite ion mass approximation, and one

should keep in mind that the considered perturbation theory is valid

for K2
⊥/2M⊥ � |(	E)min | < h-ωthr. According to equation (53),

σ (ω, K⊥) is notched at ω < ωthr, with the cogs at partial thresholds

ωthr + δm�c − K2
⊥/(2M⊥h- ) (cf. fig. 2 in Potekhin & Pavlov 1997).

Let us approximately evaluate the resulting envelope of the

notched photoionization cross-section (53), assuming that the ‘lon-

gitudinal’ matrix elements (〈. . .〉 constructions in equations 30–32)

do not depend on K⊥. The ‘transverse’ matrix elements can be eval-

uated following Potekhin & Pavlov (1997): in the perturbation ap-

proximation, they are proportional to |ξ ||δm|e−|ξ |2/2, where |ξ |2 =
K2

⊥ρ2
0/(2h- 2). Then,

σ (ω < ωthr, K⊥) ≈ σ (ωthr, 0) exp

[
− M⊥

M

ωthr − ω

�c

]

× θ

(
K 2

⊥
2M⊥

− h- (ωthr − ω)

)
, (54)

where θ (x) is the step function. A comparison of this approximation

with numerical calculations for the hydrogen atom (Potekhin &

Pavlov 1997) shows that it gives the correct qualitative behaviour

of σ (ω, K⊥). For a quantitative agreement, one should multiply the

exponential argument by a numerical factor ∼0.5–2, depending on

the state and polarization. This numerical correction is likely due to

the neglected K⊥-dependence of the longitudinal matrix elements.

We assume that this approximation can be also used for the helium

atom. Using equation (52), we obtain

σ (ω) ≈ σ (ωthr) exp

[
− M⊥

M

ωthr − ω

�c

− h- (ωthr − ω)

kBT

]
(55)

for ω < ωthr. Here, the transverse mass M⊥ can be evaluated by

treating the coupling Hamiltonian H2 as a perturbation, as was done

by Pavlov & Mészáros (1993) for the H atom. Following this ap-

proach, retaining only the main perturbation terms according to the

approximate orthogonality relation (33) and neglecting the differ-

ence between M and M0, we obtain an estimate

M

M⊥
≈ 1 −

∑
α=±

α

2

∑
b(	m=α)

ωc f α
ba/(2ωba)

1 + ωba/�c

, (56)

where |a〉 is the considered bound state (|00, 10〉 or |00, 20〉 for the

examples in Figs 2–7) and |b〉 are the final bound states to which

α =± transitions |a〉→ |b〉 are allowed. According to equation (34),

the numerator in equation (56) is close to m + 1 for α = + and to

m for α = −.

For the transitions from the ground state with polarization α = −,

which are strictly forbidden in the infinite ion mass approximation,

using the same approximations as above we obtain the estimate

σ−(ω) ∝ σ+(ω)h-�ckBT/(kBT + h-�c)
2.

Examples of the photoionization envelope approximation, as de-

scribed in equation (55), are shown in Figs 2–7. In Figs 6 and 7 (for

B = 1014 G), in addition to the magnetic broadening, we see a sig-

nificant shift of the maximum, which originates from the last term

in equation (49). Such shift is negligible in Figs 4 and 5 because of

the relatively small �c value for B = 1012 G.

Finally, let us note that the Doppler and collisional broadening

of spectral features in a strong magnetic field can be estimated,

following Pavlov & Mészáros (1993), Pavlov & Potekhin (1995)

and Rajagopal et al. (1997). The Doppler spectral broadening profile

is

φD(ω) = 1√
π	ωD

exp

[
− (ω − ω0)2

	ω2
D

]
, (57)

with

	ωD = ω0

c

√
2T

M

[
cos2 θB + M⊥

M
sin2 θB

]−1/2

, (58)

where θB is the angle between the wave vector and B. The collisional

broadening is given by

φcoll(ω) = �coll

2π

1

(ω − ω0)2 + (�coll/2)2
, (59)

with

h-�coll = 4.8nea0r 2
eff

(
kBT

Ryd

)1/6

= 41.5
ne

1024 cm−3
T 1/6

6

(reff

a0

)2

eV, (60)

where ne is the electron number density and reff is an effective

electron–atom interaction radius, which is about the quantum-

mechanical size of the atom. The convolution of the Doppler, col-

lisional and magnetic broadening profiles gives the total shape of

the cross-section. For bound–free transitions, the Doppler and colli-

sional factors can be neglected, but for the bound–bound transitions

they give the correct blue wings of the spectral features (cf. Pavlov

& Potekhin 1995).

6 C O N C L U S I O N

We have presented detailed numerical results and fitting formulae for

the dominant radiative transitions (both bound–bound and bound–

free) of He atoms in strong magnetic fields in the range of 1012–1014

G. These field strengths may be most appropriate for the identifi-

cation of spectral lines observed in thermally emitting isolated NSs

(see Section 1).

While most of our calculations are based on the infinite-nucleus-

mass approximation, we have examined the effects of finite nucleus

mass and atomic motion on the opacities. We found that for the field

strengths considered in this paper (B � 1014 G), these effects can be

incorporated into the infinite-mass results to obtain acceptable He

opacities for NS atmosphere modelling. For large field strengths,

more accurate calculations of the energy levels and radiative transi-

tions of a moving He atom will be needed in order to obtain reliable

opacities.
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