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An auWcorrelation function for wave-fieM fluctuations detected by a square-law receiver behind a layer of large 

scatterers is found by means of nonclassical photometry in a single-scattering approximation. 

In the solution of a number of applied problems, it is necessary to take into account the fluctuations of light passing 

through a medium containing random discrete scatterers whose dimensions cannot be ignored. Such scatters are aerosol and 

precipitation particles in optical communications and location [1, 2], entire clouds in meteorology [3, 4], and emulsion grains in 

photography [5]. The existing methods for calculation of optical fluctuations in media with discrete scatterers are mainly based 

on either determination of the light field in the far zone, where the scatterers show up as point centers [3, 6-9], or a "straight- 

path approximation" [1], in which deformation of the scattered wave by its propagation is ignored [4, 10-12]. An equation that 

makes it possible to go beyond these approximations has been proposed [1] and extended [13], but corresponding quantitative 

results are practically absent. 

The problem is made geometrically clear and them simplified with the aid of nonclassical photometry [14], in terms of 

which single scattering of light by large scatterers with an extended indicatrix will be examined here. In Sec. 1, general formulas 

will be written for the mean value and autocorrelation function (ACF) of brightness. In Sec. 2, these formulas will be made 

specifically applicable to large optically rigid particles. The ACF of a optical signal will be examined in Sec. 3 in various limiting 

cases and an agreement between newly obtained results and previously known data will be established. Numerical results will be 

presented in Sec. 4. And the formulas required to determine the correlation coefficients for the brightness of light diffracted by 

circular particles will be derived in the Appendix. 

1. Single-Scattering Approximation. We shall examine light propagation through a layer 0 < z < h containing random 

scatterers each of which is characterized by the location of its conditional "center" and a set of other parameters. Let the 

scattering take place at small angles to the z axis, so that backscattering can be ignored. The mathematical expectation and ACF 

of the brightness are specified at the illuminated boundary z = 0; the problem consists of finding them at the boundary z = h. 

With satisfaction of the conditions of quasi-homogeneity [14], the formulas derived below will be equally valid for the conven- 

tional (photometric) and generalized brightness. 

Let s• be the projection of the vector s = (s• sz), which determines the beam direction, onto the plane z = const, let 

/(r, s) = I(p, z, s) be the brightness in that plane (p E R2), and let in the absence of scatterers the brightness propagation in the 

medium be described by a linear operator T: 

x(z + Az) = r(z.~)z(z). 

Here, the brightness I(z) is considered a function of p and s, which is a function of the parameter z, and T(z, Az) is an operator 

that is a function of the parameters z and Az. For empty space, 

~'(z, ~ z ) t ( ~ .  ; )  = t-(~ - ~ - ; h / s e  ;-1 
and, in the more general case, T can take into account, for example, the effect of absorption or turbulence. 

Let the radiation interact with the n-th scatterer inside the layer (Zn - I/2, Zn + l/2) in accordance with a law that is 

invariant with respect to displacements of the center (Pn, Zn). We shall also assume that the indicated layer is thin [16], i.e., T(z, 

I)I(z) = I(z), and that the effect of the scatterer is local with respect to p: 
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z(;~, z . + l / 2 ,  ; )  - x ( ~ .  z . - . l /2 .  ; )  = ; . r ( z .  - 1 / 2 )  - 

_= ~ , , . r  _ ~ . .  ; ,  ~ , ) z r  z . - z / ~ .  ; , ) , , o  , .  

The kernel a n of the scattering operator  6n can be generalized. 

The condition of applicability of the single-scattering approximation, as is known [17], can be written as 

crh = n a e h  �9 1., (1) 

where a is the extinction factor, n v is the numerical volume concentration of the scatterers, and a e is their mean effective cross- 

section: a e = Qatt a, where a is the geometrical cross-section and Qatt is the attenuation-efficiency factor [18]. 

Condit ion (1) makes it possible to examine scatterers that do not irradiate one another. In this case, the generalized 

brightness of the  scattered radiation is additive and thus 

zch)  = ~r162 + ~. ~ r  z 2 x ( o )  + A, (2) 
B 

where A is a correction, which is ignored in the single-scattering approximation. Note that A can be large in individual random 

realizations, but it makes a negligible contribution with conversion to mean values. 

Let the scatterers be arranged independently. Then, according to Isimaru [17], with averaging the sum in (2) becomes an 

integral with respect to the coordinates of the centers of the scatterers with a weight equal to the density of their arrangement 

nv, and for the meanbr ightness  we obtain 

h 

0 

where S is an integral operator  with respect to s with the kernel 

and the angle brackets indicate averaging. 

To find the A C F  

where 

s { s , s ' )  = ~ n < o ' , ( l ~ , s , s ' ) > d 2 p ,  

R z 

(4) 

w(~; ;,, ;;  .~'. ;"  ) =-=- <.r c,~, z, ; ) z r  z, ;"  )>  - . f e z ;  ~, ; ;  b ' ,  ;"  ) ,  

we multiply the corresponding parts of (2), which has been written for points (p, s) and (p',  s ' )  and perform the averaging. The 

product of the sums on the right sides is represented as 

where A k = l"(Zk, h - Zk)~kT(0, Zk)I(0). With averaging, the first sum on the right side of (5) corresponds to single and the 

second to double integration with weight n v with respect to the scatterer coordinates. Using condition (1), we ignore the second 

sum in comparison with the first. Taking (3) into account, we have 

h 

i 

0 

h 

0 

(6) 
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h 

§ 
O 

. ;(z. h-zl } .; .  {;co. , ,  . ~ ( o ,  z )  ] d z ]  - (W(O) + r ( o ) ) ,  

where | indicates the direct product of the operators, W and/v  are considered functions of the pair of points (p, s; p ' ,  s ') of 

the space R e • fa, which are functions of the parameter z, and B is an integral operator with respect to the angle variables (s, s') 

with the integral kernel 

~(~. ~'. -~,-.~-, .~',-;-.) = j" ,, <%(~+~-, .a. ~)%c.a '+~-,  .~,, .~") xr~p -. 
IR a 

If S is the scattering operator, J} is the covariance operator of the scattered radiation. 

~. Small-Angle Scattering by Optically Rigid Particles. Limiting ourselves to a small-angle approximation, we make the 

obtained relations apply specifically to "optically rigid" particles that are large in comparison with wavelength 2, the scattering by 

which was examined earlier by Borovoi [1]. In that study, the wave field scattered by a particle was divided into two compo- 

nents - shadow-forming and refracted - and it was argued that the first component was chiefly responsible for the optical 

fluctuations detected after the layer, which is a result of small-angle diffraction by the particle contour. Considering this, we shall 

limit the examination to the shadow-forming component. Regardless of these arguments, such an examination is clearly valid for 

"black" particles [18], for which a refracted field is practically absent. Such particles include sooty aerosols [2] and the grains of 

chemically developed photographic emulsions [5]. 

In examining the propagation of radiation through a randomly inhomogeneous medium, we must distinguish the 

statistical ensemble of  microscopic sources that determines the coherence propertie s of the incident radiation and the ensemble 

of realizations of the medium. An optical instrument can only record values that have been averaged over the ensemble of 

microscopic sources [15] (such averaging will be indicated by angle brackets with the subscript "s"), but it is fully capable of 

responding to perturbations produced in the transition from one realization of a random medium to another (averaging over 

such a "macroscopic" ensemble was indicated above by angle brackets without subscripts). 

According to Apresyan and Kravtsov [14], when the quasi-homogeneity conditions are satisfied, the propagation and 

small-angle scattering of a wave field with a complex amplitude u(r) can be described in simple language with the aid of the 

concept of generalized brightness, which is the space-angle power spectrum: 

s ,d,~" 
~c;-, ;)'= x-~ / <~'r162 z)>se ~0'. (7) 

R a 

Let a nontransparent screen of size R >> 2/2~ be located in the plane z = 0, and let a quasi-homogeneous wave with 

brightness 10(r, s . )  be incident from the direction of negative z. Let XR(P) be a function that is equal to unity on the screen and 

zero outside of it. We shall find the brightness for z > 0 in the phase-space region in which the quasihomogeneity conditions are 

satisfied (using the Babinet principle [15], we can show that the conditions hold [14], p. 107). In a Kirchhoff approximation [15], 

we can write u(p, +0) = u(p, -0)XR(p ). We find the correlation function of the field u(p, - 0 )  by transforming (7), which is 

written for I 0. Using (7) again, in a small-angle approximation (s x = 1) we find 

where 

.-,ca, .o. ;..,_) - roCa. ;.,..) = ]" o-ca, ; ,  - ~ ) g c a .  ~ ) ~ .  
R:" 

it a 

qr =~ j" ,.ca-a./a),,ca.a.z2)~a,c,~a.;.)~p., 
R a 

(8) 

(9) 
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and the quantity A = 1/2, as we shall see, has the meaning of the scattering albedo. Expression (8) is identical in form to the 

conventional photometric formula for small-angle scattering by an extended object. This makes it possible to examine from 

unique points of view problems of classical transport theory and diffraction problems. The role of wave effects is clearly distin- 

guished, facilitating interpretation. Another advantage of the photometric description is simplicity of determination of the 

optical-receiver response, which is characterized in the language of geometrical optics. For example, let the brightness distribu- 

tion on the plane z = h be known, and the receiver be located in empty space z > h and focused on the plane z = f + h and 

have on that plane a field of vision of radius R 0 with center P0 and aperture angle a, where the optical axis passes through P0 in 

the direction s 0. Ignoring diffraction by the elements of the optical system, which is permissible for a >> 2t/Ro, we find the 

instrument response in a paraxial approximation: 

(10) 
p<R o, I ( ; - ~ o ) j . I  , "  

where C i is the instrument constant. 

Let us consider the simplest case of circular monodisperse particles situated statistically uniformly in a layer that is 

evenly illuminated by a light beam with angular width y: 

/ ' (~ .  o. ~') = Zoer  - $.L). '  (11) 

where 0 is the Heaviside function. For particles of radius R, formula (4) becomes 

s c - ; . . ~ ' )  = , ~ - [ ~ c n ~ .  - ~i'~ - 6"c ; -~ .  - .~_~], 
where cr = 2nva , a = ~R z, the albedo A = 1/2, and X is the Fraunhofer diffraction indicatrix [18]: 

2J t CkRq) 1 
X(lql) = ~ ~ (q), D(q) = kRq " 

R z 

and Jn is an n-th-order Bessel function. Similarly, for the kernel of operator B in formula (6) we have: 

= ~ c ~  - ~ ,  (-;,.+ ~ - ~ , -  ~ L ) / 2 .  ; , . -  ;~, - ; - J  ; '~);  (12) 

gr = A~Gr - 2~_r + 

(13) 

Formulas for fl0, f i- ,  and fl+ are provided in the Appendix. The function fl0 results from the product of the first term on the 

right side of (9) taken at the point (,ol, sl• ) multiplied by the same term at (P2, s2• and describes the incoherent autocorrela- 

tion of the brightness scattered by a particle, and the function fl+, which are produced by multiplication of the second terms, and 

fl_, which correspond to the cross products, are required to allow for absorption and interference. 

Introducing the more convenient variablesp = P2 - Pl, v = (sl• + s 2 •  , and w = s2• - Sl• with the aid of formulas 

(6), (11), and (12) we obtain 

h 

o I ~ ' - * ; ' / 2 1 < ~  

(14) 
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The A C F  of  a signal detected by the receiver examined above is, according to (10) and (14), 

h 

O R:~ 

x I dav, dZv, d2v,,dZv,,tj(~,+(z_s ~.L~,.,, ~..r162 

{ I ; ' ; '  I •  ) /ZI<c=,  1 ~ ' •  I Car} 

(15) 

where H(y) is the intersection area of two unit circles whose centers are separated by distance y (see Appendix). 

3. Recorded Optical Noise in Limiting Cases. We shall assume that the receiver does not resolve individual particles: 

R 0 >> R. Then, the slow variation of H as compared with/3 makes it possible to remove H from under the integral with respect 

to p '  in (15) and then integrate with respect to p '  using the formulas provided in the Appendix. If it is also assumed that all 

particles lie within the focusing depth (max(f, h - f)  << max(kR 2, Ro/a)), we can let (z - 33 "~ 0 in (15), and, as a result 

r,,. r ;, ;~ = ~'~,,'hr ~ C ~ / % l  ,' gO; - ;-,'/:'. " )gO;  + ~,'2. ,,,), 

where E 0 = (~TRo)Zlo is the luminous flux that passes through the reading area in the absence of scatterers, and 

(16) 

2rt  T 

g(q,,) 5 8(T - q) - A J d@ J 
o o 

Formula (16) is obtained more simply in an approximation of Fraunhofer diffraction. Correlation in it is entirely 

dependent on coverage of the apertures in reading. This fact is a consequence of the condition R 0 >> R. Let us examine the 

space A C F  of the signal Wz(IPl) - Wz(,o, 0, 0) in another limiting case: R >> )t/a. In this case, all of the scattered light is 

incident on the receiver, and a can approach infinity in (15). In this case, 
h 

�9 2rr 4 (17) 
o R 4 

x ~ c u ;  + Ro~ + cz - r ~ T P t . z  - r~. 
where 

~cl~t .  z) - ~ t3r + ; z .~ . f f ) aa , , a '~  ,. 

R 4 

Substituting (13) into (17) and integrating term by term, it is easy to express the function/3 in terms of single integrals of the 

product of the Bessel functions and elementary functions. The explicit form of these functions was given elsewhere [19]. For 

I zl >> ~2,  these formulas are simplified: 

2 
(p, 9") = 2--'1"~ - ' ) 1  Rd~2.2 ~ xH z ( Z ) J o ( - ~ ) d r  - ~-~D(~)12 p 2 + 4_.]..~.TD(2_~z[)COS~d~:' ~kP 2 ..t. 2-.It(p/R). (18) 

o 

The first term in formula (18) describes the ACF of the intensity of light scattered at angles that differ from one another 

by (P/IZ]). This function was obtained in an approximation of Fraunhofer diffraction earlier [8]. The second term, which is 

omitted here, describes the cross-correlation of the scattered and absorbed radiation. Unlike the first two terms, the last two 

terms in the Fraunhofer approximation degenerate into a deltoid singularity, which corresponds to autocorrelat ion of the 

absorbed radiation, while in our formula (18) they describe the ACF of the specular structure observed behind a coherently 

illuminated particle layer. Three correlation scales are clearly distinguished in this case: the par t /de  size R in the last term, the 

radius of the first Fresnel zone (2 [z ])t/2 in the penultimate term, and the scattering spot (2 ]z I/R) in the first two terms. 
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Wre I (p/R) = rE(p)  I < ~  z. 

~ r e l  
~rel 

b 

CO) 

I ~ " ~  ~ 

0 t o 
Fig. 1. A C F  o f  op t i ca l  signal:  a) a ,  = 0.125; b)  a ,  = 0.25; c) a ,  = 1; d) ~ ,  = ;/*; 1) 7, = 

0.0625; 2) '7, = 0.125; 3) '7, = 0.25; 4) 'Y* = 0.5; 5) '7, = 1; 6) '7, = 4. 

When all of the particles lie within the effective focusing depth (max(f, h - f) << max(kR 2, R0/a)), the formulas for the 

function/~ are radically simplified, and we obtain 

1 

The latter equality can also be obtained without allowance for scattering by the particles, as distinct from all previous results. 

4. Dependence of Optical Noise on the Conditions of Its Recording. Let us consider the case in which both layer 

boundaries are within the limits of the receiver's focusing depth. In this case, in (15) the integral with respect to z is replaced by 

the factor h, and the integral with respect to p '  corresponds to purely spatial averaging of the A C F  with weight H ( . ) ,  which 

corresponds to overlapping reading areas. Since its smoothing effect on the ACF is obvious, we shall not examine this averaging, 

formally introducing a "point" reading area: R 0 --, 0. Let the receiver be oriented orthogonally to the layer: v = w = 0. Then, 

E 

~7 
I ; ' -  + ~,"/z I <a 

I ; = -  + ~ ' / z  I,~" 
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Fig. 2. Relative variance of intensity fluctuations as a function of diffraction parameter of 

particles according to formula (17) (solid curves) and direct-path approximation (dashed 

curves). 1) kR 0 = 500; 2) 5000. 

where �9 = ah is the optical thickness of the layer. We shall express the function fl in terms of its Fourier transform/~. We shall 

employ the following scaling to eliminate the inexplicit dependence of the integrand on R and ;t: 

~.(L, ~., b.) - ~ cRY., ~:~., ~'b.). 
Substituting the variables accordingly, we obtain 

2 2 
EO17~ . 

wr ( IP [ )  = 2 2 J" d2xd'ZY/(X"/ I : 'J l (m"-x)Ja (ha ' y )  x Jlfn~r z')Jx(1/T.,y)B.(p. (x + ~')12, (z - y ' ) / 2 ) .  
2~ 7. 

R 4 

where ~,. = ~/~1 and a .  -- a/y 1 are the apertures of the illuminator and receiver referred to the average angle of single diffrac- 

tion Yl - 2/2R, x =- I x [, and y = l Y I. 
The relative ACF is of greatest interest: 

Vrel CPla) = Wz(p) I<B> z, 
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where the average signa; (E) is expressed with the aid of formulas (3), (10), and (11). With accuracy to terms that are linear 

with respect to r, we have 

4 �9 max(=., r.) [ 
w, r e l ( p .  ) = _ . _ . { _ ~  J d 2 z d z y j l ( n . . r ) j t ( n - e . y  ) x 

2 I [  a o ~  o R' (19) 

• ..T ( = 7 . x ) a , ( n T . Y ) ~ . ( ~ . ,  (~r + ~ ) 1 2 ,  (~  - Y ) I 2 ) I C x Y )  2. 

We calculated integral (19) by the trapezoid rule, introducing polar coordinates for the vectors x and y and taking into 

account the symmetry of the integrand with respect to their transposition. 

The variation of Wre I as a function of the reading aperture angle a is illustrated in Figs. la-c. Since formula (19) is 

symmetrical with respect to transposition of a and y, these same results demonstrate the dependence of the ACF on the 

convergence angle of the illuminating beam 7, which, according to Sec. 1, is related to the degree of coherence of the illumina- 

tion. The case in which the illumination and reading apertures coincide is shown in Fig. ld. 

Most of the published experimental studies of intensity fluctuations in scattering by particles involve natural media (see 

bibliographies in [2, 20, 21]). The set of factors acting in such media that are not precisely known (differences in particle shape 

and size, particle movement, and turbulence of the medium) make direct comparisons of theory with experiment difficult. At the 

same time, for the specific interpretation of full-scale experiments, it is necessary to know the dependence of each of the factors 

individually, which demonstrates the usefulness of the study of model situations, some of which are examined here. At the same 

time, we are unaware of any published results of experiments performed with model media that would permit direct comparison 

with the results shown in Fig. 1. In Fig. 2, the dependence of the flicker index 02 on the diffraction parameter of the particles 

according to formula (17) is compared with experimental data [22] for optical thickness z = 1. Formula (17), which corresponds 

to a broad light beam can be used to describe experiments [22] with a narrow laser beam if the principle of optical reciprocity is 

employed (then the parameter R 0 has the meaning of the beam radius). The condition f >> Ro/7 and the parameter values kf = 

kh = 106 and 7 = 10-2 rad, which arc consistent with the experiment conditions [22], were used in the calculation. Some models 

that have been utilized [6-12, 21, 22] do not describe the observed rapid rise in the flicker index for small kR with subsequent 

much greater smooth saturation near 0.5. For example, the dashed curves in Fig. 2 correspond to the "direct path" approximation 

for two values of R 0. It is apparent that formula (17) provides a better description of the experimental data. The deviation of the 

calculated curve for large kR, which is expressed in a rise in the number of points over the theoretical value, is explained by the 

increasing role of multiple scattering, which is no longer negligible for z = 1 and large R. These effect will be examined in a 

subsequent article. 

Conclusions. Nonclassical photometry has made it possible to obtain in a single-scattering approximation fairly intuitive 

formulas for the mean value and autocorrelation function (ACF) of the optical noise in a layer containing discrete scatterers 

with a strongly extended indicatrix. The case in which scattering was due to small-angle diffraction was examined using these 

formulas. It was shown, for example, that if the reading area of the optical receiver is much greater than the scatterer dimensions 

and all scatterers lie within the limits of the focusing depth, the ACF is determined by Fraunhofer diffraction. It was also shown 

that the ACF of the intensity in the far zone with respect to the particles oscillates and is characterized by three scales (particle 

size, the radius of the first Fresnel zone, and the scattering-spot size); but in the opposite limiting case, it degenerates to the 

ACF of overlapping disks. The calculations that were performed demonstrated the dependence of the optical correlation 

characteristics on the angular width of the illuminating beam, receiver aperture, and particle radius. 

APPENDIX 

Correlation Coefficients of Small-Angle Diffraction by Black Disks 

Let HN(Pl , ..., PN) be the intersection area of N circles of unit radius with centers Pn: 

. . . . .  = j + + 

x.R(p) = e ( R  - Ip l ) .  
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,~(,_,:,) - ~ ( _ , ; ,  ,;) 

W e  shall  calculate  the function in (13) 

= 2 ( a r c c o s p  - pZv/Z - p Z ) e ( z -  p ) .  

1 
ac.L ; , ; )  = a J 0,.(.,;',; - ;/~'),,.(,~ + P , ;  + ; , , , ) ~ p .  

IR ~ . 

where the scat ter ing index a n is de te rmined  by formula (9). A Four ie r  t ransform with respect  to the angle variables gives 

,~c~;,~,~) - J" , ~ [ ~ ( ~  + ~ )  ~ cA ;'. ;') ~, 'a~v = 
R ~ 

where 
= ^~o(~, ~. -;) - 2 ~ ( ~ .  ~. i,) + ~.c~, ~. ) + ~.cA 2~). 

c,;. = 

+ ,..(9:,. 9,. 9,) * 5 ( 5 .  i .  i ) ~ / " .  

- z--g-* ~ - ~ :  •  j" 

W e  renumber  the points  Yi such that  the b roken  line Yl ~ )"2 ~ )"3 ~ Y4 does not  intersect  itself�9 F o r  convenience,  we 

cont inue the  number ing  of  the vert ices according to the cycle: Yo = Y4, Yl = Ys, etc. Let  Yij = Yj - Yi, Yij = [Yij I. N o t e  that  H4(Y 1, 

)'2, 3'3, )'4) = 0 if at  least  one  of Yij -> 2. Let  all Yij < 2. It is obvious tha t  H4(Yl, )'2, )3, Y4) = H3(Yi-1, Yi+l, Yi+2) if of  the unit  

circles with centers  Yl .... , )'4 one circle with center  Yi covers the intersect ion of the o ther  three. The condi t ion  of  such coverage 

rocg ,_ , . . ; , . ~ , . , )  - ~ , . , _ ,9 , . , .~c%. ,_ ,  + -,:,.,.,~ + r ( : ~ _ , . . ; , , ~ , . , ) c 4 % . , _ , % . , . ,  - ~ ) . ,  o. 

v~-z  _ 1 / 4 ,  and ~(Yl'  9j ,  Y'k) = 21-~YjiYjk - (Icj~Yjk) is the area of a t r iangle  with vertices Yi, Yj, Yk" 
E F "~ 1 2 2 -* - '  2 

where c t j  Ytj 

Let  Fc(Yi_l, Yi, Yi+l) > 0 for any i. Then, the intersect ion of  the four circles in quest ion is a quadrangle  with segments 

jo ined  to it; the lengths of its sides 

= I 2 + 2 2 x 11 2 - (Z14) (Y% I-* Yl, I,I - Yt-*, t-, ) + 2 y,, t-1 Yi, 1-I 

and it area  

1/'2 
• 5 ,  , _ : ,  ,.~ - 2r~(9~_,, 9,. 9,. ,)  ( c ,  ,-, + c ,  , . , ) ]  
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- c;~)] ..,- % % ~ 3 c ; ~ ,  ~'~, ~'3) + ':,.-,'::,,~3(;~' ~~ ;',) " 

+ %,%r3(~'~, ~',, ~,) + %%?'3(~, ,  ~',, -;~)- 

To obtain H4, it is necessary to add to F~ the total area of all segments that are based on chords li, i = 1-4. Finally, we have: 

1) If Yij >- 2 for some i, j,  then/-/4(71, 72, 73, Y4) = 0. 
2) If Yij < 2 for all i, j,  then two cases are possible: 

2a) If 3 i:Fc(Yi_l, Yi, Yi+l) -< 0, then 

2b) If Fc(Yi_t, Yi, Yi+l) > 0 for all i, then 

1=I " 2 

A formula for H3(Yl, 3'2, Y3) is thus derived: 

1) IfYij _> 2 ({i,j} C {1, 2, 3}) for some i,j, then 

2) If Yij < 2 for all i, j,  then two cases are possible: 

2a) If B i E {1, 2, 3}: Fc(Yi_l, Yi, Yi+l) < 0, then 

2b) If Fc(Yi_ 1, Yi, Yi+l) > 0 for all i, then 

= ~(~,.,. ~,.,. ~,.P, 

i '  r 1 - } 
2 

1 013C2:1+ 

4 
1 2 2 2 

- i ( y a z c t z  + y13c13 + yzaCza) + ~. ( a . r e s i n  
1=1 

1 1 
' ' / 1 - I ~ / 4 ) .  
2 

1, 

2. 

3. 

4. 

5, 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

LITERATURE CITED 

A. G. borovoi, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 25, No. 4, 391 (1982). 

V. E. Zuev and M. V. Kabanov, Optics of Atmospheric Aerosols [in Russian], Gidrometeoizdat, Leningrad (1987). 

M. N. Borisevich, A. B. Gavrilovich, and A. P. Ivanov, Izv. Akad. Nauk SSSR, Ser. FAO, 21, No. 11, 1213 (1985). 

T. B. Zhuravleva and G. A. Titov, in: Optical Meteorological Study of the Earth's Atmosphere [in Russian], Nauka, 

Novosibirsk (1987), p. 108. 

A. P. Ivanov and V. A. Loiko, Optics of Photographic Layers [in Russian], Nauka i Tekhnika, Minsk (1983). 

V. A. Krutikov, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 22, No. 1, 84 (1979). 

A. G. Borovoi and A. V. Ivonin, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 5, 31 (1981). 

T.-i. Wang and S. F. Clifford, J. Opt. Soc. Am., 65, No. 8, 927 (1975). 

T.-i. Wang, K. B. Earnshaw, and R. S. Lawrence, Appl. Opt., 17, No. 3, 384 (1978). 

S. A. Benton, Photogr. Sci. Eng., 21, No. 4, 177 (1977). 

A. G. Borovoi and V. A. Krutikov, Opt. Spektrosk., 40, No. 4, 728 (1976). 

A. G. Borovoi, Opt. Spektrosk., 54, No. 4, 757 (1983). 

Yu. N. Barabanenkov and M. I. Kalinin, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 29, No. 8, 913 (1986). 

L. A. Apresyan and Yu. A. Kravtsov, Theory of Radiation Transport: Statistical and Wave Aspects [in Russian], Nauka, 

Moscow (1983). 

M. Born and E. Wolf, Fundamentals of Optics [Russian translation], Nauka, Moscow (1970). 

J. Goodman, Statistical Optics [Russian translation], Mir, Moscow (1988). 

501 



17. 

18. 
19. 
20. 
21. 
22. 

A. Isimaru, Wave Propagation and Scattering in Randomly Inhomogeneous Media [Russian translation], Vols. 1 and 2, 

Mir, Moscow (1981). 
G. Van de Hulst, Light Scattering by Small Particles [Russian translation], IL, Moscow (1961). 
A. Yu. Potekhin, Dissertation, State Optical Institute, Leningrad (1991). 
A. F. Zhukov, M. V. Kabanov, and R. Sh. Tsvyk, Izv. Akad. Nauk SSSR, Ser. FAO, 21, No. 2, 147 (1985). 
T.-i. Wang, R. S. Lawrence, and M. K. Tsay, Appl. Opt., 19, No. 21, 3617 (1980). 
V. A. Donchenko and M. V. Kabanov, Scattering of Optical Waves by Disperse Media, Part 2, Particle System [in 
Russian], Sib. Div. Acad. Sci. USSR, Tomsk (1983). 

502 


