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INTENSITY FLUCTUATIONS OF LIGHT PROPAGATED IN SYSTEM 

OF LARGE SCATTERERS. II. MULTIPLE SCATTERING 

A. Yu. Potekhin UDC 538.56:535.36 

An equation is derived for the propagation o f  the autocorrelation function of  radiant intensity in an 
optically thick layer of  discrete scatterers with a prolate indicatrix. An effective method for its numerical 
solution is constructed. The autocorrelation function is computed for the l ight intensity in a medium 
containing large absorbing and scattering particles. Comparisons are made with known theoretical and 
experimental results. 

An autocorrelation function (ACF) for the intensity fluctuations of a wave field behind a layer of large scatterers 
was found and its qualitative features were discussed earlier [1]. A single-scattering approximation was used that was valid 
for trh < < 1, where tr is the extinction coefficient and h is the thickness of the scattering layer. Here we shall remove this 
constraint and take into account multiple scattering in such a medium. 

Similar problems have been solved [2-5] using an approximation of a delta-correlated random field (DCRF)* by 
extending it from the theory of light propagation in a turbulent medium to the case of a medium with particles. Svirkunov 
[2] introduced an equation for the statistical moments of the wave amplitude in a layer of optically soft, statistically 
independent particles. Conversely, Borovoi [3] examined optically hard particles. The scattered field was divided into 
shadow-forming and refracted parts and it was shown that first part, which is chiefly responsible for fluctuations, could be 
described in a direct-path approximation if the scatterers were large (2rR/X > >  1) and the layer thickness h < <  a/X, 

where a = 7rR 2 is the area of a particle and X is the wavelength of the light. If the layer is of greater thickness (h > a/X), 

small-angle diffraction must be taken into account, This idea was developed further by Barabanenkov and Kalinin [4], who 
took into account correlations in the locations of the scattering centers. Finally, Apresyan [5] recently examined the most 
general (and frequently encountered in practice [9]) case of the presence, along with arbitrarily correlated particles, of 
smooth refractive-index inlaomogeneities and derived an equation that covered all of the previous results. It must be noted 
that numerical solutions have not yet been obtained for the equations [2-5] for the fourth-order coherence function in a 
medium with particles. 

In all of the cited work, light propagation was described by means of a parabolic equation for amplitude. As is 
known [6], the DCRF method assumes that fluctuations of the dielectric constant are fairly smooth. This condition is 
satisfied only for optically soft particles [2, 5], and not for optically hard particles [3, 4], which makes the applicability 
limits uncertain. The first problem to be considered here is that of deriving an equation that would be suitable for optically 

hard and strongly absorbing particles. We shall employ nonclassical photometry [10], whose advantages in similar prob- 
lems was discussed earlier [1]. The second and principal problem is that of constructing an effective method for the 
calculation of intensity fluctuations under conditions of multiple scattering by optically hard or absorbing particles whose 
dimensions are not negligible. As a practical application, a numerically confirmed explanation is given for the results of 
the experiments of Trabka and Doerner [11], who detected large deviations of the variance of intensity fluctuations in a 
layer of "black" particles from those predicted by the direct-path model. 

The derivation of an equation for the ACF of radiant intensity in an optically thick layer of discrete scatterers is 
discussed and the main condition of its applicability is determined quantitatively in Section 1. In Section 2, this equation 

*Or a "Markov approximation" [6]. The terminology "DCRF," which was introduced by Kopilevich [7], is clearer, since 
it cannot be confused with the more-general version of a Markov approximation [8] used to describe light propagation 
in a two-scale random medium. 
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is defined concretely in a small-angle approximation for optically hard particles. In Section 3, it is compared with others 

[3, 4] and with a model [12] that does not take scattering into account, and the limits of applicability of this model are 
determined. A method for numerical solution of the obtained equation is described in Section 4. In Section 5, calculation 

results are presented and discussed and directly compared with experimental results. 
1. Transport  Equation for Radiant-Intensity Autocorrelafion Function. Let us examine the propagation in the 

positive direction of the z axis of an average radiant intensity (I(p, z, s)} and its ACF W(Z; p, s ; p ', s '), where p is the 
"transverse" radius vector of point r = (p, z), s = (s .L, Sz) determines the ray direction, s • is its transverse compo- 
nent, and the angle brackets indicate averaging. Just as earlier [1], we shall consider variable z to be a parameter. We shall 
employ the main idea of Chernov's "local method" [13], in which a single-scattering approximation is applied to an 
arbitrarily selected thin layer in the medium, which is assumed to be statistically independent from the remaining part of 

the medium. For this, it is necessary that 

v " 6 7  �9 1, (1) 

where l is the effective thickness of the scatterer [1] (which in the case of a large "black" particle is considerably smaller 
than its geometric thickness, since scattering comes down to "diffraction by the contour"). Condition (1) expresses in 
quantitative form Apresyan's "Condition 2" [5] and makes it possible to select a scale L such that 1 < <  L < <  cr--1 _< n. 

It follows from the inequality l < < L that in a layer of thickness L only a small fraction of the scatterers are located close 
enough to its boundaries to interact with the electromagnetic field beyond its limits. If we ignore these scatterers, we can 
assume that the radiant intensity I(z) is statistically independent of the scatterers that lie ahead on the luminous-flux path 
and, in particular, in the layer (z, z + L). The inequality L < <  0 - I  means that a single-scattering approximation can be 
used in this layer. Consequently, <I(z + L)) and W(Z + L) can be related to <I(z)) and W(z) using formulas obtained earlier 

[1], It follows from the inequality (~L < <  1 that in the layer in question the contribution of scattering to the total radiation 

flux is small, and we can use differential forms of the relationships between <I(z + L)) and W(z + L) and <I(z)) and W(z) 
(see Appendix). 

As a result, equations are obtained that generalize [2-5] in two aspects. Firstly, l(z) can be understood as the 

generalized [10] or the classical photometric intensity. In the latter case, expressing phenomenologically the scattering 
coefficient a(p, s ,  s '), we obtain a descriptiori of the situation in which the scatterers could be entire clouds [14, 15]. 
Secondly, we can go beyond the scope of a small-angle approximation if the difference of s z = cos0 from unity in (A. 10) 
is taken into account (for example, expand in powers of (sin 0) 2 [16]). Here, however, we shall restrict ourselves to 

solving the equation for the ACF of the generalized radiant intensity in a small-angle approximation. 
2. Small-Angle Approximation in Statistically Homogeneous Problem for Large Optically Hard Panicles, We 

shall define Concretely the form of the obtained equations in a small-angle approximation (s z = 1) for the case -- exam- 

ined in detail earlier [1] --  in which scattering is chiefly due to diffraction by the particle contour, where the location of a 
particle in the layer and its illumination are statistically uniform. With allowance for (A. 11), Eq. (A.8) becomes a small- 

angle radiation-transport equation (RTE): 

(a /az  + or) <z(z ,~ )>  : ,r^ [ x ( l ~  - ~[I) <z(z, ~.)> aas[, 
~2 (2) 

where A is the scattering albedo and X(') is the indicatrix. The solution of this equation in quadratures is well-known [17]: 

where 

~a 

G(z,q) - e-~ ~o p exp[~AX(p)z] Jo(pq)dp. (3) 

The tilde indicates the Fourier transform of the angle variable: 

?(/3) ~ [ [ ( ~ ) e x p ( - i P ~ ) d Z s ~ "  (4) 
~R 2 
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Let us define Eq. (A. 14) concretely. On the basis of (A.5) and (3) we conclude that/~ and G are commutative, and/~G = 
/) follows from (A. 15). Converting in (A. 14) to variables 

with allowance for (A. 11) we obtain 

.vp)Wo(Z ," " ~ ~( ,~ - ~', v - ~,')x ( a l a z  + ~, p, v, = ~ ~ 

(6) 

Equation (6) coincides in form with RTEs that take into account frequency redistribution, except that the analog of 
frequency v' is two-dimensional in our case. 

We shall examine the simplest case of circular monodisperse particles of radius R in a layer illuminated by a light 

beam with angular width ?: 

I ( p ,  O, s )  = /o'O(~' - st),  (7) 

where 19 is the Heaviside function. 
For the average radiant intensity, on the basis of (2) and (3) we have 

ca  

-~).ro(pS )dp} - ~r (z, ;~), (8) 

where J0,1(y) are Bessel functions. 
The optical signal E was expressed in terms of radiant intensity I earlier [1]. We shall find its ACF. From (A.9), 

(A. 10), and (8) it follows that 

W " 2 2 ~ (h, ql ) c~(h, q2)H(I;~ - l/Ro)• E(p,~,w) = CnR o ~6" s - s z •  

(9) 
fqz ql ) (ql + qa)/2" (q2- ql)dap'd2q~d2qz 

(variables (5) are used here; just as earlier [1], ~ is the aperture angle of the receiver andf  is the location of the plane of 
its best focus)i 

3. Comparison with Wave Theory and with "Direct-Path" Model. We shall show that Eq. (6) is equivalent to 
an equation proposed by Borovoi [3]. Applying Fourier transform (4) tO both sides of (6) for each of the angle variables, 

we obtain 

O = ~(~ ,q ,p )  Wo(z,p,~L~ ) <r ~ ( ~ , q , p ) / ~ ( , q , p ) ,  
- - ~ ~ ( 1 0 )  

where 

~r -- ~) + ~)2' ~) -- (~)2- ~))12. (I1) 

Formulas for function/~ were presented earlier [1]. 
Advantages of Eq. (10) over (6) include the absence of an integral term and the fact that it can be solved indepen- 

dently for each -q, if ~ is considered a parameter. Its main shortcomings include the presence of second derivatives and the 
need for a four-dimensional Fourier transform to convert to radiant intensities. 

From (A.9), (A.I0), (3), and (11), 

~--exp[2,rz- crAz(~(p~} + ~(P~))]~'o' 
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We introduce the function F 4 (]'1' ~'2' }'3' -~,) --" ~ + $,' ' where 

y2. y3. - L ,  q § 2p L ,  
2R - 4RR ' 2R - 

Considering that :5 + Y2 + -~3 + ~', = o. we have 

[as~ § ' [v ~ _ ~2 - v~ §  ~) § 2 ~ ] r  - -o-~r .  
21~R 2 yl y2 y3 y4 (12) 

Equation (12) coincides with the equation for the fourth statistical moment of the wave field obtained by Borovoi [3]. They 
coincide because the small-angle approximation that we used to move from (A. 15) to (6), just as the parabolic equation 
employed by Borovoi [3], is equivalent to a Fresnel approximation in the description of wave propagation in free space. 
Our derivation method has some advantages, however. Firstly, we did not employ the concept of the delta-correlated 
random field of the dielectric constant, which Borovoi [3] extended to the case of optically hard particles from the theory 

of light fluctuations in a continuous turbulent medium [6]. Accordingly, the constraints on the magnitude and "abruptness" 
of the dielectric-constant fluctuations that are characteristic of this theory lose significance. Secondly, more-general 
equations are derived (see Appendix), which, in particular, enable us to go beyond the limits of a small-angle approxima- 

tion. 
Equations (6) and (10) permit passage to the limit of a model of the fluctuations of light transmitted by a layer of 

particles, which is known in photography as the "random-disk model" [12] and in atmospheric optics corresponds to the 
"direct-path approximation" [3]. This model does not allow for deformation of the scattered wave in its propagation inside 
the layer, which corresponds to the solution of Eq. (10) without the term iVpVpWo: 

~/o ( h ,  p ,  p ,  q )  = I ; ( e x p ( n a ~ ( p , p , ~ / ) )  - 1), (13) 

where n = nvh is the number of scatterers per unit of layer surface. Equality (13) corresponds to the formula for the ACF 
derived by Benton [12] and is widely used in atmospheric optics [18]. The method of its derivation allows us to determine 
the limits of applicability of this approximation. 

In fact, the discarded term iVpVp = W o is equal in order of magnitude to Wo/poPo, where P0 and Po are the 
characteristic scales of variation of W 0 with respect to variables p and p.  Considering this term as a small correction and 

integrating (10), we see that the relative error is on the order of h/poPo. It follows from (7) that the characteristic scale of 
[ w variation is equal to ~-1,  and it is apparent from the earlier formulas [1] that the scales of ~ variation with respect p 

and p are equal to R and kR, respectively. Thus, P0 - m i n ( 7  -1, kR) and Po - R, and for the validity of approximate 

solution (13) we obtain the condition 

h << min(R/7, RRZ). 

If (6) is considered an RTE, it is easy to understand the physical meaning of this condition. It consists of the reqmrement 
that the layer thickness h be small enough to make the displacement of the direct (--yh) and scattered ( -h /kR)  rays 

negligible. 
4. Method for Numerical Calculation of Intensity ACF. Now we shall solve Eq. (10) beyond the framework of 

the direct-path approximation. A similar equation was solved earlier as applied to problems of light propagation in a 

turbulent atmosphere. 
The first numerical solutions for the fourth-order coherence function were obtained [19] by means of a net method, 

which, however, was not economical in the sense of Samarskii [20], since the explicit difference scheme used [19] was not 
unconditionally stable. A stable inexplicit scheme has been used [21-23], but only for a two-dimensional scattering 
medium. Direct numerical modeling of realizations of the dielectric-constant field and phase advances has been employed 
[24-26]. Using a Fourier transform, Elepov and Mikhailov [27] reduced a DCRF equation to a transport equation similar 
to (6), which was solved by statistical modeling. But in the case of scattering by particles, the integral kernel/3 in (6) h a s  
an oscillatory nature, but, as is known [28], in the presence of bipolar contributions to the solution; this method loses 
effectiveness, unlike a net method. 
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We shall construct a net method for solution of Eq. (10), in which for simplicity we shall assume q = 0, which 

corresponds to the case in which we are interested only in the correlation function of the radiant intensity W(p ,  v ,  w),  

which is integrated within infinite limits with respect to v .  This is entirely sufficient for calculation of the ACF of the 
signal W E is the aperture angle of the receiver a is much wider than the brightness body in the medium: in (9), i~ varies 
slowly in comparison with W0, and [c~ can be removed from under the integral sign. The receiver in this case detects the 
total intensity. We denote the relative ACF of intensity as 

w (p) = w(,~, o, o)/<E> ~ = C,o(~, ~,, o. o)/z~. 
As in the case of the Schr6dinger equation examined by Samarskii [20], it can be shown that an explicit difference scheme 
for Eq. (10) is unstable. An inexplicit scheme for a similar equation has been used [21-23] to examine a two-dimensional 
model of a turbulent medium and develop an efficient algorithm for solution of the corresponding system of difference 
equations. With transition to a three-dimensional medium, the dimensionality of the space in which the operator VpVp acts 
increases from 2 to 4, and the algorithm of Liu et al. [22] loses strength. For this reason, we turned to a sum-approxima- 
tion method [20]. It requires that the multidimensional differential operator in the equation to be solved be represented as 
a sum of one-dimensional operators, for which we move to new variables: 

= + b / k R ,  = - k :  

. )  

p" =- I p* I, p"  

Then (10) can be written as follows: 

where 

~ ) =  o - i . g  v ~ 2 _ ~.~ ( p ,  - 7 p . )  

" I~"I, . = =ooo,[c ( . < . ) '  - ( , / , , > ' v ( , ' , ' > ] .  

= b ( v  + ,~) ,  v l . c =  o = o, (14) 

= a-7 - o ~ o - 7  p' ~ F  " 7 P " ~  + 72 pT.~ a ~  (15) 

r = oz is the optical thickness, g = l/(akR 2) is a parameter that characterizes the diffraction spreading of the light beam 

between successive acts of scattering, 

b(p', o.", ~o) - t~(R(~ + ~')12, 0, 

(note that explicit expressions for/3 were presented earlier [1]), and 

v ( p ' ,  p", ~o) = ~o(-Ct(r, R(~ '  + ~" )12,  

-) -) 

~ ( p ' , p " , ~ )  = ~'(o,  o, k n ( p '  - p" )12)  

kR(~' - p")12) 

o, kR(~' - ~")12), 

- - 

(16) 

(17) 

The operator b in (15) is represented as a sum of one-dimensional differential operators, which permits the use of 
a decomposition method [20]. Without providing a detailed description of the locally one-dimensional difference scheme, 
which was done earlier [29], we shall point out its main steps. A net is introduced that is uniform with respect to each of 
the variables; the second-order differential operators in (15) are replaced in a standard manner by three-point difference 
operators, after which a "layer-by-layer" (with respect to r) solution is carried out. In each layer, instead of a multidimen- 
sional difference equation, a chain of one-dimensional equations with difference operators that approximate the one- 
dimensional components of operator/)  is solved. An inexplicit scheme is constructed for each equation of this chain and is 
solved by a drive-through method [20]. 

The stability of such an algorithm has been proved, the degree of approximation has been determined, and the 
problem of the boundary conditions for w for large p' and p" has been considered earlier [29]. Below we shall examine the 
results Of numerical calculation and their physical consequences. 
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Fig, 2. The curves correspond to those in Fig. 1. 

5. Dependence of Optical Fluctuations on Parameters of Scatterhlg Layer. The procedure described in Section 
4 was used to calculate the ACF of light intensity Wi(p ) in an optically thick layer with circular absorbing particles. The 
calculation accuracy was controlled by variation of the external boundary conditions and the mesh size of the grid~ Below 
are the intensity ACF for layer optical thickness ~- = 4 (the results were similar for other thicknesses) and the dependence 
on r of Selvin's parameter [11, 12], which determines the standard deviation of the optical density a D for reading from a 
large area A: 
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Fig. 4, Dot--dash curves)"disk modet" [12]; dashed curves) "disk model" without "overlap effects" [12]; 
points) approximation of experimental data [i1]; solid curves) calculation results: a) g = 0,5; b) g = t; I) 

~/, = 0; 2) 3", = 0.5; 3) 7* = 1; 4) 7- = 2. 

= = dpJ , 
(18) 

The first series of calculations corresponds to collimated illumination: 7 < < 71 ---- X/2R, In Fig. 1 is the intensity 
ACF referred to the square of the average intensity for various values of the light-scattering parameter g: The dot--dash 
curves correspond to a direct-path model [3] that ignores scattering, With an increase in parameter g, an increase in the 
central maximum of the ACF is observed, which is explained by the appearance of a speckle structure vAth a long free 
path lp -= 1/a; conversely, this structure is "blurred" when collisions are frequent (i.e., with short lp). Figure 2 shows 
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Selvin's parameter as a function of optical thickness for various g values; for comparison, the dot--dash curves represent 
corresponding "disk models" [12] with areas of a'R 2 (lower curve) and 2rrR 2 (upper curve). A doubled "disk" area 

corresponds to a doubling of the energy from the incident beam with allowance for diffraction (along with absorption). The 
actual curve of Gs(r) is close to the lower and upper curves, respectively, for small and large g values, which is obviously 
due to scattering: for small g, during the free-path time, most of the scattered photons do not deviate appreciably from a 

direct path. 
The second series of calculations was performed for illumination that was not strictly collimated: 3  ̀ >__ 3`1. The 

normalized intensity ACF is shown in Fig. 3 for various values of parameters g and 7* - 7/3'1- It can be seen how the 
central peak of the ACF, which corresponds to a speckle structure, is suppressed and the correlation radius is simulta- 

neously increased with an increase in 7,. 
In Fig. 4 is a graph of parameter (18) as a function of optical thickness for various values of g and 7*. The 

clot--dash curves correspond to the model without scattering [12]. It has been found [11] that the experimental dependence 
Gs(r) is best approximated by the model without scattering, in which the absorbing disks have an absorption coefficient of 
0.41 and dimensions that exceed the true particle dimensions by a factor of 2 or 3. The corresponding dependence, which 
is represented by points in Fig. 4, practically coincides with one of our calculated curves, from which it is apparent that 
the deviations from the model [12] are explained by multiple small-angle diffraction by the particles. This conclusion was 
first advanced elsewhere [30]. It follows that from an examination that the values of the fitting parameters found by Trabka 

and Doerner [11] are not universal but are functions of the experiment conditions, since the graph of Gs(~;) are affected by 
the aperture angle of the illumination and parameters g and 3,1, which characterize the scattering. 

Conclusions. Under fairly general assumptions about the effect of scatterers on the radiation, an operator equation 
is obtained for the propagation of the autocorrelation function (ACF) of radiant intensity. The concrete definition, of this 
equation as applied to optically hard or absorbing particles using a small-angle approximation results in an equation that 
was introduced earlier [2, 5] for optically soft particles and extended [3, 4] to the case of optically hard panicles by a 
model approach. A procedure for calculation of the radiant-intensity ACF was developed and implemented that can be 
effective for both disperse and turbulent scattering media. 

The calculation results provide information on the autocorretation functions of optical signals recorded behind a 
layer of chaotically situated large absorbing particles, which is necessary for interpretation of the results of optical mea- 
surements in stochastic media with discrete scatters and for prediction of the noise properties of such optical media. 

APPENDIX 

Derivation of Equations for Autocorrelation Function 
of Generalized Radiant Intensity in Disperse Medium 

Let, as earlier [1], in the absence of scatterers 
^ -* 

I(z + &Z) : T(Z, &z)I(z), l(z) -= I(p, z, S ) ,  (A.I) 

and gr n is the operator for scattering and absorption by the n-th particle [1], which is an integral operator with respect to 
the angle variables, with kernel %(0 - on, s ,  s '). Then from the single-scattering formula 

z(a)  = ~(o, h)z(o)  + ~ ~(z~ a - =~ z 2 z ( o )  
n 

it is easy to formulas for the average radiant intensity 

" ] 
</(hi> : (O,h) + h - z)sr(o,z)dz -<I(0)>, (A.2) 

where ~ is an integral operator for 7 with kernel 

s(.~. F) f " >d 0- = n < % ( o , s ,  s') 2* (A.3) 
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Similarly, for  the radiant-intensity ACF 

w(z: A~; ~',~'~ =- ~ c ; , , z , ; ~ & . z . ; ' ~ , -  x(z: ;~.~: ~ ' . ; ' ~ .  

where 

we find [1] 

lw(z; p , $ ;  p ' , $ ' )  = <I(P,Z,S)><I(P', z,~')>, 

hA 

W(h) 

+ o T ( Z .  h - z ) ' S ' T ( O ,  z ) d z  s T(0, h) .w(o)  * (A.4)  

+ T(z,h-z) | T(z'h-z) .B.(T(O,Z) | T(O, Zl)dZ .(W(O) + l(0)l, 
o 

where | represents an operator direct product, W and I w are considered functions of the pair of points (p,  s ; p ', s '), 
which are functions of the parameter z, and the operator of scattered-radiation covariance/~ is an integral operator with 
respect to the angle variables ( s ,  "[9 with kernel 

B ( ~ . ~ . . ~  ~- ~ . . . ; .  ,- ~ ' " )  = nv<O" ( ~ + p". s. S")crn( ~' + p". S ' . s " ' ) > d 2 o  ". (A.5)  

The conditions under which (A.2) and (A.4) were derived were explained in greater detail earlier [1]. 
It follows from the inequality oL < <  1 that the integral terms in these equations are small. We shall linearize 

them with respect to the parameter oL: 

< I ( z  + L ) >  - < I ( z ) >  = ( T ( z , Z )  - 1 + LS)  < I ( z ) > ;  

(A.6) 

w(z + L) - W(z) = (r(z,n) * T(z,L) - I)W(z) + 

(A.7) 
+ Z[~(z,Z) | ~(z,r)].[(~ + ~)w(z) + ~(w(z) + z(z))l, 

where S1 = ~ | 1 and $2 -~ 1 @ S. 
It is obvious that 7"(z, 0) = 1. We shall assume that operator T(z, Az) is differentiable with respect to parameter Az 

and that the layer thickness L is small enough that f'(z, L) has little effect on functions (/) and W: 

I[(@(z,L) - 1)<l>]J << JJ<l>~, JJ(Tx a (z, L) - 1)W]] << )]WJ]. 

We move to differential forms of Eqs. (A.6) and (A.7): 

a<I(z)>/dz = (t(Z) + S)</(Z)>: (A.8) 

= ^ § w(z) + B(W(z) + I (z)), (A.9) 

where tl  = f(z) | 1, t2 = 1 | i(z), and 

~ ( z )  d r ( z ,  e). I 
= dC ~: ...~ + O" 

If the scatters are located in a homogeneous nonabsorbing medium, then, according to (A. 1) and (A. 10), 

Z 

27o 

(A. 10) 

(A.11) 



It follows from (A.3) that operator S describes both the scattering and absorption of light by discrete inhomogeneities; 
therefore, (A.8), with allowance for (A. 11), becomes the classical transport equation for the average radiant intensity [17]. 
Note that here it is derived without use of the concept of an elementary volume (such a result has been obtained for 
optically soft particles [5]). 

Let us consider the case of uniform illumination and a statistically homogeneous scattering layer. Then i(/) = 0, 

and 

In~(z; ~ .;' s' G(z) <.r >, <l(p,z,s)> = s, )<I(~',0, " )>dQ~, -= (0) (A.12) 

where G is the surface Green's function, which satisfies the transport equation 

with the singular boundary condition 

Representing function W as 

4~(z) _ sG(z) 
dz 

;(o; ;-, ~') = on(;', -;' ). 

W(z) = (G(z)| (A.13) 

from Eqs. (A.8), (A.9), and (A. 12) we obtain 

dW ~ (z) 
. bc)wo(z ) + .~cz (o), (A.14) 

where 

BG ~ (G(Z)|174 (A.15) 

If function G is known or is easily computed, Eq. (A. 14) can be more useful than (A.9). 
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