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We study the impact of plasma correlation effects on nonresonant thermonuclear reactions for various stellar
objects, namely in the liquid envelopes of neutron stars, and the interiors of white dwarfs, low-mass stars,
and substellar objects. We examine in particular the effect of electron screening on the enhancement of ther-
monuclear reactions in dense plasmas within and beyond the linear mixing rule approximation as well as the
corrections due to quantum effects at high density. In addition, we examine some recent unconventional theo-
retical results on stellar thermonuclear fusions and show that these scenarios do not apply to stellar conditions.

c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

Thermonuclear reactions play a crucial role in stellar evolution. Nuclear fusion rates in stellar interiors can be
significantly enhanced over the binary Gamow [1] rates because of the many-body screening effect in the dense
plasma (first recognized by E. Schatzman [2]; for reviews, see [3, 4]).

In the envelopes of neutron stars (NSs) and interiors of white dwarfs (WDs), where the electrons are strongly
degenerate, the screening effect is usually treated under the assumption that the electron gas can be considered
as a uniform “rigid” background, and the screening is provided solely by ions. On the other hand, in ordinary
stars this effect is often treated with Salpeter formula, which implies Debye screening (see, e.g., Ref. [5] and
references therein). The latter approximation is applicable in a gaseous phase. In the present article, we consider
the electron screening effect on nuclear fusion at arbitrary electron degeneracy and arbitrary Coulomb coupling
of ions in gaseous and liquid plasmas.

The influence of the electron polarization on the enhancement of nuclear reaction rates has been studied in
some detail in several papers [3, 6–9]. At the time of those studies, uncertainties in the reaction rates due to
other factors, viz. quantum effects and deviations from the linear mixing rule in strongly coupled plasmas, as
well as theoretical uncertainties in the nuclear effective potentials at short distances, were more important than
the electron-screening effects. For this reason, more recent works were aimed at reducing these uncertainties
and mostly neglected the electron polarization (e.g., [10–12]). In this paper, we show, however, that the effect of
the electron-polarization on the enhancement factor of the nuclear reaction rates is typically of the same order of
magnitude as the other recently proposed corrections.

In Sect. 2 we compare different approximations for the enhancement factors. In Sect. 3 we describe the results
of the application of the electron-screening correction to the nuclear reaction rates in stellar conditions. In Sect. 4
we discuss the origin of discrepancies between our results and some other results published recently. Sect. 5 is
devoted to the conclusion.

2 Theory

A review of the theory of nuclear fusion in stars with extensive bibliography was given in the Nobel lecture
by Fowler [13]. One should discriminate between the reactions related to nuclear resonances and nonresonant
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398 A.Y. Potekhin and G. Chabrier: Electron screening effect on stellar thermonuclear fusion

reactions. We consider only the latter ones. It is customary to write the cross section of binary nuclear fusion
reactions in the form

σ(E) = e−2πη S(E)/E, (1)

where E is the center-of-mass energy of the reacting nuclei “1” and “2”,

η =
√

ER/E, ER = (Z1Z2e
2)2 m12/2�

2, (2)

Zje is the charge of nucleus “j”, e is the elementary charge, m12 = m1m2/(m1 +m2) is the reduced mass, and
S(E) is a function called “astrophysical factor.” Then the reaction rate (the number of fusion events per unit time
in unit volume) in the absence of plasma screening is given by

R12 = w12 n1n2

√
2

m12

∫ ∞

0

e−2πηS(E)w(E) dE

/∫ ∞

0

w(E)
√
E dE, (3)

where nj is the number density of the ions of type “j”, w(E) is the statistical distribution function of the center-
of-mass energies of the reacting nuclei, and the factor w12 accounts for statistics: w12 =

1
2 , if nuclei “1” and “2”

are identical; otherwise w12 = 1. With Boltzmann statistics, w(E) = wB(E) ≡ T−1 exp(−E/T ), where T is
temperature in energy units.

In order to take the plasma screening into account, it is convenient to write the radial pair-distribution function
for ions in the form [14]

g12(r) = exp
(− Z1Z2e

2/rT
)
exp

[
H12(r)/T

]
, (4)

where the first factor is the Boltzmann formula for an ideal gas, while the second one shows how the probability
of separation of two chosen ions is affected by the surrounding plasma particles.

It is convenient to introduce parameters

Γ12 = Z1Z2e
2/a12T , a12 = (a1 + a2)/2, τ = 3(π2ER/T )

1/3, ζ = 3Γ12/τ. (5)

where aj = (3Zj/4πne)
1/3 are the ion-sphere radii, and ne is the electron number density. As shown in Ref. [4],

under the condition ζ � 1 the function H12(r) slowly varies on the scale of the classical turning point distance
and the nuclei behave as classical particles. Then the reaction rate with allowance for the plasma screening is
approximately given by R12 exp(h), where h = H12(0)/T and R12 is expressed by Eq. (3) [6]. Furthermore,
one can prove [14–17] that H12(0) equals the difference between the excess free energies Fex before and after an
individual act of fusion. Here, Fex = F − Fid, F is the total Helmholtz free energy, and Fid is the free energy of
the ensemble of noninteracting ions and electrons. In the thermodynamic limit this gives the relation

h =

(
∂

∂n1
+

∂

∂n2
− ∂

∂n3

)[
nionfex({nj}, ne, T )

]
, (6)

where nion =
∑

j nj is the total number density of ions, including number density n3 of composite nuclei, which
have charge number Z3 = Z1 + Z2 and mass m3 ≈ m1 +m2, and fex ≡ Fex/nionV T is the normalized excess
energy.

In the linear-mixing approximation,

fex ≈ flm({nj}, ne, T ) ≡
∑
j

xjfj(ne, T ). (7)

Here, xj ≡ nj/nion denotes the number fractions, and fj(ne, T ) is fex for a plasma containing only the jth type
of ions. In this approximation, the enhancement exponent h becomes

hlm = f1(ne, T ) + f2(ne, T )− f3(ne, T ). (8)

In the model of a rigid electron background, this reduces to

hlm,ii = fii(Γ1) + fii(Γ2)− fii(Γ3), (9)
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where fii(Γ) is the normalized excess free energy of the one-component plasma and Γj = (Zje)
2/ajT are

coupling parameters of individual ion species. In the ion sphere approximation, fii(Γ) = −0.9Γ, and then hlm,ii

becomes [6]

hS = 0.9 (Γ3 − Γ1 − Γ2). (10)

The linear mixing rule works in strongly coupled Coulomb plasmas, i.e., at Γj � 1 [18, 19]. In the opposite
limit Γj � 1 (∀j), the Debye-Hückel approximation is applicable: FDH = −V T/12πD3, where D is the
screening length:

Fex ≈ − V T

12πD3
, D−2 = k2TF+D−2

ion, D−2
ion =

4πe2

T

∑
j

njZ
2
j , k2TF = 4πe2

∂ne

∂μe
, (11)

where μe is the chemical potential of the electron Fermi gas. Using Eq. (24) of Ref. [20], one can write
kTF(ne, T ) in an analytic form. In the two limiting approximations of nondegenerate electrons (k2TF → 4πe2ne/T )
and rigid background (kTF → 0), Eqs. (6) and (11) give the Salpeter formula [6]

hDH = Z1Z2e
2/DT . (12)

Salpeter and Van Horn [21] proposed a simple interpolation between the Debye-Hückel and strong-coupling
limits:

hSVH =
hS hDH√
h2
S + h2

DH

, (13)

where hS and hDH are given by Eqs. (10) and (12), respectively. A more elaborated approximation for the en-
hancement factor between the Debye-Hückel and strong-coupling limits was constructed for the rigid background
model in Ref. [12].

These analytic approximations can be compared to the accurate result. We write the normalized excess free
energy in the form fex = flm+fmix, where flm is given by Eq. (7), and fmix is the correction to the linear-mixing.
Then Eq. (6) gives

h0 = hlm +
dfmix(x1 + ξ, x2 + ξ, x3 − ξ)

dξ

∣∣∣∣
ξ=0

, (14)

where hlm is given by Eq. (8). The right-hand side of Eq. (14) can be written in an analytic form using our fitting
formulae for fex(ne, T ) and fmix({xj}, {Zj};ne, T ) (see [22] and references therein).

Equation (14) is obtained assuming that H12(r) ≈ H12(0), which is true for small values of the parameter ζ
defined in Eq. (5). When this condition is not satisfied, the classical enhancement exponent h0 should be corrected
for the quantum effects. We denote this corrected value hq. Alastuey and Jancovici [24] showed that hq < h0 and
developed a perturbation expansion of hq in powers of ζ. More recently, Militzer and Pollock [25,26] performed
simulations of the contact probabilities in the quantum regime and extended numerical results beyond the appli-
cability range of the perturbation theory [24]. Chugunov and DeWitt [11] found that the quantum effects can be
described in the linear-mixing, rigid-background approximation by substitution of Γ̃j = Γj/t12 instead of Γj into

Eq. (9), where t12 =
[
1 + c1ζ + c2ζ

2 + c3ζ
3
]1/3

, c1 = 0.013 z2, c2 = 0.406 z0.14, c3 = 0.062 z0.19 + 1.8/Γ12,
and z = 4Z1Z2/(Z1+Z2)

2. An analogous correction is not known for the polarizable background. Fortunately,
the quantum effects are important only in the domain of high densities and relatively low temperatures, whereas
the deviations from the linear-mixing and rigid-background approximations are most important in the opposite
case. Therefore, in order to take all these effects into account, we multiply the classical expression (14) by factor
q = h̃lm,ii/hlm,ii, where hlm,ii and h̃lm,ii are given by Eq. (9) with Γj and Γ̃j , respectively.

3 Results

3.1 Degenerate stars

The electron-screening effects on the enhancement factors and ignition curves for carbon and oxygen fusion
reactions in the liquid layers of WDs and NSs were studied in Ref. [27]. Under the typical conditions in these
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400 A.Y. Potekhin and G. Chabrier: Electron screening effect on stellar thermonuclear fusion

layers, the electron screening proved to increase the enhancement exponent h by several to tens percent, which
translates into a factor of a few for the reaction rate ∝ eh. The deviations from the linear-mixing approximation
have the opposite effect of a similar magnitude. Therefore, the corrections beyond the linear mixing [12] must
be considered only together with the electron polarization. In some cases the two effects nearly compensate each
other.

All the discussed corrections, except the quantum one, proved to have almost no effect on the positions of
the carbon and oxygen ignition curves. In the WDs, the heat produced by the nuclear reactions is evacuated
by neutrino emission. In this case, the position of the ignition curves may be even stronger affected by the
current uncertainties in the neutrino reaction rates in dense plasma environment than by the departures from the
linear-mixing approximation or by electron-polarization corrections. In the NSs, the heat is not only taken away
by neutrinos, but also effectively sinks through the envelope. In the latter case, the one-zone approximation of
the heat diffusion is often applied to the analysis of stability of the nuclear fusion (e.g., Refs. [28, 29]). We
have found [27] that it is more important to go beyond the one-zone approximation than to introduce all other
corrections mentioned above. In magnetars (NSs with superstrong magnetic fields of 1014 – 1015 G) an account
of the magnetic modification of the heat transport coefficients is equally significant.

3.2 Low-mass objects

As another astrophysical example, let us consider the electron-screening effect on nuclear fusion in low-mass
stars (LMSs) and substellar objects (SSOs; see Ref. [30] for a review). Important indicators of the ages and
masses of these objects are the so called lithium and deuterium tests, which are based on depletion of lithium and
deuterium by nuclear burning.

Fig. 1 Plasma enhancement exponents for deuterium fusion in hy-
drogen medium as a function of mass density at T = 106 K (up-
per panel) and 105.5 K (lower panel) in different approximations.
Three lines show results for classical nuclei: (1) h0 in the linear-
mixing, rigid background approximation [Eq. (9)] (dotted lines),
(2) h0 for the linear mixing with polarizable electron background
[Eq. (8)] (dot-dashed lines), (3) h0 beyond the linear-mixing ap-
proximation with a polarizable electron background [Eq. (14)], the
most general classical approximation] (short dashes). The other
two lines take into account quantum corrections: (4) the fit of
Ref. [11] for hq (long dashes), and (5) the approximation hq = qh0

(with q defined in the text), which includes both the ionic and elec-
tronic screening contributions and takes both the quantum effects
and the deviations from the linear-mixing rule into account (solid
lines).

Figure 1 displays the enhancement exponent h, normalized with respect to hSVH, for the reaction p + d →
3He+γ, in different approximations. The accurate result is compared to the result of application of the linear-
mixing approximation in the cases of polarizable electron background according to Eq. (8) and rigid background
according to Eq. (9), with and without the quantum corrections.

We note that the simple Salpeter – Van Horn approximation (13) performs surprisingly well: its accuracy in
the LMS-SSO conditions, as we see in Fig. 1, is within a few tens percent. We recall that in WD-NS conditions
its accuracy is still better, typically a few percent [27]. The quantum effects in Fig. 1 are significant only at
ρ� 103 g cm−3. From the lower panel of Fig. 2 we see that such densities are not reached in the LMS-SSO
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conditions, therefore the quantum effects do not play role in theoretical models of nuclear fusion in LMSs and
SSOs (unlike the NS-WD case [27]).

Fig. 2 Physical conditions (at two ages) and enhancement expo-
nents (in two approximations) at the centers of LMSs and SSOs
with the solar abundance of heavy elements. In all three panels
solid and dashed lines are drawn at the ages 5 Gyr and 100 Myr, re-
spectively. The top and middle panels reproduce, respectively, the
central temperature and density along the LMS-SSO mass range.
The bottom panel shows the normalized enhancement exponent
h/hSVH for the deuterium burning along these temperatures and
densities with (upper pair of curves) and without (lower pair of
curves) account of electron polarization.

Figure 2 shows the dependences of LMS-SSO central densities and temperatures at two characteristic ages of
these objects (the two upper panels, from Ref. [30]), together with the respective normalized enhancement expo-
nents h/hSVH with and without the rigid-background approximation. As previously, we see that the corrections
beyond the Salpeter – Van Horn approximation are of the same magnitude for the rigid and polarizable electron
backgrounds (to ∼ 30% in this case), but of different sign.

Fig. 3 (a) Ratios of the deuterium burning rates with account of electron screening to the rates in the rigid-background model
at the same temperatures and densities as in Fig. 2. The inset shows the absolute reaction rates per one nucleus with account
of electron screening (solid line for age 5 Gyr, dashed line for 100 Myr) and for the rigid background (dotted lines). (b) The
same for lithium burning.

www.cpp-journal.org c© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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This difference can translate into factors of a few for the reaction rate R12 ∝ eh in the objects of very small
mass, because they are relatively cool and therefore have a large factor h = H12(0)/T in their central parts.
Figure 3a demonstrates this for the SSO deuterium fusion. For masses M ∼ 10−2M�, the minimum mass for
D-fusion [30], where M� is the solar mass, the electron polarization effect changes R12 by a factor of 1.5 – 2.
This change does not significantly affect the deuterium depletion curves and therefore is unimportant for the
mass-age deuterium test. As seen from the inset in Fig. 3, the corresponding corrections are of the order of a
few×10−4M�, which is astrophysically negligible.

Figure 3b shows the rates of the reaction 7Li+p → 24He. This case is similar to the previous one, with the
difference that the latter reaction takes place for more massive objects. At very small masses the difference in the
reaction rates calculated with and without the allowance for the electron polarization is huge, but astrophysically
unimportant, because these rates are so low that one may neglect this reaction altogether. At contrast, for M ≈
0.07M� this reaction is crucially important for stellar diagnostics, but in this case the polarization correction is
smaller, and it translates into a negligible correction for the mass-age relation.

4 Remarks on some controversial approaches

4.1 Yukawa potential

For an arbitrary degree of degeneracy (but at not too strong Coulomb coupling; see [23]), the screened interaction
between ions is approximately described by the Yukawa potential (Z1Z2e

2/r) exp(−r/D), where D is given
in Eq. (11). Pollock and Militzer [25] studied the contact probabilities of Yukawa systems with the intention
to simulate the electron-screening effect (see also Ref. [16]). Based on these simulations, they arrived at the
conclusion that electron screening “reduces the enhancement effect,” in obvious contradiction with our findings
above and with the earlier results [3, 8, 9, 14, 21].

We note, however, that the Yukawa model corresponds to the Thomas-Fermi limit, ε(k) ∼ 1 + (kTF/k)
2,

for the static dielectric function ε(k), which is only justified at k � kTF (see, e.g., [31]). Therefore, this
model is inappropriate at short distances (i.e., large wavenumbers k). In particular, it is not applicable for the
evaluation of the screening potential at zero separation, H12(0). Therefore, a Yukawa system cannot correctly
reproduce the effect of electron polarization on the nuclear fusion rates. This fact was recognized by Ichimaru
[4], who mentioned two opposite effects of electron screening: first, the binary repulsive potentials between
reacting nuclei are reduced by electrons (“short-range effect”), which increases H12(0); second, the reduction of
particle interactions by the screening affects the many-body correlation function in such a way that it decreases
H12(0) (“long-range effect”). In real electron-ion plasmas (without the Yukawa approximation) the first effect
overpowers the second one. The Yukawa model grasps the second effect, but misses the first, dominant one.

4.2 “Quantum tail” in energy distribution

Starostin and coworkers [32–36] noted that in dense plasmas, in addition to the potential lowering that results in
the enhancement factor discussed above, there is another effect capable to modify the reaction rates. Because a
state with definite momentum has a finite lifetime, its momentum distribution (or, equivalently, the distribution
of kinetic energies) is broadened due to Heisenberg uncertainty principle. Therefore the probability to find a pair
of nuclei in a state with a high center-of-mass energy is larger than predicted by the Boltzmann statistics. These
authors use in Eq. (3), instead of wB(E), a modified distribution function

wmod(Ep) =

∫ ∞

0

wB(E)φ(E,Ep) dE, (15)

where φ(E) describes the quantum broadening of the kinetic energy, defined through the particles’ momenta p.
The authors suggest to use for this broadening the spectral function [37, 38]

φ(E,Ep) = (γ/π)
/ [
(E − Ep −Δ)2 + γ2

]
, (16)

where γ = γ(p) = �νcoll is a collisional width, νcoll is an effective collision frequency, and Δ is the collisional
energy shift, which is inessential for our discussion and will be suppressed. The use of the Lorentz profile (16)
in Eq. (15) implies the necessary condition γ � T , which is satisfied in all examples discussed hereafter. For
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Coulomb scattering of a light particle with charge Z1e, momentum p and velocity v from ambient heavy particles
with charges Z2e, the collision frequency is νcoll = n2〈σcollv〉 =

[
4πn2(Z1Z2e

2)2/p2v
]
Λ(p), where σcoll is

an effective collisional cross section and Λ(p) is a Coulomb logarithm. For estimates we will use this formula
for any particle masses and adopt the nonmagnetic nonrelativistic limit of the transport Coulomb logarithm from
Ref. [39]: Λ(p) = 0.5 ln(1+u)−0.5u/(1+u), where u =

[
(D2

ion+(2ai/3)
2)−1+k2TF

]
(�/2p)2 (numerically,

Λ ∼ 1 – 10 in the examples below).
In the limit γ → 0, the function φ turns into a Dirac delta function, and the Boltzmann distribution is recovered.

However, for finite γ and for energies much higher than the thermal energy, so that

Ep/T � ln(πE2
p/γT ), (17)

the exponential decay of wB(E) is overpowered by so called “quantum tail” wqt(Ep)→ γT/πE2
p . For nonrela-

tivistic Coulomb particles, γ(p) ∝ E
−3/2
p , therefore the tail decays as wqt ∝ E

−7/2
p .1

This approach was criticized by Bahcall et al. [5] and by Zubarev [41]. Bahcall et al. merely state that the term
d3p1d

3p2 in the quantum-mechanical expression R ∝ ∫ ∫
d3p1d

3p2 exp(−E/T ) |〈f |H|i〉|2 for the reaction
rate represents the density of states and should not be confused with the expectation values of particle momenta,
distributed according to wmod(Ep). While the statement is certainly true in general, the argument misses the
point because it says nothing about 〈f |H|i〉, which needs not be just a first-order perturbation matrix element.
Indeed, the kinetic Green function derivation of the distribution (15) [34, 38] implies that multiple scattering is
taken into account in addition to the fusion matrix element per se. Thus one may say that φ(E) is effectively
contained in |〈f |H|i〉|2 in the above expression for R.

Fig. 4 Power of the carbon fusion reaction as function of tem-
perature T at constant density ρ according to the conventional
calculation (solid lines) and with statistical averaging over mo-
menta including “quantum tails” in their distribution according to
Eq. (15) (dashed lines). For comparison, neutrino emission power
is shown by dotted lines. The upper line of each type corresponds
to ρ = 108 g cm−3 and the lower line to ρ = 0.1 g cm−3.

Zubarev [41] put forward another argument. He noted that the pp-fusion rates calculated with wB(E) and
with wmod(E) differ by three orders of magnitude for the Sun, and concluded that in the second case “one has
neglected the coupling between the various probability amplitudes of velocity which is introduced by the quantum
uncertainty.” These statements are refuted in [36], but if there were indeed such a large difference, the second
(nonstandard) method of averaging must have a flaw. Indeed, the agreement between the current stellar evolution
theory and observations does not leave room for such a huge change of the basic reaction rates.

Let us consider the fusion reaction 12C+12C → 24Mg, which plays a crucial role in the theory of WDs, red
giants, and accreting NSs. We calculate the astrophysical factor S(E) for this reaction using the most recent
effective potential model [42] derived from laboratory results. In Fig. 4 we show thermonuclear heat rates Qnuc

per unit volume as functions of T at densities ρ = 108 g cm−3 and 0.1 g cm−3, calculated with using the classical

1 The authors [36] obtain wqt ∝ E−4
p , because they replace v =

√
2Ep/m12 by

√
2E/m1 in 〈σcollv〉, which introduces an error

in Eq. (15) at Ep � T . However, this difference in the power index does not qualitatively change any results or conclusions. We note in
passing that the parallel to Kimball’s power law p−8 [40], drawn in [33–36], appears ungrounded, because the Kimball’s result is specific
to the distribution of fast particles scattered by a potential with asymptotic behavior ∼ r−1 at r → 0, whereas the collisional broadening is
present for any scattering potential [37].
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404 A.Y. Potekhin and G. Chabrier: Electron screening effect on stellar thermonuclear fusion

statistical weight wB(E) and the modified weight wmod(E). The conventional results show steep decrease with
decreasing temperature below T � 109 K. At contrast, the modified calculation gives a minimum at T � 109 K
and then an increase of the rate with decreasing T . The origin of this behavior is mathematically obvious.
At low T , the denominator in Eq. (3) remains determined by the Boltzmann part of w(E) and provides the
normalization ∝ √T , while the largest contribution to the numerator comes from the integration of Se−2πη with
the weight w ≈ wqt over the energies above the Coulomb barrier, which is temperature-independent. Thus the
ratio becomes ∝ T−1/2. The latter dependence is well discerned in Fig. 4 for T � 109 K and ρ = 0.1 g cm−3.
At ρ = 108 g cm−3, there is a stronger increase of Qnuc with decreasing T , caused by the increase of the factor
eh.

From the physics point of view, this enhancement of nuclear power at low T is unacceptable. For example, it
is incompatible with the existence of carbon WDs. To show this, we have additionally plotted in Fig. 4 neutrino
emission rates Qν , calculated following Ref. [43] as the sum of the power carried away by neutrino emission
due to annihilation of electron-positron pairs, plasmon decay, and bremsstrahlung. The intersection Qnuc = Qν

is the ignition point, beyond which nuclear burning becomes unstable. We see that with the modified statistical
averaging the intersection is absent, i.e., the burning is always unstable. If it were true, all carbon WDs should
have exploded, but they do exist. The modified calculation also predicts cold fusion at the normal conditions,
which does not happen.

What is the basic flaw of the “quantum-tail” calculation? As can be seen, for example, from Ref. [34],
Eq. (15) is related to a perturbation correction of the order �2 to the Maxwellian distribution. Different forms
of this correction can be equivalent to the same order. For example, the original Wigner expansion of his prob-
ability function in powers of �2 [44] can be rewritten in several ways: exp(−Ep/T ) [1 + �

2g2Ep/T
4 + . . .] ∼

exp[−Ep/T + �
2g2Ep/T

4 + . . .] ∼ exp[−Ep/(T + �
2g2/T

3 + . . .)] (cf. [45], § 33). Here, g2 is a coefficient
involving average products of derivatives of the interaction potential. These different forms, however, are not
equivalent if �2g2Ep/T

4 is large, which indicates that applicability of this correction is restricted to relatively
low energies or high temperatures. However, the “quantum-tail” contribution to the numerator of Eq. (3) at low
T comes mainly from high energies, whose difference from T exceeds the collisional width γ by many orders
of magnitude. Therefore we think that such evaluation of Eq. (3) falls beyond the applicability range of the
distribution (15).

The quantum uncertainty of particles’ momenta is conjugate to the quantum uncertainty of their coordinates.
The thermonuclear fusion enhancement and the cold (pycnonuclear) fusion due to these quantum uncertainties are
well known (e.g., [21]). However, these effects are important only at very high densities (e.g., at ρ� 109 g cm−3

for the carbon fusion [10]).

5 Conclusions

We have studied the effects of electron screening on thermonuclear reactions in dense plasmas and compared
different approximations to determine plasma enhancement factors for the nuclear fusion rates. The electron
screening always increases the enhancement effect. The opposite conclusion may come from using the Yukawa
potential model, which is inappropriate to calculate the contact probability for fusing nuclei. The method of
taking quantum uncertainties in particles’ momenta by a convolution of Boltzmann and Lorentz distributions,
suggested in some publications, leads to physically unreasonable results. We argue that it may be a consequence
of violation of applicability conditions of underlying theory.

Although the electron polarization correction can increase a fusion rate by orders of magnitude, we find that it
does not significantly affect theoretical models of WDs, NSs, LMSs, and SSOs.
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