
PHYSICAL REVIEW C 101, 015802 (2020)

Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals.
II. Pasta phases in semiclassical approximation
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We generalize our earlier work on neutron stars, which assumed spherical Wigner-Seitz cells in the inner crust,
to admit the possibility of pasta phases, i.e., nonspherical cell shapes. Full fourth-order extended Thomas-Fermi
(ETF) calculations using the density functional BSk24 are performed for cylindrical and platelike cells. Unlike in
our spherical-cell calculations we do not include shell and pairing corrections, but there are grounds for expecting
these corrections for pasta to be significantly smaller. It is therefore meaningful to compare the ETF pasta results
with the full spherical-cell results, i.e., with shell and pairing corrections included. However, in view of the many
previous studies in which shell and pairing corrections were omitted entirely, it is of interest to compare our pasta
results with the ETF part of the corresponding spherical calculations. Making this latter comparison, we find that
as the density increases the cell shapes pass through the usual sequence sphere → cylinder → plate before the
transition to the homogeneous core. The filling fractions found at the phase transitions are in close agreement
with expectations based on the liquid-drop model. On the other hand, when we compare with the full spherical-
cell results, we find the sequence to be sphere → cylinder → sphere → cylinder → plate. In neither case do
any “inverted,” i.e., bubblelike, configurations appear. The analytic fitting formulas for the equation of state and
composition that we derived in our earlier work, with the assumption of spherical cell shapes for the entire
density range from the outer crust to the core of a neutron star, are found to remain essentially unchanged for
pasta shapes. Here, however, we provide more accurate fitting formulas to all our essential numerical results for
each of the three phases, designed especially for the density range where the nonspherical shapes are expected,
which enable one to capture not only the general behavior of the fitted functions but also the differences between
them in different phases.
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I. INTRODUCTION

Working within the framework of the theory of nuclear
energy-density functionals, we recently published calcula-
tions of the equation of state (EoS) and the composition of
the ground state of neutron-star matter that are unified in the
sense that all three major regions of these stars are treated
using the same functional [1] (paper I of this series). The
importance of such a unified treatment has been discussed,
e.g., in Refs. [2–7].

The outermost of the three regions, the “outer crust,” con-
sists of an assembly of bound nuclei and electrons that glob-
ally is electrically neutral. The nuclei in this region become
more and more neutron rich with increasing depth, until at
a mean baryon number density n̄ of around 2.6 × 10−4 fm−3

unbound neutrons appear. This so-called “neutron drip” marks
the transition to the “inner crust,” an inhomogeneous assembly
of neutron-proton clusters and unbound neutrons, neutralized
by electrons. As shown in Ref. [1], at much higher densities a
substantial amount of free protons may appear, which is called
“proton drip” because of the analogy (albeit incomplete) with
the neutron drip. By the point where n̄ has risen to about

0.08 fm−3 the inhomogeneities have been smoothed out: this
is the “core” of the star.

The calculations of Ref. [1] were actually performed with
four different functionals, each functional being used in all
three regions of the neutron star. These functionals, labeled
BSk22, BSk24, BSk25, and BSk26, belong to a family of
functionals that have been developed not only for the study
of neutron-star structure but also for the general purpose of
providing a unified treatment of a wide variety of phenomena
associated with the birth and death of neutron stars, such
as supernova-core collapse and neutron-star mergers, along
with the r process of nucleosynthesis (Ref. [8] and references
therein). They are based on generalized Skyrme-type forces
and density-dependent contact pairing forces, the formalism
for which is presented in Refs. [9,10]. The parameters of the
functionals were determined primarily by fitting to essentially
all the nuclear-mass data of the 2012 Atomic Mass Evaluation
[11]; we calculated nuclear masses using the Hartree-Fock-
Bogoliubov (HFB) method, with axial deformation taken into
account. In making these fits we imposed certain constraints,
the most significant of which is to require consistency, up to
the densities prevailing in neutron-star cores, with the EoS
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of homogeneous pure neutron matter, as calculated by many-
body theory from realistic two- and three-nucleon forces.

For the nuclear masses required for the treatment of the
outer crust in Ref. [1] we took experimental values, where
available, and otherwise used the values determined by HFB
calculations with the appropriate functional. In the interest
of consistency it might appear desirable to apply this same
method to the inner crust, but this would require unacceptably
long computer times; see, e.g., Ref. [12] for a recent summary
of the situation. Instead, we adopted the ETFSI (fourth-order
extended Thomas-Fermi plus Strutinsky integral) method
[13–16]. It consists of a full ETF treatment of the kinetic-
energy and spin-current densities, with shell corrections added
perturbatively and pairing handled in the Bardeen-Cooper-
Schrieffer (BCS) approximation. It is to be noted that the
errors incurred by the latter approximation lie within the errors
of the ETFSI approach [17]. The ETFSI+BCS method was
originally developed for the treatment of bound nuclei [18],
and we discuss in Ref. [1] the high degree of accuracy with
which it approximates the HF+BCS method in that context.
When applied to the calculation of the EoS of the inner crust
we take only the proton shell corrections into account. The
neutron shell corrections have been shown to be much smaller
than the proton shell corrections [19], as might be expected,
given that the spectrum of unbound neutron single-particle
(s.p.) states is continuous [20,21]. We thus simply neglect the
neutron shell corrections, an option that is not available in the
HFB method but is possible in the ETFSI method because of
its perturbative treatment of these corrections. We likewise
include proton pairing [16] but not neutron pairing.

Our ETFSI calculations of the inner crust have in all our
previous work assumed spherically symmetric Wigner-Seitz
(WS) cells as an approximate description. Usually, our so-
lutions are droplike, i.e., the density is higher in the center
of the cell than at the surface, but in Ref. [1] “inverted”
solutions were found at some points close to the interface
with the core. In the literature, such “bubblelike” solutions are
often accompanied by nonspherical solutions at neighboring
densities (see, for example, Ref. [22]). In the present paper
we therefore go beyond the assumption of spherical WS cells.

Investigation of nonspherical configurations goes back to
the work of Ravenhall et al. [23] and Hashimoto et al.
[24], who considered, as an alternative to spherical shapes,
infinitely long cylinders and plates of infinite extent. These
are referred to as “spaghetti” and “lasagna” respectively, and
thus collectively as “pasta.” Other early papers to be noted are
those of Williams and Koonin [25] and Lorenz et al. [26]; see
also Refs. [12,22] for reviews. The part of the inner crust in
which pasta shapes prevail is referred to as the “mantle.” It
has been shown to behave like liquid crystals [27], in contrast
to the rest of the inner crust, which can be regarded as a
solid. Early studies of the pasta phases were formulated in
terms of the liquid-drop model, but even within the frame-
work of energy-density functional theory the question as to
whether or not nonspherical shapes can ever be energetically
favored is still a matter of some controversy. For example, the
second-order ETF calculations of Ref. [28] with parametrized
nucleon distributions show a transition to nonspherical shapes
at a density n̄ close to 0.06 fm−3 in the inner crust for the

functional SLy4, while the zeroth-order TF calculations of
Ref. [29] with the same functional yield no deviation from
a spherical shape.

We present in this paper what we believe to be the first
full fourth-order ETF calculations of pasta within the WS
approach. However, of the four functionals considered in
Ref. [1] we limit ourselves here to the phenomenologically su-
perior BSk24 (see Ref. [8]). In Sec. II we describe our method
of calculating cylindrical and platelike WS cells, while our
results are summarized in Sec. III. The conclusions will be
found in Sec. IV. In the Appendix we provide proofs of some
equations used in the main text. Extended numerical results
are presented as Supplemental Material [30] in electronic
form.

II. CALCULATION OF PASTA PHASES

We draw here heavily on our earlier work on spheri-
cal WS cells [1,14,15,31], emphasizing mainly the ways in
which it has to be modified for pasta calculations. For both
the infinitely long cylindrically symmetric WS cells of the
“spaghetti” phase and the platelike WS cells of infinite extent
representing the “lasagna” phase we still write for the total
energy per nucleon

e = eSky + eC + ee − Yp Qn,β . (1)

Here the first term denotes the total nuclear energy per nucleon
corresponding to our chosen Skyrme functional, the second
and third terms the Coulomb and electronic kinetic energy per
nucleon, respectively, while the last term takes account of the
neutron-proton mass difference, Qn,β (=0.782 MeV) being
the beta-decay energy of the neutron. In this last term Yp is the
proton fraction Z/A, Z and A being respectively the number of
protons and nucleons in the WS cell for the spherical case, the
number per unit length of cylindrical cells, or the number per
unit area of platelike cells. (We have dropped for convenience
the constant neutron mass term Mnc2.) The electronic term ee

is the same for all geometries, and therefore is as in Ref. [1].
We now examine in detail the first two terms.

A. Skyrme energy

The first term of Eq. (1) can be written as an integral over
the cell of an energy density ESky(rrr), thus

eSky = 1

A

∫
cell

ESky(rrr) d3rrr; (2)

in the case of cylindrical shapes the integration is taken over
unit length, and in the case of plates over unit area. For our
generalized Skyrme functionals the energy density ESky(rrr)
is given by Eq. (A3) of Ref. [9] in terms of the number
densities nq(rrr), the kinetic-energy densities τq(rrr), and the
spin-current densities JJJq(rrr), where q = p or q = n denotes
protons or neutrons, respectively. Note that all the functionals
used in Ref. [1] drop the quadratic terms in the spin current
(thus removing spurious instabilities [32]), along with the
Coulomb exchange term for protons [8]; dropping this latter
term leads to a significant improvement in the mass fits,
especially mirror-nucleus differences, and can be interpreted
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as simulating neglected effects such as Coulomb correlations,
charge-symmetry breaking of the nuclear forces, and vacuum
polarization [33]. The ETF method then approximates τq(rrr)
and JJJq(rrr) as functions of the number densities nq(rrr) and their
derivatives; for a convenient summary of the relevant ETF
expressions of Refs. [34,35] see the Appendix of Ref. [31].
However, when ESky is replaced by its ETF approximation
EETF

Sky all shell effects are lost; the ETFSI method restores them
perturbatively, as well as adding a pairing correction. We then
have

eETFSI
Sky = 1

A

{∫
cell

EETF
Sky (rrr) d3rrr + E sc,pair

p + Epair

}
, (3)

in which E sc,pair
p is the Strutinsky-integral shell correction, as

modified by pairing, and Epair is the BCS energy [16].
To further speed up the computations, we avoid solving

the Euler-Lagrange equations by parametrizing the neutron
and proton density distributions nq(rrr). We adopt a simple
generalization of the form taken in the spherical calculations
[14], with a sum of a constant “background” term and a
“cluster” term according to

nq(ξ ) = nBq + n�q fq(ξ ), (4)

in which

fq(ξ ) = 1

1 + exp
[(Cq−R

ξ−R

)2 − 1
]

exp
( ξ−Cq

aq

) (5)

and ξ denotes the radial coordinate r in the case of spherical
cells, the radial coordinate η in the case of cylindrical cells,
and z, the Cartesian coordinate for plates, assumed to lie in
the x-y plane. The parameter R likewise represents the radius
of the spherical cell, the radius of the cylindrical cell, or
the semithickness of the platelike cell. At ξ = Cq, fq = 1/2,
whence the parameter Cq has the meaning of a characteristic
size of a nuclear cluster or “bubble,” the latter being a local
depletion of the nucleon density below the background level
nBq, which occurs if n�q < 0.

Evaluation of the integral appearing in Eq. (3) then pro-
ceeds in exactly the same way for the pasta phases as for
the spherical case, except that the expressions for the volume
element in the integral, the gradient, and the Laplacian that
occur in the ETF expansion have to be chosen appropriately.

The parametrization (5) suffers from the formal defect of
a kink at the origin ξ = 0. The actual density distributions, of
course, show no such discontinuity in their derivatives, but no
problem will arise with our numerical integrations (performed
with the Gauss-Legendre method), provided the mesh size is
not too small. We find, in fact, that the computed values of the
integrals remain stable against a reduction of the mesh size
down to 0.01 fm, one hundredth of the nucleon radius; our
final computations were made with a mesh size of 0.1 fm.
The integrals thus calculated correspond to the kink in the
parametrization (5) having been smoothed out locally, over
the region 0 < ξ � 0.01 fm.

The argument for neglecting neutron shell corrections in
the spherical-cell calculations [1] is equally valid here. How-
ever, while in the spherical-cell calculations of Ref. [1] we did
calculate the proton shell corrections, we are not yet able to
calculate them for nonspherical cell geometries. Actually, we

argued in Ref. [1] that once proton drip sets in the unbound
proton s.p. states will form a quasicontinuum, and proton
shell effects should largely vanish, exactly as do neutron
shell effects at all densities in the inner crust, i.e., beyond
the neutron drip point. We therefore adopted in Ref. [1] the
prescription of dropping the proton shell corrections above the
proton drip point, and the pairing corrections along with them.

Now even for nonspherical cells the density n̄ at the proton
drip point is easily determined. Classically (neglecting quan-
tum tunneling), for protons to be able to escape, their chemical
potential μp must be greater or equal to the proton s.p. field at
the cell surface:

μp � Up(ξ = R) + Mpc2. (6)

The former quantity is easily calculated by Eqs. (7) and (8)
of Ref. [1], since the necessary condition of beta equilibrium
is satisfied, while the latter is given by Eq. (A11) of Ref. [9].
(This characterization of the proton drip point is equivalent to
the one that we adopted in Ref. [1], but easier to implement.)
However, we will see (next section) that once nonspherical
shapes are admitted the condition (6) is not satisfied anywhere
in the inner crust except perhaps in a narrow region close
to the interface with the homogeneous core, at least for the
functional BSk24 considered here.

However, there are grounds for expecting proton shell
effects to be small for pasta phases, even though the protons
may be bound within the WS cell. The point is that in the
case of spaghetti the motion along the symmetry axis is
unbound, while for lasagna it is the motion in the x-y plane
that is unbound. In both cases the result is that the s.p. proton
spectrum is continuous, thus satisfying the criterion we have
already been following for neglecting both shell and pairing
corrections in the case of neutrons and dripped protons.
Some support for this conclusion is found in the recent self-
consistent band calculations on lasagna [36]; presumably the
shell effects would be somewhat stronger for spaghetti, where
the unbounded motion is only one-dimensional. Moreover,
these calculations do not include pairing, the effect of which is
to dampen the contribution of shell effects on the total binding
energy [16]. Thus to the extent that this argument is correct it
becomes meaningful to compare the pasta results with the full
ETFSI+BCS version of our spherical results.

Another reason to anticipate smallness of the shell correc-
tions in the pasta phases is that there are unbound protons
even though Eq. (6) is not satisfied. Note that Eq. (6) assumes
classical particle motion, but the proton wave functions at
high densities, corresponding to the mantle layers, can sub-
stantially penetrate into the neighboring WS cells because of
quantum tunneling. In our calculations this effect is mimicked
by the background term nBp in Eq. (4). While nBp is negli-
gibly small at low densities close to the neutron drip, this
background term becomes appreciable as n̄ approaches ncc,
where ncc ≈ 0.08 fm−3 is the number density at the crust-core
transition. This leads to increasing number of “free protons”
Zfree ≡ Z − Zcl, where Z is the total number of protons in the
WS cell and Zcl is the number of protons clustered near the
center.

Nevertheless, the analogy between pasta protons on the
one hand and neutrons and dripped protons on the other is
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not exact. Because the protons are still bound in their cells
their motion in the x-y plane in the case of spaghetti or along
the z axis in the case of lasagna is still discretized. Thus the
continuous s.p. spectrum actually consist of a superposition
of continuous s.p. spectra, each one based on a different
discrete state. As a result, even though the s.p. spectrum is
still continuous, the degeneracy changes discontinuously, and
weak shell-model fluctuations can be expected.

To summarize the situation, while it is likely that shell
and pairing corrections are smaller for pasta protons than for
protons in the spherical configuration, it is far from clear
that they will be negligible. Thus in addition to comparing
the pasta results with the full ETFSI+BCS version of our
spherical results we shall also make the traditional comparison
with the ETF version. This is the way in which most previous
studies of pasta have been performed (the exceptions include
Refs. [19,37,38]). In this way we will acquire some idea of the
possible impact of shell and pairing effects in pasta, although
no definite conclusion will be possible before they are actually
calculated.

B. Coulomb energy

For the second term in Eq. (1) we denote by nch(rrr) =
np(rrr) − ne the globally neutral charge distribution of protons
and electrons in units of the elementary charge e. Then, as
shown in the Appendix, we have the following expressions
for the three different geometries.

Spheres:

eC = 8π2e2

A

∫ R

0

(
u(r)

r

)2

dr, (7)

where

u(r) =
∫ r

0
nch(r′)r′2 dr′. (8)

Cylinders:

eC = 4π2e2

A

∫ R

0

u(η)2

η
dη, (9)

where

u(η) =
∫ η

0
nch(η′)η′ dη′. (10)

Plates:

eC = 4π e2

A

∫ R

0
u(z)2 dz, (11)

where

u(z) =
∫ z

0
nch(z′) dz′. (12)

As in all our EoS calculations, a correction for the finite
size of the proton is made, as described in Ref. [39].

III. RESULTS

With the parametrization defined by Eqs. (4) and (5) there
are eight independent geometric parameters for given density
n̄, or six if Z and A are specified as well. Our computational

TABLE I. Energy per nucleon (in MeV) for different cell shapes;
sphere(1) denotes ETF value for spherical shape, sphere(2) denotes
same with shell and pairing corrections added. A corresponding
optimal shape is denoted by s (spherical), c (cylindrical), and p
(platelike).

n̄ Cylinder Plate Sphere(1) Sphere(2)

0.0490000 7.00597 7.00575 s 7.00571 s
0.0500000 7.05963 7.05964 c 7.05952 s
0.0510000 7.11249 7.11273 c 7.11254 c
0.0520000 7.16462 7.16506 c 7.16479 c
0.0540000 7.26677 7.26760 c 7.26715 c
0.0560000 7.36638 7.36756 c 7.36692 c
0.0580000 7.46373 7.46521 c 7.46436 c
0.0600000 7.55907 7.56081 c 7.55973 c
0.0610000 7.60605 7.60791 c 7.60670 c
0.0620000 7.65262 7.65458 c 7.65323 c
0.0630000 7.69880 7.70084 c 7.69936 c
0.0640000 7.74460 7.74676 c 7.74509 c
0.0650000 7.79007 7.79226 c 7.79044 c
0.0660000 7.83521 7.83745 c 7.83545 c
0.0670000 7.88005 7.88232 c 7.88011 c
0.0680624 7.92737 7.92967 c 7.92720 s
0.0691445 7.97527 7.97756 c 7.97480 s
0.0692552 7.98016 7.98244 c 7.97965 s
0.0698092 8.00455 8.00682 c 8.00385 s
0.0703677 8.02907 8.03131 c 8.02815 s
0.0709307 8.05371 8.05474 8.05592 c 8.05255 s
0.0714981 8.07847 8.07919 8.08065 c 8.07703 s
0.0720701 8.10336 8.10379 8.10549 c 8.10237 s
0.0726466 8.12836 8.12853 8.13044 c 8.12945 c
0.0732278 8.15350 8.15342 8.15551 p 8.15551 p
0.0738136 8.17877 8.17846 8.18069 p 8.18069 p
0.0744042 8.20416 8.20367 8.20599 p 8.20598 p
0.0749994 8.22968 8.22902 8.23139 p 8.23139 p
0.0755994 8.25531 8.25454 p p
0.0762042 8.28107 8.28022 p p
0.0768139 8.30693 8.30603 p p
0.0774283 8.33289 8.33201 p p
0.0777000 8.34435 8.34349 p p

procedure here is as described in Ref. [1]: for a suitable range
of fixed values of Z we automatically minimize the total ETF
energy per nucleon,

eETF = eETF
Sky + eC + ee − Yp Qn,β , (13)

with respect to six geometric variables and A. The complete
results of these computations will be found in the Supplemen-
tal Material [30].

For each value of the mean density n̄ the optimal value of Z
is then picked out by inspection, and the corresponding values
of eETF are shown in columns 2 and 3 of Table I for cylindrical
and plate shapes, respectively (the equilibrium values of Z
are shown in Table VI). Reliable pasta solutions could not
be found outside the range of densities shown. Referring to
our complete numerical results presented in the Supplemental
Material [30], it will be seen that at high densities close to
the interface with the homogeneous core there are values
of Z for which the calculated energy is significantly lower
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than the value we have selected. These cases, which are
easily recognized, are associated with very low values of the
geometrical parameter Cq, which imply very steep density
gradients, and thus a failure of the ETF expansion to converge.

Columns 4 and 5 of Table I show respectively the optimum
ETF and ETFSI+BCS values of the energy per nucleon
assuming a spherical configuration (see the Supplemental Ma-
terial [30]). In this table the latter are all lower than the former,
i.e., the shell and pairing corrections are all negative here, but
this is not a general feature. For n̄ � 0.073 fm−3, proton drip
for spherical cells occurs [1], and we assume in our model
that the shell and pairing corrections vanish [1]. Beyond n̄ =
0.0749994 fm−3 the spherical solutions become mechanically
unstable, with increasing mean density leading occasionally
to reduced pressure. Note that below proton drip the optimal
values of Z are different for ETF and ETFSI+BCS.

Using the method of Ducoin et al. [40], we showed in
Ref. [1] that the transition to a homogeneous solution should
occur at n̄ = 0.0807555 fm−3 for the BSk24 functional.
The fact that we can obtain no reliable solution either of
pasta or spherical form when n̄ > 0.0777 fm−3 suggests that
there is a narrow range of densities that our codes cannot
explore. In any case, the calculations of Ref. [40], being
based on the Thomas-Fermi approximation considering small
sinusoidal density fluctuations, do not necessarily yield the
exact transition density.

A. Phase transitions and the equation of state

Comparing columns 2 and 3 of Table I with each of
columns 4 and 5 determines the energetically preferred shape
at each density, which we indicate by s (spherical), c (cylin-
drical), or p (plate). In the pasta phases the ETF values of the
energy per nucleon differ at most by 0.05% from the values
determined for spherical cells, which means that the analytic
fit (C1) given in Ref. [1] will remain valid even when we allow
the WS cells to be nonspherical.

We recall that the fit in Ref. [1] was designed to be used
in a uniform manner throughout the entire neutron star, from
its outer crust to the core. Then the accuracy within ≈1% of
that fit was sufficient for this purpose. However, it would not
allow us to study the differences between the energies in the
three different phases. For this purpose we have constructed
separate, more accurate fits for each phase, applicable in
a restricted density range, specifically around the expected
densities of the mantle, 0.05 fm−3 � n̄ < ncc. For the energy
per baryon e, this fit reads

e = a1 + a2x + a3x

(1 + a4x)3
, (14)

where x ≡ n̄/ncc is the natural dimensionless density argu-
ment in the mantle, and the coefficients ai are listed in Table II.

In Fig. 1 we show the calculated energy per baryon as a
function of the mean baryon density and the fits. As noted
above, the differences between the different cell shapes are
almost indistinguishable, which means that the energy density
is very weakly sensitive to the assumed WS cell shape. This
makes the phase transitions sensitive to small corrections to
the energy, depending on the theoretical model (such as ETF

TABLE II. Parameters of Eq. (14) for different WS cell shapes;
sphere(1) and sphere(2) denote ETF and ETFSI+BCS values for the
spherical shape, respectively.

a1 a2 a3

Cell shape (MeV) (MeV) (MeV) a4

sphere(1) 1.76708 4.1198 14.026 0.75683
sphere(2) 1.42067 4.2803 16.124 0.79924
cylinder 1.57416 4.2769 15.413 0.80464
plate 2.27349 4.1331 12.655 0.82983

or ETFSI+BCS for the spherical cells, in our case). In order
to make a choice between the phases, one should consider the
differences between the energy values. These differences are
visualized in Fig. 2 by showing the energy after subtraction
of a common background function, which is chosen to be
the fit (14) for the spherical WS cells in the ETF theory
(the first row of Table II). We see that the cylindrical shape
becomes energetically preferred, that is the “sphere → cylin-
der” transition occurs, at n̄ ≈ (0.050–0.051) fm−3. Within the
ETFSI formalism, at higher densities n̄ the energy for the
spheres increases less steeply than both for the cylinders and
for the spheres in the ETF formalism, which is revealed in
the increasingly steep descent of the ETFSI+BCS curve in
Fig. 2. Eventually, at n̄ ≈ 0.067 fm−3 the ETFSI+BCS energy
for the spheres again becomes lower than the ETF energy
for the cylinders; that is, the back transition “cylinder →
sphere” occurs. Note that with the ETFSI+BCS method the

FIG. 1. Energy per baryon as function of the mean baryon den-
sity. Symbols show the calculated values and lines show the fit
(14) for different WS cell shapes: spherical with shell and pairing
corrections included (black dots and solid lines) or excluded (green
triangles and dotted lines), cylindrical (blue squares and dot-dashed
lines), and platelike (red diamonds and dashed lines).
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FIG. 2. The same as in Fig. 1, but, instead of energy e, the
difference e − efit

sph,ETF is shown, where efit
sph,ETF is the fit (14) for

the spherical WS cells in the ETF approximation. The long-dash–
short-dash line connects the ETFSI+BCS results for the spheres at
n̄ > 0.07207, where Z changes and the numerical results depart from
the fit (14). The arrow, marked “pd,” points to the density of the
proton drip in the spherical geometry according to Ref. [1].

number of protons per spherical WS cell is constant, Z = 40,
for n̄ � 0.072 fm−3 (see Ref. [1]), whereas the ETF method
leads to noninteger continuously changing Z . The deviation of
the ETFSI+BCS points beyond n̄ � 0.072 fm−3 in Fig. 2 (that
are connected by a long-dash–short-dash line as a guide to the
eye) is a consequence of the fact that Z is starting to change
discontinuously for the ETFSI+BCS calculations at these
densities. As a result, the second transition “sphere → cylin-
der” occurs at n̄ between 0.0720701 and 0.0726466 fm−3.
It precedes the proton drip at n̄ ≈ 0.073 fm−1 [1] and the
transition “cylinder → plate,” which occurs at nearly the same
density. In contrast, when we compare the ETF results for
the spheres and the cylinders, we do not observe the back
transition “cylinder → sphere.”

Thus, for certain densities the preferred shape depends on
whether we compare the ETF results for the cylinders and
plates with the ETF or ETFSI+BCS results for the spheres,
i.e., whether we exclude or include the shell and pairing
corrections for the spherical configuration. While comparison
with the ETF results yields the usual sequence of shapes
with increasing density, “sphere → cylinder → plate,” over
a certain density range comparison with the ETFSI+BCS
results (shell and pairing corrections included) leads to the
more complicated sequence of “sphere → cylinder → sphere
→ cylinder → plate.” Whether or not this rather unusual
feature of a back transition “cylinder → sphere” would sur-
vive the inclusion of the shell and pairing corrections to the
pasta calculations depends very much on their magnitude: an
inspection of Table I shows they would have to exceed 30% of

the corrections to the spherical ETF calculations for the back
transition to be completely eliminated.

The density of the initial sphere → cylinder transition is
also seen to be slightly sensitive to whether we compare with
columns 4 or 5: including the shell and pairing corrections
for the spherical configuration shifts the transition density
from n̄ = 0.050 fm−3 to 0.051 fm−3. But regardless of which
option is chosen there is a disagreement with the calculations
of Martin and Urban using the same method as described
in Ref. [28]; they find that the sphere → cylinder transition
occurs at a density n̄ � 0.057 fm−3 for BSk24 [41]. Besides,
they predict that the final cylinder → plate transition occurs
at a lower density, at about 0.069 fm−3, compared to our
estimate of 0.073 fm−3.

In neither the spherical nor the nonspherical configurations
do we find at beta equilibrium, i.e., for the equilibrating value
of Z , any of the “inverted” solutions that were found in the
original liquid-drop calculations of Ref. [23]. In this respect
we agree with the ETF calculations of Martin and Urban using
the same BSk24 functional [41].

For cylinders, proton drip starts for n̄ around 0.077 fm−3, a
density at which plates are energetically favored. And since
for plates we nowhere find reliable solutions with proton
drip, it follows that once we allow pasta shapes for the WS
cells, proton drip can occur nowhere in the inner crust, except
perhaps very close to the interface with the core.

Columns 2 and 3 of Table III show respectively the pres-
sure (calculated as described in Appendix B of Ref. [15]) for
the optimal ETF and ETFSI+BCS spherical configurations,
while column 4 shows the pressure for the actual equilibrium
shape: spherical (s), cylinder (c), or plate (p), as the case may
be. In the pasta phases the pressure differs at most by 0.6%
from the spherical-cell value, which means that the analytic
fit (C4) of Ref. [1] is still applicable. Nevertheless, exactly as
for the energy per baryon, we have constructed separate, more
accurate fits for each phase, applicable in the restricted density
range around the expected densities of the mantle. They read

P = a1 + a2x + a3x8

1 + a4x12
, (15)

where, as before, x ≡ n̄/ncc, and the coefficients ai are listed
in Table IV. Whereas the fit presented in Ref. [1] uniformly
covers the entire neutron star and ensures the accuracy within
4%, the fit (15) is applicable only at 0.05 � n̄ � 0.08 fm−3,
but provides an accuracy within 0.1% with respect to the
numerical data in Table III.

In Fig. 3 we show the pressure as function of the mean
baryon density. We see that the pressure values for the differ-
ent phases are almost indistinguishable, yet one can discern
small differences in the slope: the EoS becomes stiffer along
the transition sequence “sphere → cylinder → plate.”

In the gravitational field of a neutron star, one needs to
know the chemical potentials of the different particles to
determine the chemical equilibrium. The chemical potential
of the strongly degenerate electrons μe is determined by the
formulas given in Appendix B of Ref. [1]. The chemical
potential of protons is related to μe and to the chemical
potential of neutrons μn by the condition of beta equilibrium,
μp = μn − μe, where μn = g, the Gibbs free energy per
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TABLE III. Pressure (in MeV fm−3). Columns 2 and 3 refer
to spherical cells, without and with shell and pairing corrections,
respectively. Column 4 refers to the equilibrium cell shape: s (spher-
ical), c (cylindrical), and p (platelike).

n̄ Psph(1) Psph(2) Peq

0.0490000 0.1330 0.1330 0.1330 s
0.0500000 0.1364 0.1363 0.1357 c 0.1363 s
0.0510000 0.1398 0.1398 0.1393 c
0.0520000 0.1433 0.1433 0.1427 c
0.0540000 0.1505 0.1505 0.1499 c
0.0560000 0.1580 0.1581 0.1573 c
0.0580000 0.1658 0.1659 0.1651 c
0.0600000 0.1739 0.1741 0.1733 c
0.0610000 0.1781 0.1783 0.1775 c
0.0620000 0.1824 0.1826 0.1817 c
0.0630000 0.1868 0.1870 0.1861 c
0.0640000 0.1913 0.1915 0.1906 c
0.0650000 0.1958 0.1962 0.1952 c
0.0660000 0.2005 0.2009 0.1999 c
0.0670000 0.2053 0.2057 0.2048 c
0.0680624 0.2105 0.2110 0.2101 c, 0.2110 s
0.0691445 0.2158 0.2164 0.2155 c, 0.2164 s
0.0692552 0.2164 0.2169 0.2160 c, 0.2169 s
0.0698092 0.2192 0.2198 0.2189 c, 0.2198 s
0.0703677 0.2220 0.2226 0.2218 c, 0.2226 s
0.0709307 0.2249 0.2255 0.2247 c, 0.2255 s
0.0714981 0.2279 0.2284 0.2277 c, 0.2284 s
0.0720701 0.2309 0.2313 0.2308 c, 0.2313 s
0.0726466 0.2338 0.2338 0.2339 c
0.0732278 0.2368 0.2368 0.2356 p
0.0738136 0.2399 0.2399 0.2390 p
0.0744042 0.2429 0.2429 0.2424 p
0.0749994 0.2459 0.2459 0.2458 p
0.0755994 0.2493 p
0.0762042 0.2528 p
0.0768139 0.2565 p
0.0774283 0.2601 p
0.0777000 0.2616 p

nucleon. For the chemical potential of neutrons, the fit (C18)
of Ref. [1], originally constructed for the crust, holds also in
the mantle, because the differences between μn in the different
phases lie within its accuracy level. However, for a study of
phase equilibrium one needs to know the differences between
μn in the three phases. For this purpose we have constructed

TABLE IV. Parameters of Eq. (15) for different WS cell shapes;
sphere(1) and sphere(2) denote ETF and ETFSI+BCS values for the
spherical shape, respectively.

a1 a2 a3

Cell shape (MeV fm−3) (MeV fm−3) (MeV fm−3) a4

sphere(1) −0.01429 0.2399 0.1058 1.41
sphere(2) −0.02128 0.25153 0.0934 1.35
cylinder −0.02705 0.26 0.0785 0.866
plate −0.184 0.463 0 –

FIG. 3. Pressure as function of the mean baryon density. Sym-
bols show the calculated values and lines show the fit (15) for
different WS cell shapes: spherical with shell and pairing corrections
included (black dots and solid lines) or excluded (green triangles and
dotted lines), cylindrical (blue squares and dot-dashed lines), and
platelike (red diamonds and dashed lines).

the following analytical approximations:

μn − Mnc2 = (a1 + a2x + a3x8)(a4 − x)a5 , (16)

where x ≡ n̄/ncc, and the coefficients ai are listed in
Table V. As compared to the fit for μn given by Eq. (C18)
in Ref. [1], Eq. (16) has a narrow applicability range, 0.05 �
n̄ � 0.08 fm−3 instead of 2 × 10−4 � n̄ � 0.08 fm−3, but in
return it provides an order-of-magnitude better accuracy. The
comparison of the calculated and fitted μn is shown in Fig. 4.
In the upper panel the differences between different results
are barely distinguishable. In order to visualize them, in the
lower panel we subtract from each μn value the respective
value given by the fitting formula (16) for the spherical WS
cells in the ETF approximation (the first row of parameters
in Table V). It is seen that in the vicinity of the transition
densities the differences between the respective values of μn

are of the order of 10–20 keV.

TABLE V. Parameters of Eq. (16) for different WS cell shapes;
sphere(1) and sphere(2) denote ETF and ETFSI+BCS values for the
spherical shape, respectively.

a1 a2 a3

Cell shape (MeV) (MeV) (MeV) a4 a5

sphere(1) 5.2813 9.2587 3.162 1.0677 0.15509
sphere(2) 5.2243 9.6969 4.358 1.0361 0.16681
cylinder 6.2911 6.0102 0.8103 1.0207 0.028241
plate 4.9556 10.0154 3.128 1.1295 0.20485
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FIG. 4. Chemical potential of neutrons μn as function of the
mean baryon density. Symbols show the calculated values and lines
show the fit (15) for different WS cell shapes: spherical with shell and
pairing corrections included (black dots and solid lines) or excluded
(green triangles and dotted lines), cylindrical (blue squares and dot-
dashed lines), and platelike (red diamonds and dashed lines). Upper
panel: the difference between μn and the rest energy of neutron Mnc2.
Lower panel: the difference between μn and the fit (16) to the ETF
results for the spherical WS cells.

B. Free and bound neutron and proton numbers

Column 2 of Table VI shows the equilibrium value of Z ,
regardless of shape. Since this quantity even has different
dimensions for the different shapes (for spheres it is the
number of protons in the cell, for cylinders the number per fm,
and for plates the number per fm2) there can be no comparison
of the pasta values with the spherical value. On the other
hand, such a comparison is meaningful for the proton fraction
Yp = Z/A, so in columns 3 and 4 we display the values of Yp

assuming spherical cells, the first without shell and pairing
corrections and the second with them. In column 5 we show
the values of Yp for the equilibrium pasta shape. Remarkably,
despite the drastic difference in geometries almost the same
values are obtained, the difference never exceeding 1%, which
means that we can still use the analytic fit (C6) of Ref. [1].
Nevertheless, we have constructed separate, more accurate
fits for each phase, applicable in the restricted density range,
specifically around the expected densities of the mantle. It
turns out that, in the considered density range, Yp is well
reproduced by the simple parabola

Yp = Ymin + a(n̄ − nmin)2. (17)

Here, n̄ is in units of fm−3 and the parameters are listed in
Table VII. The comparison of calculated and fitted proton
fractions is shown in Fig. 5.

TABLE VI. Proton number Z and fraction Yp. Column 2 shows
Z value for the actual equilibrium shape (note that units depend on
shape). Columns 3 and 4 show Yp for spherical cells, without and
with shell and pairing corrections, respectively. Column 4 shows Yp

for the equilibrium cell shape: s (spherical), c (cylindrical), and p
(platelike).

n̄ Zeq Y sph
p (1) Y sph

p (2) Y eq
p

0.0490000 40 s 0.03366 0.03358 0.03358 s
0.0500000 1.503 c, 40 s 0.03354 0.03346 0.03372 c, 0.03346 s
0.0510000 1.501 c 0.03344 0.03335 0.03369 c
0.0520000 1.490 c 0.03333 0.03325 0.03351 c
0.0540000 1.482 c 0.03317 0.03308 0.03333 c
0.0560000 1.476 c 0.03301 0.03292 0.03318 c
0.0580000 1.472 c 0.03289 0.03280 0.03306 c
0.0600000 1.472 c 0.03280 0.03270 0.03296 c
0.0610000 1.474 c 0.03277 0.03265 0.03292 c
0.0620000 1.476 c 0.03273 0.03262 0.03289 c
0.0630000 1.480 c 0.03272 0.03259 0.03287 c
0.0640000 1.484 c 0.03267 0.03257 0.03285 c
0.0650000 1.492 c 0.03270 0.03256 0.03284 c
0.0660000 1.528 c 0.03269 0.03255 0.03286 c
0.0670000 1.512 c 0.03271 0.03255 0.03284 c
0.0680624 1.528 c, 40 s 0.03271 0.03256 0.03297 c, 0.03256 s
0.0691445 1.542 c, 40 s 0.03274 0.03257 0.03287 c, 0.03257 s
0.0692552 1.546 c, 40 s 0.03274 0.03258 0.03287 c, 0.03258 s
0.0698092 1.554 c, 40 s 0.03275 0.03259 0.03288 c, 0.03259 s
0.0703677 1.566 c, 40 s 0.03278 0.03260 0.03290 c, 0.03260 s
0.0709307 1.576 c, 40 s 0.03279 0.03262 0.03291 c, 0.03262 s
0.0714981 1.590 c, 40 s 0.03281 0.03264 0.03293 c, 0.03264 s
0.0720701 1.604 c, 41 s 0.03282 0.03267 0.03295 c, 0.03267 s
0.0726466 1.618 c 0.03285 0.03296 0.03297 c
0.0732278 0.0643 p 0.03288 0.03288 0.03316 p
0.0738136 0.0643 p 0.03290 0.03290 0.03318 p
0.0744042 0.0643 p 0.03293 0.03294 0.03320 p
0.0749994 0.0646 p 0.03296 0.03296 0.03324 p
0.0755994 0.0642 p 0.03337 p
0.0762042 0.0649 p 0.03342 p
0.0768138 0.0652 p 0.03333 p
0.0774283 0.0657 p 0.03337 p
0.0777000 0.0673 p 0.03342 p

In practice, for modeling physical processes in the neutron-
star crust and mantle and determining their physical proper-
ties, one needs to know not only Yp, but also the numbers
of free and bound neutrons and protons in a WS cell. For
this purpose we have constructed appropriate fitting formulas.

TABLE VII. Parameters of Eq. (17) for different WS cell shapes;
sphere(1) and sphere(2) denote ETF and ETFSI+BCS values for the
spherical shape, respectively.

Cell shape Ymin a (fm6) nmin (fm−3)

sphere(1) 0.03267 3.56 0.0660
sphere(2) 0.03255 3.54 0.0663
cylinder 0.03284 3.17 0.0663
plate 0.03301 3.17 0.0663

015802-8



UNIFIED EQUATIONS OF STATE FOR COLD … PHYSICAL REVIEW C 101, 015802 (2020)

FIG. 5. Proton fraction as function of the mean baryon density.
Symbols show the calculated values and lines show the fit (17) for
different WS cell shapes: spherical with shell and pairing corrections
included (black dots and solid lines) or excluded (green triangles and
dotted lines), cylindrical (blue squares and dot-dashed lines), and
platelike (red diamonds and dashed lines).

For the spherical WS cells such fits are given in section C3.1
of Ref. [1]; they remain unchanged. For the total number of
protons in the cylindrical WS cells we have, with an accuracy
of a few percent,

Z = (1.835 − 0.554x + 0.732x9) fm−1, (18)

where x = n̄/ncc. For platelike cells, at n̄ < 0.074 fm−3 the
proton number is constant, Z ≈ Z0, where Z0 = 0.0643 fm−2.
At n̄ > 0.074 fm−3, Z increases approximately as Z/Z0 ≈
1 + (11�n̄)4, where �n̄ = n̄/fm−3 − 0.074. The number of
neutrons N is determined by the identity

N = Z

(
1

Yp
− 1

)
. (19)

The numbers of unbound neutrons and protons are defined
as Nfree = nBnVcell and Zfree = nBpVcell, where Vcell = 4πR3/3,
πR2, and 2R for the spheres, cylinders, and plates, respec-
tively (accordingly, the numbers of free nucleons are counted
per unit length for the cylinders and per unit area for the
plates). The numbers of the neutrons and protons that are
bound in clusters are Ncl = N − Nfree and Zcl = Z − Zfree. The
numbers of free protons in the cylindrical and platelike WS
cells are described by the fit

Zfree = (a1x)9

(a2 − x)a3
, (20)

where Zfree is in fm−1 and fm−2 for the cylinders and plates,
respectively, x ≡ n̄/ncc, and the parameters ai are given in
Table VIII. The fraction of free neutrons among all nucleons

TABLE VIII. Parameters of Eq. (20) for the cylindrical and
platelike WS cells.

Cell shape a1 a2 a3

cylinder 0.62144 1.0133 1.2708
plate 0.26563 1.1712 4.5795

Yn f ≡ Nfree/A is approximated as

Yn f = a1 + a2x + a3xa4 , x ≡ n̄/ncc, (21)

with parameters given in Table IX. Now with Z and Yp already
parametrized, the number of free neutrons is given by the
identity Nfree = ZYn f /Yp.

The calculated and fitted total and bound proton numbers
are shown in Figs. 6 and 7. Note that although the proton-
drip threshold, as defined by Eq. (6), is not reached in any
layer of the crust, Zfree becomes appreciable at densities
n̄ � 0.07 fm−3.

C. Nuclear size and shape parameters

For studies of some physical phenomena in neutron star
interiors, it may be of interest to know the sizes and shapes
of the nuclear clusters (see, e.g., Ref. [42] for the case of
electron heat and charge transport). For this purpose, we have
constructed analytical approximations to the parameters Cq

and aq, which determine respectively the size and the diffuse-
ness of a cluster, when its density profile is parametrized by
Eqs. (4) and (5). For the spherical WS cells, the fits to Cq and
aq as functions of mean baryon density n̄ have been published
in Appendix C5 of Ref. [1]; they remain unchanged. For the
cylindrical and platelike WS cells, in the restricted ranges of
n̄ under consideration, they are approximated by the simple
formula

Xq = a1 + a2xa3 , Xq = Cp,Cn, ap, an; x ≡ n̄/ncc. (22)

The fit parameters ai are given in Table X. The calculated and
fitted Cp, Cn, ap, and an are plotted against n̄ in Fig. 8.

Note that we do not need separate fits to the parameters nBq

and n�q in Eq. (5), because they are determined by the already
fitted parameters through the relations

nBp = Zfree

Vcell
, nBn = Nfree

Vcell
, (23)

n�p = Zcl∫ R
0 fp(ξ ) dV

dξ
dξ

, n�n = Ncl∫ R
0 fn(ξ ) dV

dξ
dξ

, (24)

TABLE IX. Parameters of Eq. (21) for the cylindrical and plate-
like WS cells.

Cell shape a1 a2 a3 a4

cylinder 0.74483 0.0959 0.0817 26
plate 0.77675 0.0455 0.0446 21
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FIG. 6. Proton and neutron numbers per unit length as functions
of mean baryon density of a cylindrical WS cell. Top panel: all
neutrons; middle panel: clustered neutrons; bottom panel: all protons
(filled symbols and solid lines) and clustered protons (empty symbols
and dashed lines). The symbols show the calculated values and the
lines show the fits.

where

dV

dξ
=

⎧⎨
⎩

4πr2 (spheres),
2πη (cylinders),
2 (plates).

D. Inhomogeneity

Regardless of the cell shape, a measure of the inhomo-
geneity of the inner crust is given by what we have called the

FIG. 7. Proton and neutron numbers per unit area as functions of
mean baryon density of a platelike WS cell. Top panel: all neutrons;
middle panel: clustered neutrons; bottom panel: all protons (filled
symbols and solid lines) and clustered protons (empty symbols and
dashed lines). The symbols show the calculated values and the lines
show the fits.

inhomogeneity factor,

� = 1

Vcell

∫ (
n(rrr)

n̄
− 1

)2

d3rrr, (25)

where Vcell is the cell volume. Of particular interest from the
standpoint of transport properties is the analogous quantity

TABLE X. Parameters of Eq. (22) for the cylindrical and plate-
like WS cells. Parameters a1 and a2 are in units of fm, a3 is
dimensionless.

Shape

Cylinder Plate

Parameter a1 a2 a3 a1 a2 a3

Cp 5.35 5.24 6.83 4.191 4.30 16
Cn 5.97 4.73 6.53 4.799 3.82 16
ap 0.729 1.55 6.12 0.7553 0.793 10
an 1.214 1.37 5.09 0.9027 0.578 10
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TABLE XI. Inhomogeneities � and �p, defined in Eqs. (25) and (26), respectively. Columns 2 and 3 show � for spherical cells, without
and with shell and pairing corrections, respectively; columns 5 and 6 the corresponding values of �p. Columns 4 and 7 show � and �p,
respectively, for the actual equilibrium shape.

n̄ �sph(1) �sph(2) �eq �sph
p (1) �sph

p (2) �eq
p

0.0490000 0.170 0.169 0.169 s 6.39 6.45 6.45 s
0.0500000 0.162 0.161 0.162 c 0.161 s 6.11 6.17 5.92 c 6.17 s
0.0510000 0.154 0.153 0.154 c 5.84 5.90 5.66 c
0.0520000 0.146 0.145 0.146 c 5.58 5.63 5.41 c
0.0540000 0.131 0.130 0.132 c 5.07 5.13 4.93 c
0.0560000 0.118 0.117 0.118 c 4.60 4.66 4.48 c
0.0580000 0.105 0.105 0.106 c 4.16 4.22 4.05 c
0.0600000 0.0939 0.0932 0.0942 c 3.74 3.80 3.65 c
0.0610000 0.0885 0.0878 0.0888 c 3.53 3.60 3.45 c
0.0620000 0.0833 0.0825 0.0836 c 3.34 3.41 3.27 c
0.0630000 0.0782 0.0775 0.0785 c 3.14 3.22 3.08 c
0.0640000 0.0731 0.0726 0.0737 c 2.98 3.03 2.90 c
0.0650000 0.0686 0.0678 0.0690 c 2.76 2.85 2.73 c
0.0660000 0.0639 0.0632 0.0645 c 2.59 2.67 2.55 c
0.0670000 0.0595 0.0587 0.0600 c 2.41 2.50 2.39 c
0.0680624 0.0547 0.0540 0.0554 c, 0.0540 s 2.23 2.31 2.20 c, 2.31 s
0.0691445 0.0501 0.0493 0.0508 c, 0.0493 s 2.03 2.13 2.03 c, 2.13 s
0.0692552 0.0496 0.0489 0.0504 c, 0.0489 s 2.01 2.11 2.01 c, 2.11 s
0.0698092 0.0472 0.0465 0.0481 c, 0.0465 s 1.92 2.01 1.93 c, 2.01 s
0.0703677 0.0449 0.0441 0.0458 c, 0.0441 s 1.82 1.91 1.84 c, 1.91 s
0.0709307 0.0425 0.0417 0.0435 c, 0.0417 s 1.73 1.82 1.75 c,1.82 s
0.0714981 0.0401 0.0392 0.0412 c, 0.0392 s 1.64 1.72 1.66 c, 1.72 s
0.0720701 0.0377 0.0369 0.0389 c, 0.0369 s 1.54 1.61 1.57 c, 1.61 s
0.0726466 0.0353 0.0353 0.0366 c 1.44 1.44 1.48 c
0.0732278 0.0328 0.0328 0.0327 p 1.34 1.34 1.16 p
0.0738136 0.0303 0.0303 0.0306 p 1.24 1.24 1.09 p
0.0744042 0.0277 0.0277 0.0285 p 1.14 1.14 1.02 p
0.0749994 0.0250 0.0250 0.0265 p 1.03 1.03 0.950 p
0.0755994 0.0243 p 0.874 p
0.0762042 0.0222 p 0.801 p
0.0768138 0.0200 p 0.730 p
0.0774283 0.0177 p 0.652 p
0.0777000 0.0168 p 0.613 p

defined entirely in terms of the proton distribution,

�p = 1

Vcell

∫ (
np(rrr)

n̄p
− 1

)2

d3rrr, (26)

where n̄p = Ypn̄.
Columns 2 and 3 of Table XI show respectively the values

of � for the optimal ETF and ETFSI+BCS spherical con-
figurations, while column 4 shows the values of � for the
actual equilibrium shape: spherical (s), cylinder (c) or plate
(p), as the case may be. In columns 5, 6, and 7 we display
the comparable quantities for �p. The difference in the value
of � between spherical and pasta shapes never exceeds 6%,
but for �p the difference can amount to 15%. Thus in this
respect imposing the constraint of a spherical cell shape can
do no more than provide a qualitative guide as to what happens
when pasta shapes are allowed. Nevertheless, it is perhaps
remarkable that even this level of similarity exists, given the
quite different cell shapes that are being compared.

Inhomogeneities can be alternatively characterized in
terms of the volume fraction occupied by clusters. This quan-
tity is of particular interest since, in the liquid-drop picture,
spherical clusters are predicted to become unstable against
quadrupole deformations when their filling fraction exceeds
1/8 = 12.5% [22]. Then spaghetti configurations become
stable in place of spherical ones. At a filling fraction of
1/2 clusters are predicted to “turn inside out” [43]. On the
other hand, quantum-molecular dynamics simulations [44]
indicated that clusters remain quasispherical until they touch,
similarly to percolating networks, as speculated earlier by
Ogasawara and Sato [45]. According to these simulations,
the onset of pasta formation is essentially determined by the
maximum packing fraction of spherical clusters, which is
given by

√
3π/8 � 68.0% for a body-centered cubic lattice.

To compare with these predictions, we have estimated the
filling fraction of spherical clusters. A natural definition is to
take (Cq/R)3, depending on whether clusters are characterized
by the proton or neutron distributions (the definition can be
easily extended to cylinders and plates, the exponent 3 being
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FIG. 8. Proton (filled symbols) and neutron (empty symbols) size parameters Cq (left panel) and diffuseness parameters aq (right panel)
compared to the fits (22) (lines) as functions of mean baryon density for different WS cell shapes: spherical (black dots and solid lines),
cylindrical (blue squares and dot-dashed lines), and platelike (red diamonds and dashed lines).

replaced by 2 and 1, respectively). However, this definition
is insensitive to the diffusivity coefficients aq of the nucleon
distributions. As an alternative definition we therefore assume
that the nucleons characterizing the clusters are uniformly
distributed, as in the liquid-drop picture, and define the filling
fraction in terms of the ratio

Vcl

V
= Acl

A

n̄

n�,p + n�,n
, (27)

with

Acl = 4π

∫ R

0
r2[ fn(r)n�n + fp(r)n�p]dr (28)

determining the number of nucleons contained in a single
cluster. These different definitions of the filling fraction lead
to remarkably similar numerical values. More importantly, the
threshold value of the filling fraction above which spherical
cells become unstable against pasta formation turns out to be
in close agreement with the liquid-drop criterion, as can be
seen in Table XII. Likewise, inspection of Table XIII shows
that the transition from cylinders to plates occurs for a volume
fraction ≈31%, comparable to that obtained by Hashimoto
et al. [24]. Moreover, the absence of inverted configurations
from our solutions could have been anticipated from the fact
that the filling fraction never exceeds 55% (see Table XIV);
cylindrical tubes or spherical bubbles are only predicted at

filling fractions above ≈65%. However, the back transition
cylinder → sphere is not found in liquid-drop models.

The disagreement of the quantum-molecular dynamics
simulations with our calculations may stem from the fact that
the former were carried out at finite temperatures and for a
fixed proton fraction Yp ≈ 0.39, which is much higher than
expected in the mantle of neutron stars.

IV. CONCLUDING REMARKS

Using the nuclear density functional BSk24, we have gen-
eralized our neutron-star calculations of Ref. [1] to include the
possibility of pasta shapes for the WS cells of the inner crust,
the earlier calculations having been confined to spherical
cells. The spherical calculations used the ETF method with
shell and pairing corrections added, but in the present pasta
calculations neither of these corrections was made. Thus in
comparing our pasta and spherical-cell results we take two
different forms for the latter. First, we compare our pasta
results with the pure ETF spherical-cell results, i.e., without
the corrections, and find with increasing density the sequence
sphere → cylinder → plate of cell shapes before the transition
to the homogeneous core. We do not find any “inverted,” i.e.,
bubblelike, configurations, although we cannot exclude their
existence in a narrow band of densities immediately below
the crust-core transition. The filling fractions associated with

TABLE XII. Filling fractions for spherical clusters from ETFSI+BCS (ETF) calculations.

n̄ (Cn/R)3 (Cp/R)3 Vcl/V

0.049000 0.121339 (0.123286) 0.098333 (0.100585) 0.124656 (0.126328)
0.050000 0.125640 (0.127702) 0.102046 (0.104407) 0.128922 (0.130704)
0.051000 0.130075 (0.132241) 0.105898 (0.108365) 0.133306 (0.135192)
0.052000 0.134665 (0.136946) 0.109902 (0.112491) 0.137826 (0.139832)
0.054000 0.144367 (0.147488) 0.118443 (0.121963) 0.147344 (0.150129)
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TABLE XIII. Flling fractions for cylinders from ETF calculations.

n̄ (Cn/R)2 (Cp/R)2 Vcl/V

0.049000 0.127064 0.101491 0.128928
0.050000 0.131514 0.105288 0.133315
0.051000 0.136202 0.109334 0.137894
0.052000 0.140894 0.113343 0.142514
0.054000 0.151083 0.122233 0.152432
0.056000 0.162127 0.131998 0.163108
0.058000 0.174214 0.142831 0.174701
0.060000 0.187513 0.154930 0.187341
0.061000 0.194750 0.161616 0.194177
0.062000 0.202324 0.168647 0.201292
0.063000 0.210379 0.176160 0.208812
0.064000 0.218882 0.184203 0.216719
0.065000 0.228075 0.192952 0.225217
0.066000 0.239043 0.203723 0.235369
0.067000 0.248148 0.212451 0.243640
0.068062 0.260073 0.224208 0.254482
0.069144 0.272906 0.237092 0.266115
0.069255 0.274510 0.238616 0.267560
0.069809 0.281509 0.245700 0.273866
0.070368 0.289058 0.253392 0.280659
0.070931 0.296728 0.261202 0.287515
0.071498 0.305086 0.269872 0.295000
0.072070 0.313700 0.278948 0.302700
0.072647 0.322679 0.288414 0.310702
0.073228 0.332248 0.298555 0.319211

the phase changes that we find are in remarkable agreement
with predictions based on liquid-drop considerations, as is the
absence of “inverted” solutions.

Given that there are indications that the corrections to the
ETF pasta calculations might be significantly smaller than for
spherical WS cells, it is of interest to compare our pasta results
with those of the full spherical calculations, i.e., with the
corrections to the latter included. The most significant change
that emerges on making this comparison is a more complex
sequence of cell shapes: sphere → cylinder → sphere →
cylinder → plate. This new feature of a “back transition”

TABLE XIV. Filling fractions for plates from ETF calculations.

n̄ Cn/R Cp/R Vcl/V

0.070931 0.383118 0.342791 0.369547
0.071498 0.392846 0.352870 0.378884
0.072070 0.403015 0.363550 0.388662
0.072647 0.413754 0.374796 0.398942
0.073228 0.425104 0.386800 0.409820
0.073814 0.436886 0.399368 0.421095
0.074404 0.449399 0.412764 0.433053
0.074999 0.462759 0.427263 0.445855
0.075599 0.476290 0.441886 0.458714
0.076204 0.491549 0.458818 0.473379
0.076814 0.507352 0.476426 0.488523
0.077428 0.524407 0.495647 0.504909
0.077700 0.535655 0.508414 0.515874

would be completely eliminated only if the neglected cor-
rections in our pasta calculations amounted to more than
30% of the correction terms in the spherical-cell calculations.
However, to be absolutely certain on this point it would be
necessary to perform full ETFSI+BCS calculations of pasta.

While there is a certain narrow band of densities in the
inner crust in which we cannot be sure whether the shape
of the WS cell should be cylindrical or spherical, perhaps
the most significant conclusion to be drawn from the present
calculations is that in many respects the precise cell shape
is irrelevant. In particular, we find that to a very good ap-
proximation the EoS and the proton fraction Yp are the same
whether we assume spherical, cylindrical, or platelike shapes
for the WS cells. Thus the global fitting formulas developed
in Ref. [1] for spherical cells remain valid here to the same
level of accuracy as before. Here, over the restricted density
range 0.05 fm−3 � n̄ < ncc, we have constructed for each of
the three phase states more accurate fits that well represent the
small differences between the different phases.

The very small energy differences that we find between
the different cell shapes are to be contrasted with the much
larger differences found in the very recent calculations of
Schuetrumpf et al. [46]. However, their calculations were
performed at fixed values of the proton fraction Yp much larger
than the equilibrium values that we have found here.

Our results are to some extent dependent on the exact
form of the parametrization (5) that we have chosen for the
density distributions. The ideal solution would be to solve
the Euler-Lagrange equations, but this is computationally
impractical in a large-scale investigation of the scope that we
have undertaken here.
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APPENDIX: CALCULATION OF COULOMB ENERGY

To derive Eqs. (7), (9), and (11) we begin with the general
expression for the total Coulomb energy of a charge distribu-
tion nch(r),

EC = 1

2
e2

∫
nch(rrr)VC(rrr)d3rrr, (A1)

where the Coulomb field Vc(rrr) satisfies Poisson’s equation,

∇2VC(rrr) = −4π nch(rrr). (A2)
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In our case the charge distribution satisfies the neutrality
condition ∫

nch(rrr)d3rrr = 0. (A3)

For spherical cells Eq. (A1) becomes

EC = 2π e2
∫ R

0
nch(r)VC(r)r2dr. (A4)

Integrating this by parts we have

EC = −2π e2
∫ R

0
u(r)

dVC(r)

dr
dr, (A5)

where u(r) is given by Eq. (8) and we have made use of the
relations

u(r = 0) = u(r = R) = 0, (A6)

the latter following from neutrality. But from Eq. (A2)

4π nch(r) = − 1

r2

d

dr

(
r2 dVC(r)

dr

)
, (A7)

whence

dVC(r)

dr
= −4π

r2
u(r). (A8)

Equation (7) follows at once.
For cylindrical cells Eq. (A1) becomes

EC = π e2
∫ R

0
nch(η)VC(η)η dη. (A9)

Integrating this by parts we have

EC = −π e2
∫ R

0
u(η)

dVC(η)

dη
dη, (A10)

where u(η) is given by Eq. (10) and we have made use of the
relations

u(η = 0) = u(η = R) = 0. (A11)

But from Eq. (A2)

4π nch(η) = −1

η

d

dη

(
η

dVC(η)

dη

)
, (A12)

whence
dVC(η)

dη
= −4π

η
u(η). (A13)

Equation (9) follows at once.
For platelike cells Eq. (A1) becomes

EC = e2
∫ R

0
nch(z)VC(z)dz. (A14)

Integrating this by parts we have

EC = −e2
∫ R

0
u(z)

dVC(z)

dz
dz, (A15)

where u(z) is given by Eq. (12) and we have made use of the
relations

u(z = 0) = u(z = R) = 0. (A16)
But from Eq. (A2)

4π nch(z) = − d

dz

(
dVC(z)

dz

)
, (A17)

whence
dVC(z)

dz
= −4π u(z). (A18)

Equation (11) follows at once.
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