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ABSTRACT

The photoionization of the hydrogen atom in magnetic fields B ~ 101*-10"* G typical of the surface layers
of neutron stars is investigated analytically and numerically. We consider the photoionization from various
tightly bound and hydrogen-like states of the atom for photons with arbitary polarizations and wave-vector
directions. It is shown that the length form of the interaction matrix elements is more appropriate in the
adiabatic approximation than the velocity form, at least in the most important frequency range w <€ wg, where
g is the electron cyclotron frequency. Use of the length form yields nonzero cross sections for photon polar-
izations perpendicular to the magnetic field at @ < wp; these cross sections are the ones that most strongly
affect the properties of the radiation escaping from an optically thick medivm, e.g., from the atmosphere of a
neutron star. The results of the numerical caiculations are fitted by simple analytical formulae.

Subject headings: atomic processes — magnetic fields — radiation mechanisms: miscellaneous —

stars: neutron

L.

In the typical neutron star magnetic fields B ~ 101'-10'* G
the electron cyclotron energy hoy = heB/m, ¢ exceeds signifi-
cantly the Coulomb energy (i.e., p = hwp/4 Ry = B/A.T x 10°
G » 1), and the magnetic effects change drastically both the
atomic structure and the cross sections of radiative processes
(see, e.g., Garstang 1977; Canuto & Ventura 1977). One of the
most important radiative processes in neutron star atmo-
spheres is the photoionization of atoms and ions. Since the
gravity is very high in the atmospheres, gravitational separa-
tion may be very important, and the lightest element present
(in particular, hydrogen) may give the main contribution to the
opacity of the surface layers. On the other hand, the relative
simplicity of the hydrogen atom allows one to investigate all
the necessary details of the photoionization process.

The photoionization of the hydrogenic ions in strong mag-
netic fields has been considered in a number of papers. Approx-
imate analytical investigations of the photoionization cross
section at In § » 1 were carried out by Hasegawa & Howard
{1961) and Gnedin et ai. (1974). Hasegawa & Howard con-
sidered only the case when the incident photon is circularly
polarized, with the wave vector along the magnetic field, and
the absorbing atom is on the ground level. Gnedin et al. esti-
mated the cross sections in the Born approximation, which is
Jjustified when the photon energy 1s much higher than the elec-
tron binding energy (roughly, at fw 3 [In §]? Ry). Schmiti et
al. (1981) and Wunner et al. (1983b) presented numerical
results on the photoionization cross section from the ground
state and obtained asymptotic formulae at high photon ener-
gies. In the version of the adiabatic approximation they used,
the cross section for the photons polarized perpendicular to
the field vanishes identically in the most important frequency
range o < oy, in disagreement with other papers, and their
high-energy asymptotic expressions differ from those of Hase-
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gawa & Howard (1961) and Gnedin et al. {1974). The cross
sections from different levels were computed also by Miller &
Neuhauser (1991), without details of the frequency and polar-
ization dependences of the cross sections. Finally, much
research has been done recently on the photoionization in
moderate magnetic fields, B ~ 107-10° G (Kara & McDowell
1981; Greene 1983; Bhattacharya & Chu 1985; Alijah, Hinze,
& Broad 1990; Delande, Bommier, & Gay 1991). Kara &
McDowell emphasized the importance of modifications of the
radial wave functions by Coulomb forces, while the other
authors concentrated on the analysis of resonances associated
with excitation of metastable levels, In very strong magnetic
fields such resonances are tightly grouped near and below the
Landau thresholds @ = Nwg (N = 1) and seem to play only a
minor role in the formation of spectra.

The results of the above-cited papers contradict each other
in some important points, which obviously must be resolved
before one attempts an adequate investigation of the radiative
transfer in the atmospheres of strongly magnetized neutron
stars. In particular, one should bear in mind that the propaga-
tion of radiation in anisotropic atmospheres involves two so-
called normal waves (polarization modes) which differ in the
polarizations and, as a consequence, in the absorption coeffi-
cients and photon mean free paths (Gnedin & Pavlov 1974).
Especially important in the radiative transfer is the mode with
the lower absorption coefficient, because it determines the
effective mean free path. Concerning the photoionization, this
means that an evaluation of the cross sections for polarized
radiation is necessary, and the (so far) most discrepant cross
sections for photons polarized perpendicular to the field may
be of principal importance.

In the present paper, we study analytically and numerically
the photoionization in strong magnetic fields of the hydrogen
atom in the ground and various excited states. The cross sec-
tions are computed and analyzed in a wide frequency range
and for different polarizations of the incident photon. The
basic equations are presented in § 2. In § 3 we derive and
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discuss asymptotic expressions for the cross sections near the
ionization thresholds and at high frequencies. Numerical
results and their fitting by simple equations are presented in
§ 4. In § 5 we briefly discuss applications of the results to the
problem of radiative transfer in the atmospheres of neutron
stars.

2. BASIC EQUATIONS

Let us consider a hydrogen atom placed in a homogeneous
magnetic field B directed along the z-axis. According to
Gor'kov & Dzialoshinskii (1967) and Herold, Ruder, &
Wunner {1981), the coordinate part of the wave function of the
atom can be written as

¥(r, R) = exp [iKR _ e (Bx R) - r]q’l,((r} , m
2he

where R = M~ '(m,r, + m,r,) and r =r, — r, are the center-
of-mass and relative coordmates m,, m, andM m, + m, are
the electron, proton, and total mass; —e is the electron charge
and AKX is the eigenvalue of the generalized momentum of the
atom,

P:-ihvk—isxr. @)

The wave function of the relative motion, y.(r), obeys the
Schrédinger equation with the Hamiltonian

hK?  eh n? e?

H, = — (K . 3+ — (B 2
= m T KX Bty Ao BX0T VA,
(3)

where
e m —m

= iV, +— 2 Tep 4
i ‘V'+2c M xXr 4

is the kinetic momentum operator, ¥.(r) = —e?/r is the
Coulomb potential, and y = m, m /M is the reduced mass.

Up to now the structure of the hydrogen atom has been
investigated in detail for K = 0 only (fixed atom). Traditional
approach to this problem looks as follows (see, e.g., Garstang
1977; Canuto & Ventura 1977; and references therein). Let us
expand eigenfunctions y(r) = y{p, ¢, z) of the Hamiltonian (3)
with K = 0 in terms of the Landau states

Qydp, @) = (2m)" % exp (—isplay Tyonlp?/2a])  (5)

which are the transverse parts of the electron wave functions in
the absence of the Coulomb field. In this equation

Lin@) = (—1)¥ "Iy (d)

= ; 5126(31' Nyr =

~NIN'!
is the Laguerre function (Sokolov & Ternov 1968; Kaminker
& Yakovlev 1981), N = 0,1,2, ... is the number of the Landau
level, s = —N, —N + 1, ... is negative of the z-projection of
the relative angular momentum (in units of #), a; =
(hc/eB)\? = ag(2B)~ /2 is the magnetic length, B = hw,/4 Ry =
h*B/2m? c*e?, and ag is the Bohr radius. For sufficiently large
B, the so-called adiabatic approximation is valid, i.e., one term
in this expansion exceeds significantly all the others (see, e.g.,

L@y ©

Simola & Virtamo 1978):

i) = URL) + SYa(6) & YR) Y]
’\b (l‘) (DNs(p’ ¢)gNs(z) ; (8)
O ydr) = Z Dy (o, $IY(2) . 9

The wave function /§(r) obeys the Schrodinger equation with

eZ
\/— m( ) (10)

substituted for the real three-dimensional potential. The longi-
tudinal wave function gy(z) obeys the one-dimensional Sch-
rodinger equation with the potential (10) and (longltudmal)
energy €e=E—[N+3i+m, +(me )(N+s+2]hcu3,
where E is the total energy, and m, = +% is the electron spin
projecion on the z-axis. Hereafter we shall take into account
only the states with m, = —1, because, at the field strengths
under consideration, contribution of the spin-flip transitions to
the photoionization cross sections is several orders of magni-
tude less than that from corresponding transitions with con-
served spin projections (see, e.g., Wunner et al, 1983b).

Negative eigenvalues of the longitudinal energy form a dis-
crete spectrum, € = —éy,,, Where n=0,1,2, ... counts the
nodes of the eigenfunction gy (z) with the parity (—1)". At
fi = oo the energies of the tightly bound states (n = 0) grow
logarithmically, ey,o ~ (In §)* Ry, whereas the energies of the
hydrogen-like states (n > 1) group about the levels of the field-
free hydrogen atom, ey, — {Int [(n + 1)/2]} ~? Ry, where Int
(x) is the integer part of x. All the discrete levels corresponding
to N > 1 are essentially metastable at § » 1, with a typical
width ~No?f* Ry, due to natural (radiative) broadening
(Wunner et al, 1983a).

Corrections to the adiabatic approximation f{or the energy
levels and bound-bound transition rates were taken into
account by Simola & Virtamo (1978), Rosner et al. (1984), and
Forster et al. (1984), The deviations of their results from the
adiabatic ones appeared to be less than 1% for g > 50. This
allows us to hope that at such high £ the adiabatic approx-
imation should give a satisfactory accuracy for the photoion-
ization cross sections also.

Let us turn now to the photoionization of the hydrogen
atom in a bound state i by a photon with the wave vector
7 (|¢| = w/c) and polarization unit vector e. According to
equation (A3), general expression for the cross section summed
over the final generalized momenta of the atom reads

422
?Iem'[dKleb_eIZ
I

E;—ha)é(K, K, — q). (11)

Va2 = (@, | Vilr) | Dp,> = —

o{K)) =

x 8(E; —

In the present paper we consider atoms with X; = 0 only. In
this case one can neglect the atomic motton in the final states
also if the energy of the motion ~ #*g*/2M is much iess than a
typical binding energy ~ Ry, i.e., Ao <€ (Mc?Ry)H/2 ~ 100 keV.
Then the cross section can be transformcd to the form

1 1
Z enera‘ﬁZu: Z e,ue:‘ Zag:nﬂi\'fsf’ (12)

ONsn =
wv=—1 wv=—1 Nysy
ho L
Osnsngs, = R0D_, DY, —, (13)
€, Ry dn
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where e, =e,, e,, = (e, + ie,)/\/2"?, a = e’/hc, L is the z-
extension of the periodicity volume of the final state, and

€ = hw — €y, — [(N; — NX1 + m/mpy) + (s, — s)m,/m,Jhowy
(14)

is the longitudinal energy (hereafter we shall omit the subscript
i for the initial states). Since the states with N > 0 are metasta-
ble and almost unpopulated in the high magnetic fields, we
adopt N = 0. Then the threshold photon energy for fixed N
and s is

hw::ﬂtl)js_,- = €ogn + {Nf(l + me/mp) + (sf - S)mep]th . (15)

Note that the term (s, — s)m,/m, is by no means negligible, at
least at N, =0, as it may be comparable with the binding
ENergy €,,, (cf. Herold et al. 1981),

The cross sections evaluated with the aid of approximate
wave functions may essentially depend on the choice of the
form of the matrix element D. For instance, Schmitt et al.
(1981), Wunner ct al. (1983b), and Mega et al. (1984) used the
velocity form and obtained zero cross section for the transverse
polarizations 4 = +1 at @ < w{}.. On the other hand, Hase-
gawa & Howard (1961), Gnedin et al. {1974), and Miller &
Neuhauser (1991) used the length form and obtained finite cross
sections in the same frequency range. General expressions and
various approximations for the matrix element D are discussed
in Appendix A. Tt is shown there that if one calculates D with
the adiabatic wave functions, the length form of the matrix
element is preferable, at least in the most important case @ <
wp. Thus, neglecting the corrections ~m,/m, in the matrix
elements, we use (cf. eq. [AT])

D= <(I)Nfongsfe_(|eiqr
hw g-n
l ——y5— D ‘ 16
x f( zmecz Iq'mec)l 05903n> ( )

The matrix element D can be expressed in terms of the
Laguerre functions (sce eq. [6]) with the aid of the following
relations

Fo1 @y = agl N+s®Oy,  —/N+1Dy,,,), (17

Fog @y =a(N+ s+ 10y 4y *\/ECDN—L;H) , {18)

it
?3+1¢’Ns:*a_ N+1®yiy -y, (19)
L
it
oy By = — Ny, (20)
L

and (Sokolov & Ternov 1968)

J; Jsf —5(2\/1'76)1!\’; +sr, N_,r(é)IN +s,N(C)dC = IN] +3r.N +s(u)INfN(u) H

(21)
where J (x)} is a Bessel function. These relations yield
D, = IN;+S;,3(“)[IN;O(I‘)Z|1| + IN;[(“)ZJf] ) (22
Doy = @l maps /5 Uy oZ + Iy @0Z8]
~Ingrsp v Z8 4+ 21,281}, (23)
Dy = ap{lnyeapas /s + 1L u,oW)Z}
+ IN;I(U)Zg)_] - IN;H;,;(“)’N;O{“)Zé} ’ (24)
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where u = (ga;, sin 6)2/2 = (hew/2m, c*¥w/wg) sin® 0, 0 is the
angle between g and B, ¢ lies in the (y, z)-plane, and

Z’}‘f = <gf | eiqzcosﬂzk

heo . ha 0
x(l—zmecz—}—tcosf) }me; aLE)§g>, (25)
hw )
1 _ o 5 igzcos8 k 26
Zi =sin 8 /Tmecz (g, | €975 8z% | g | (26)

The terms proportional to hw/m,c® and (hwy/m, 22 ~
o(f)'/? originate from the second and third terms in the par-
entheses of equation (16). They give only small corrections to
Z} { ~ hojm,c? and ~aln § cos 8, respectively). On the other
hand, the terms proportional to Zi (being of the same origin)
may make substantial contribution to the matrix elements at
o > ofl .

Equations (22}-(24) simplify significantly in some limiting
cases. They look especially simple for 8 = 0,

Doy =08, 1(Onon/5 — Onuda Z) 27
Dy =084+ 10m0v/5+ la, Z} (28)

(Dg does not contribute to the cross section because e - g = 0).
This means, in particular, that at

o <o | ~w
the cross section vanishes identically for the circular polariza-
tion e = ¢_ if the atom is in any state with s = 0, including the
ground one (cf. Gnedin et al. 1974). Note that the last state-
ment follows from the conservation of the angular momentum
and energy, so it remains correct outside the framework of the
adiabatic approximation.

Equations (22)—(24) are also simplified in the dipole approx-
imation. Since z-extension of the atom in the magnetic field is
larger than its transverse size, one can distinguish the trans-
verse dipole approximation (Wunner et al. 1983b). Being valid
at ko sin 0 <€ «(B)*Zm, 2, it corresponds to replacing in these
equations all the functions Iy »,(18) by 8, x,. More restrictive is
the longitudinal dipole approximation [exp (igz cos &) — 1]

valid at
ho cos 8 <€ /m,c? - €, -

Thus, equations (12), (13}, and (22)—(24) allow one to evalu-
ate the photoionization cross section at hew, hog < m,¢? for
arbitrary photon polarizations and angles of incidence.

3. ANALYTICAL RESULTS FOR VERY HIGH ﬁ

Equations (22)—(26) reduce the problem to evaluating the
longitudinal matrix elements (overlap integrals) Z,. In the limit
of very strong magnetic field (In § » 1), the evaluation can be
done analytically for some particular cases.

The longitndinal wave functions obey the following equa-
tion

€

[d—eriv O+ ](C)—O (29)
dgz \/B Ns .B gl - »

where { = ./2z/a,, vyf() is defined by equation (10), and € is
the longitudinal energy in Ry. An efficient method for solving
this equation and evaluating the cross section in the dipole
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approximation for the transverse polarizations (¢, v = + 1) has
been presented by Hasegawa & Howard (1961). They sug-
gested to neglect the last term in equation (29) at |{| < {,
{where a matching pont {, obeys the inequality 1 < ¢, < §*?),
to replace the potential by its asymptotic expression {vy{{) ~
Y at|{| > &y, and to evaluate {g,|g> approximately as an
overlap integral over the region {; < |{| < oo. The method
was originally applied to the ground initial state of the atom.
For transitions from arbitrary even states {0, s, n} withn = 0,2,
4, ... to continuum states {0, s; > 0, €/} with €; = hw — €4,
— {57 — s)(m,/mhewyg, we obtain

4nlaal hicw Ci Y
B Ry TR 4 (14 p)2 (e + €q50)
x {4n® + Y?[X,, —Ine; — 2 Re y(1 + ie; M52} 71,
(30)

el —
Fosn—0s Jo

Where H= i ls ‘x[’(x) = (d/dx} ]11 r(x)’ Cs() = {6030)1"25
Co =224 + X1, n=124,..
Y =1 —exp(—2nre/'?),
X,=Inpg—-3y— Y k!
k=1
(the sum here and in eqs. [31], [33], and [34] is to be replaced
by zero for s = 0). The energy eigenvalues €., can be obtained

either by numerical solving equation (29) or from the simpler
equations

V€osp T In€gy =Inff—y— kzlk_l s (3n)

and
n -2
eDsn=(§+6n) , n=24 ... (32)
5 2 -1
6,,=2(lnﬁ3}7 Zk‘1+—2) . (33)
k=1 3n

Note that the effect of the finite proton mass may shift signifi-
cantly the threshold frequency

wgzshu = €0sn/h + nu(me/mp)(DB -

Moreover, @f) may become negative for u = —1 for suffi-
ciently high fields, which means that the physical threshold
is shifted to « = 0, where the cross section equals zero.

Since g (e, — 0, { = 0) oc €, '/, the divergent factor €, '/ in
equation (13) is compensated, and the cross section near the
threshold w§, , , > Ois finite,

[hwg3s+,u/RY:| Csn
Bls + (1 + p)/21e3,,

5 2] -1
x {39.5 + (lnﬁ —173- % k“l) } Byysrnr (34)
k=1

where o = (8n/3)(e?/mc?)? is the Thomson cross section. The
factor 1/f corresponds to the reduction of the transverse
atomic size by ~fYZ in a sirong magnetic field whereas the
factor ~{lnf) ? is due to behavior of the continuum wave
function at { — 0. An additional decrease of the cross section

;
Tl vos [0 = 08,4, ] =12 x 1076,
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for n = 0 occurs with increasing f§ due to growth of the ioniza-
tion energy €4, oc (In §)%.

Let us consider now the behavior of ¢(w) at high @. Equa-
tion (30} yields " oc @™ at @ » ), in accordance with
the result of Gnedin et al. (1974). On the other hand, an asymp-
totic expression in the Born approximation can be obtained by
substituting g A) = L™ '/ exp [i(e ;/B)"/*{] into equation (A13),
performing the successive partial integrations, and expanding
the result in the power series of ¢ /2. This approach was used
by Schmitt et al. {1981) for s = 0. For arbitrary s, we obtain

2( i — 1y 22
\/; Jl . COs (\/; C)go.m(‘:)d‘: = (_ 1) ﬁL gOsn(O)

[ dls+l :I
=T , (35
X dC25+1 UOS(C) (=0 ( )

which givesfor g = 11

3 w1
Gg‘:nﬂ()s_( > E ot 6.!’[,s+u|:s + T]

25+7/2
X 85)2(43)2‘+3’2iQOS..(O)IZ(%) . (36)

Differentiating equation (35) with respect toe, /2 yiclds
a0 ~ i 5 2 2
GOm—»Os; - 2‘13 or Sf.!(s + )

Ry 2s+9/2
x (A" 2| goul0) |° (—) - 37

hueo
Equations (36) and (30) are in obvious contradiction caused by
difference of their validity ranges. The approximations used to
derive equation (30) (in particular, neglecting the last term in
eq. [29]) are invalid when €, 2. On the other hand, the
terms neglected in equation (35) are small at Aw > 48Ry =
hwy. Thus, the asympiotic behavior ™3/ takes place in the
range hwf) < ho < f*? Ry, which exists at sufficiently high
B, whereas equations (36) and (37) are valid at extremely high
e, where the transitions to higher Landau levels give larger
contribution to the total cross section than the transition to
N, = O considered here.

4. NUMERICAL RESULTS

The photoionization cross sections were computed with the
aid of equations (22)—(26). Some technicalities of the computa-
tion are described in Appendix B.

Figure 1 shows the partial cross sections al}, .o, as a func-
tion of the final longitudinal energy ¢, at several values of the
magnetic field B for the photons with the right circular polar-
ization at # = 0° and the linear polarization parallel to B at
@ = 90°. The comparison of the numerical cross sections (solid
curves) with the approximation (30), (36), and (37) plotted by
dashed and dotted curves shows that, in accordance with the
conclusions of § 3, equation (30) gives fairly good results at low
and medium e, especially for the tightly bound initial states,
whereas the asymptotic curves (36) and (37) are close to
numerical ones at €, > Aw » hwy only. The cross sections for
the transverse polarizations are much smaller (by a factor of
the order of f) than for the longitudinal polarization at @ <€ wy
due to transverse magnetic compression of the atom. Growth
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Fi. 1. —Partial cross section ag, .4, , vs. final longitudinal electron energy for different magnetic fields, photon incident angles, and polarizations. Solid,
long-dashed, and dotied curves show numerical results {eqs. [22]-[26]), analytical approximation (eq. [30]), and high-energy asymptotes (eq. [35] and [36]),
respectively. () Transitions from the ground state (s = n = 0). The curves are labeled by log B (gawss) and symbols || and r which correspond to the longitudinal
linear polarization (u = 0), = 90°, and right circular polarization (z = +1), & = 0°, respectively. (b) Transitions from the exciled states s = 1, n = 0 and 4 {figures
near the curves) for B = 10'*3G, 8 = 0°, u = + 1. Dash-dotted curves present the numerical results in the dipole, infinite-proton-mass approximation.

of the magnetic field diminishes the cross sections near the
thresholds for any given polarization, whereas at high fre-
quencies the cross sections increase with the field. Figure 1b
demonstrates in addition, an increase of the near-threshold
cross sections for g = 1 (which would turn into a decrease for
= —1) due to allowance for the finite proton mass in the
relation between ® and €, (see eq. [14]), which is the most
significant for the hydrogen-like initial levels.

The partial cross sections for the transitions from the ground
state to the continuum of the first excited Landau level (N, =
1, s, = —1}) are shown in Figure 2 for photons with the left
circular polarization at § = 0° and linear polarizations parallel
and perpendicular to the magnetic field at 8 = 90°. These tran-
sitions are allowed for @ > w? _| = w, + €g00/h. Absorption
of the photons with the left polarization, strictly forbidden for
transitions from the ground state to states with N, = 0, domi-
nates at N, = 1, The resonances in this absorption are caused
by coincidence of the electron and photon wave numbers. In
the Born approximation (justified at €, > Ry} one has g, o
exp (tik,z), where k, = (e;/Ry)"%ag", €, & hw — Nywp).
Muitiplication of g, by exp (igz cos 8) in the matrix elements
(25) is equivalent to substitution k, + g cos @ for k, in the final
wave function, with g = a(hw/2 Ry)ag 1. Therefore, a resonance
k, =~ g cos 0 arises at

€1 e = [1 — /1 — Ha cos 8)*BN J%e cos §)% Ry
~ (2afiN, cos 6)* Ry . (38)

The resonances are imperceptible, and deviations from the
longitudinal dipole approximation play only a minor role, if
€ .res = Ry. This is the case, in particular when N, =0 or
& ~ 90°.

Figure 3 demonstrates frequency dependences of the total
cross sections for an atom in the ground state ionized by pol-
arized light at 8 = 0° or 8 = 90°, the magnetic field varying
from 10" to 10'? G. The nonmagnetic cross section from the
ground state is also shown for comparison. Absorption of the
left-polarized photons (Fig. 3a) is allowed only for @ > wy
+ €500- The threshold cross sections are by a factor of the
order of f# higher than for right polarization, heing comparable
with those for longitudinally polarized photons. Note that the
maximum of the cross section for B = 10'23 (5 is slightly
shifted from the threshold due to the resonance shown in
Figure 2. The sharp peaks in Figure 3b correspond to iran-
sitions to the excited Landau states, N, = 1, 2, .... They would
disappear if we used the dipole approximation. Such peaks do
not arise in Figure 3a because the only allowed transitions at
= 0° are those to N, = 0 and 1 for right and left polarization,
respectively.

Figure 4 shows cross sections for transitions from the tightly
bound states with various s in the case of linearly polarized
photons propagating perpendicular to B. The photon energy
range is shown where the transitions to N, = 0 are allowed
only (e, s, = 0,1,...), We see that the maximum cross sections
for the longitudinal polarization grow with s slowly, whereas
those for the transverse polarization decrease with increasing s
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from s = 1, These maxima are reached at the “main” thresh-
olds associated with the transitions tos, = sands; = 5 + 1 for
the longitudinal and transverse polarizations, respectively.
Additional (lower) thresholds are seen for 5 # 0. They corre-
spond to s, =5 — 1 and are shifted leftward in accordance
with equation (15). Transitions to s, == s and s, > s+ [ are
also allowed for transverse polarization but their contributions
are so small that the corresponding thresholds do not display
on the curves (just as the thresholds for s, > s on the curves for
the longitudinal polarization).

Figures 5 and 6 demonstrate the cross sections for various
longitudinal quantum numbers n at several values of s. The
nonzero cross sections at frequencies below the main thresh-
olds are caused by the transitions to states with s, =5 — 1,
exactly as the “steps” in Figure 4. The corresponding addi-
tional thresholds are shifted, formally, to negative frequencies
for all the hydrogen-like states, n > 1, in the field under con-
sideration, B = 10'2-3 G. This means that such initial states are
metastable, and photoionization is allowed at any (positive)
frequencies.

The shapes of the cross section spectra above the main
thresholds for the even hydrogen-like states (Fig. 5) strongly
resemble those for the tightly bound states, On the contrary,
the spectra for the odd states and longitudinally polarized
photons show quite different behavior near the main thresh-
olds at s = 0 (Fig. 6a). Besides, they display sharp dips (Fig. 6b).
The dips, mentioned previously by Mega et al. (1984), appear
at energies where the longitudinal matrix element Z! changes
its sign with varying energy. The finite cross sections at these
energies are due to the second term in equation (22) which
would vanish in the transverse dipole approximation.
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FiG. 3.-—Total cross seclion as a function of the photon energy for the atom in the ground state (s = » = 0) and various log B (figures near the curves). (a) § = 0°;

right (r} and left () circular polarizations. {b) & = 90°, longitudinal polarization. -
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F1G. 4~—8pectra of the total cross sections for various tightly bound initial
states n = 0, 5 = 0,1,4,20 (figures near the curves) at 8 = 10123 G, & = 90" for
longitudinal (|} and transverse (L) photon polarizations.

The computed cross sections can be fitted by simple equa-
tions for the most important case of the tightly bound initial
states and not too high photon frequencies, @ < wg, when the
transitions to N, =10 only are important. In particular,
making use of equations (30}, (36), and (37), we obtain

00,5 +ul®) ( » )'“'
(1) - £
63’;0—'0,3+;1(w0,s+u) m%?shu

1 1
x . , (39)
(I + a,yP° [1 + by 1+ v — 1J]6*D
where
o=,
€050 €050

ag =115, a,, =072, a =069,
.= Cn{l + dys)—lﬁllnl—&i)'l ,
Co=Cyy =069, c¢c_, =027,
dy=d,; =05, d ,=01;
and (cf. eq. [31])
€os0 = [Inf + a, — b, In(In § + ¢)]* Ry,
a, = 4287 + 3.76771n(s + 3.604) ,
by, = 3910 + 1.28591n(s + 2.021),
¢, = 3709 + In(s + 2.38) . (40)

Photon energy (Ry)

F1G. 5—Spectra of the total cross sections for longitudinal (||) and trans-
verse (L) polarizations for various even n (figures near the curves) at
B =10'** G, # = 90°, Solid and dashed lines correspond to s =0 and s = 1,
respectively.

The threshold values of the cross section in equation (39) can
be approximated as (cf. eq. [34])

a g?o ~0s[®8)
514 x 106cr1-(R).(/'050,0)”2

"1+ 0.00968(1 + /s + 2)[Inf — 4.87 — In(s + 035)]
41)

B q
G hbsr1[@f 1] = 2.25 x 10%a; Wo.st1 .

€0s0 s+l

N (ﬁ Y21 455 x 10 1%s + 1)?f% cos? @ @)
om0 B(s + 1 + 00141102 §) .
ol _
G bs i[O, ] =297 x 1%y —2==1
€050
Ry \"2 1 + 5.5 x 1015282 cos? @
x [ + oo X SP s 8 s0. @y
€om0 A5 + 0.0087In2 f)

The typical error of the approximation for the energies (eq.
[407) is about 1%-2% for 0<s< 100 in the range
50 < B < 5000, the maximum error being 4% for high s and
low f. The error of the threshold cross sections (egs. [41]
through [43]) is about 1% for u =0 and 3% for g = +1 at
50 < § <5000, 0 <5< 10, The approximation (39) of the
cross sections above the thresholds becomes, generally, the less
accurate the lower the cross section value. The typical error in
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F1G. 6.-—Specira of the total cross sections for odd

those frequency ranges where o> 1072%g; is ~6% at
70 < f <2000, 0 <5 < 10. It may reach 15%-30% at high-
frequency boundaries of these ranges, where the intrinsic accu-
racy of the computational results may be even worse.

5. DISCUSSIONS AND CONCLUSIONS

The main features of the photoionization process in sirong
magnetic field, § = hwg/4 Ry > 1, can be outlined as follows.

1. Strong magnetic fields qualitatively change the frequency
dependence of the photoionization cross section. In particular,
the thresholds corresponding to the lowest (tightly bound)
atomic levels are shifted to substantially higher energies. The
cross sections above the thresholds decrease with w slower
than in the field-frec case. Additional thresholds associated
with continua of the excited Landau levels N, = 1,2, ... arise at
@z Nywy.

2, The photoionization cross section depends strongly on
the polarization of the incident radiation. Generally, the cross
section at frequencies @ <€ wg is much larger for photons pol-
arized parallel to the magnetic field. For the longitudinally
polarized photons, the magnetic field depresses the maximum
(threshold) values of the cross section only slightly whereas the
cross sections for transverse polarizations are in addition
depressed by a large factor ~f, and they decrease with w
slower than those for the longitudinal polarization. The photo-
ionization from the states s =0 to the continuum of the
ground Landau level is strictly forbidden for the “left” circular
polarization, with E-vector rotating in the same direction as a
free electron in a magnetic field. On the other hand, the c¢ross
section for the left polarization is much higher than for other
polarizations above the first Landau threshold (ie., at @ = ag).

3. Even the polarization-summed cross section is strongly
anisotropic. In particular, the cross section at @ <€ wy is much

smaller for # = 0 or =, i.e., for photons propagating along the
magnetic field, than for 8 = z/2.

4. The behavior of the cross section is different for the
tightly bound, even hydrogen-like, and odd hydrogen-like
initial levels of the atom. For instance, the peak c¢ross sections
for the longitudinal polarization are higher from the even
hydrogen-like levels than from the odd and tightly bound
levels. Cross sections from the odd states display quite different
near-threshold behavior and have deep narrow dips at some
frequencies.

In addition to these general properties of the magnetic
photoionization, partly known from previous publications
(Hasegawa & Howard 1961 ; Gnedin et al. 1975; Schmitt et al.
1981; Wunner et al. 1983a), we also showed that the length
form of the interaction matrix element is more appropriate in
the adiabatic approximation than the velocity form in the most
important frequency range o <€ wg (hw <€ 1-100 keV for
B = 10"'-10'* G). In particular, applying this form provides
nonzero cross sections for transverse polarizations at w < wg.
We also found that different forms for the partial cross sections
obtained by Hasegawa & Howard (1961) and Gnedin et al.
(1975), on the one hand, and Schmitt et al. (1981) and Wunner
et al. (1983b), on the other hand, are valid in different frequency
regions (Ry/h € w € wy and @ » wg, respectively). We first
took into account the effect of the finite proton mass on the
photoionization. It leads to an additional shift, Aw =
Asim,/mJwp, of the threshold corresponding to a transition to
5, = 5 + As. This means, in particular, that the thresholds for
the right and left circular polarizations are shifted to higher
and lower energies, respectively; in the latter case the thresh-
olds can be even shifted (formally) to negative frequencies
which reflects the fact that the boundary of the continnum
corresponding to s, = s — 1 lies lower than the energy of the
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initial {metastable) level. Since we considered the photoioniza-
tion outside the framework of the dipole approximation (i.e.,
the transitions with |As| > 1 are allowed), the effect of the
finite proton mass is also displayed in a “ stairlike > structure of
the thresholds of the total cross section (see, e.g., Fig. 4).

To apply the resuits to astrophysical problems one should
evaluate the absorption coefficients (opacities) of the so-called
normal waves (polarization modes) reponsible for transfer of
radiation in optically thick, anisotropic media (see, e.g., Gnedin
& Pavlov 1974). The absorption coefficients can be expressed
through the cross sections as

1
2. e.elatn,  (44)

wr=—1

1
k; = z kuveilzejv* = Z o~
#,v=—1 3n
where e/ is the unit vector of the normal wave polarization
(j =12), and 4", is the number density of the atoms in the
state |0, s, n). The polarizations can be determined (Pavlov et
al. 1980) from the polarizability tensor of the medium. The
polarizability of the atomic component in a strong magnetic
field has not yet been investigated even for the simplest case of
hydrogen atoms. However, one can anticipate that at hog >
Ry and wp > @ the normal waves should be polarized almost
linearly in a wide range of wave vector directions outside a
narrow cone around B, as in the case of a fully ionized plasma.
In this “quasi-transverse ” approximation the absorption coef-
ficients of the “extraordinary ™ (e' 1 B) and “ ordinary ™ (e? in
the [ Bg]-plane) waves are

k —i-
klz%—k—l—i—Re kovoys {45

kyyor +koyoy

]
3 cos

ky = koo sin? 0 +

kit k_ s

+ Re (k+1_1c0329— sin 26). (46)

These equations can be further simplified in the dipole approx-

imation, when k,, = k,, §,,, and k,, is independent of 8. The
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absorption of the extraordinary wave is isotropic in this
approximation, whereas k,(# = a/2) » k(@ = 0). Since the
cross sections for the transverse polarizations (u, v = + 1) are
much smaller than for the longitudinal one at w < wy, the
extraordinary photons have a longer mean free path in a wide
range of 3, thus determining the properties of radiation escap-
ing from an optically thick medium. This means that an accu-
rate evaluation of o, " and a5, ' is especially important,
and wvsing the velocity form of the interaction matrix elements
in the adiabatic approximation is inappropriate because it
leads to zero absorption of the extraordinary mode.

Besides an investigation of the normal wave polarizations,
three more problems should be solved for incorperating the
photoionization into modeling realistic neutron star atmo-
spheres. First, it would be desirable to calculate the cross sec-
tions, particularly those for the transverse polarizations,
outside the framework of the adiabatic approximation, ie., to
take into account the admixture of the states with different N
to the initial and final states. Second, one should take into
account the effect of the atomic motion on the photoioniza-
tion. The motion across the magnetic field generates the
Lorentz electric field, E = ¢~ v x B, which breaks the axial
symmetry, leading thereby to distortion of the atomic struc-
ture, violation of the selection rules, additional shifts and
smoothing of the ionization thresholds, and alteration of the
cross section magnitudes. Third, since the atmospheres of
neutron stars are much denser than those of usual stars, the
opacities should be calculated with allowance for pressure
effects which partly destroy the discrete states (Ventura et al.
1992) of the atom and lead to additional smoothing of the
ionization thresholds.

We are grateful to Joseph Ventura and Peter Mészaros for
useful discussions. We are also pleased to acknowledge helpful
referee’s comments of Heinz Herold. This research has been
supported in part through NASA grant NAGW-1522.

APPENDIX A

INTERACTION MATRIX ELEMENTS

Interaction between a hydrogen atom and a photon with the wave vector ¢ and frequency @ is described by the following

potential
Ho=e |2 Lexp igr) "= — exp igr) ™ < (A1)
int = — - igr
int w p q e. me p g P mp ]
where
, e m,, e e
T, , = —tﬁVrMiﬂBx re_p=ﬁ2(l’+;8xr)i(n+§;8x R) (A2)

are the kinetic momenta of the electron (subscript “e,” upper signs) and the nucleus (subscript “p,” lower signs), r, , denote their
positions, r =r, —r,, R = (m,r, + m,r)/M, P and = are given by equations (2) and (4). The matrix element of the interaction

potential between the states ¥ and ¥ (see eq. [1]) is equal to

(D, | Ho | W) = iey/2nheo (D - e)2n)*S(K, — K — q) , (A3)

where 2K and AK; are the eigenvalues of P,

D = (i)W L Ag [HK + (e/c)B x r]/M + A[ mjp | = D™, (Ad)
Ay = (m,/MY" exp (im, q * /M) £ (m,/M)" exp (—im.q - r/M).
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Making use of the commutation relations
[Hy, r] = (Bfigr (A5)
[Hx, e™1 = e (h°k*/2p + bk - mjp) (A6)
where Hy is given by equation (3), one can transform the velocity form of the matrix element (A4} to the length form

_ . _q'(th+eer) 3 . hg* _g-m] _heK+eBxvr e
Dﬁ<lﬁf|r{/l1|:1 Moe A; A id, —_Mmc g > = D", (AT}

Equations (A4) and (A7) are valid for arbitrary momentum of the atom, ratio m_/m,, and relation between the radiation wavelength
and atomic dimensions. They are simplified substantially in the dipole approximation (g — 0),

2ue0 S o

D = (iwp) 'Y ylmld , (A8)
DY = (Y lely, (A9)
and for m,/m, — o0,
D™ = (im, ) 'Y, | exp (ignn |¥) , (A10)
h 2 .
D = (Y lr exp (iqr}(l — g 1—0’—:) 9. (AL1)

The velocity and length forms of the matrix element D would be equivalent if ¢ . and y were exact wave functions. However, if one
applies the adiabatic approximation (7), these forms may lead to qualitatively different results. This can be demonstrated in the most
transparcnt way for the case m,/m,— oo in the adiabatic dipole approximation. In this case the circular components of D,
D, = (D, £ iD)/2'% take the form

T - a a e w
DI = (icom,) 1<¢fd|ﬂi1 [ = +4ap '&_)B v Nonax 5N;,N11 5s;.s$1<gf|g> (A12)
and
D‘;’i"” = <'f’}d|": D = ap( — N max ‘5N;,N;tl + /N A+ Spax 5NI,N)531,¥1<gf|g> s (Al13)
where N, = max (N, N), 5,,, = max(s, s;), and *¢ is defined by equation (8). Equations (A12) and (A13) yield the relation
D = DEIN; — Nywp/o . (A14)

The most striking discrepancy takes place in the most important case N, = N, when D%$* # 0, whereas D'§?¥) vanishes identically.

It seems clear that vanishing D'F#® at N, = N is caused solely by the adiabatic approximation, and the nonzero value of D'{';¥
can be considered at least as an approximate evaluation of the matrix element. To verify consistency of this assumption, let us
suppose that at some  the adiabatic approximation for the wave functions (see eq. [7]) holds also for longitudinal matrix elements,
ie.,

{Gny | BYe> = Oedgny gns),  €<1, (A15)
and find the first correction to D§#%., Applying equation (9) and the equality
L I | @y = ime(Nf - N)mB<(DNf3f|rj:1 | @y, (Al6)

onc obtains

w 3
Dy, — D = + f {(1- éNf,Nil)(<q)N:tl.s;|ril|([)N,><h§‘§:{ | gns>

— (s 721 | Ouy 5 1,:><9~;;,|hﬁfr¥ )+ OfeD)} . (A17)
On the other hand, it follows from the assumption (A15) that D, = D% + O(¢). Thus, with allowance for equation (A14), one
obtains

[13]
Dil e D(;;rllad) = {1 - (Nf - N) ﬁ}(‘p.’\usrlril |(I)Ns><gN_rsf|gNs> + O(G) - (AIS)

Equations (A17) and (A18) are consistent with equation (A15), if only
| — (Ny— Nwy| € wg . (A19)

Violation of the condition (A15) outside this frequency range can be also shown directly from a set of the differential equations for
g(z) and h(z) (see, e.g., Simola & Virtamo 1978), making use of explicit form of nondiagonal Coulomb matrix elements which couple
these equations. Thus, the length form in the adiabatic approximation is justified just above the Landau thresholds, where the cross
sections are maximal, including the most important region @ < w, which realizes at N, = N only (ie, above the “zeroth”
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threshold). Equation (A17) shows clearly that the velocity form does not work in this region, whereas both forms coincide
approximately if N # N and the condition (A19) is fulfilled. On the contrary, the two forms differ essentially outside the frequency
regions (A19), i.e., below the Landau thresholds, but violation of the assumption {A15) in this case indicates, strictly speaking, that
the adiabatic approximation is inapplicable with both forms. Nevertheless, since it occurs at frequencies where the cross section
itself is comparatively low, we may expect that deviations of the exact cross sections from the adiabatic ones will not be too
important for astrophysical applications.

Note that all these problems arise for the transverse components D, only as the velocity and length forms coincide for the
longitudinal component, D§*® = D§29, if the Schrodinger equation for gy (z) is solved accurately.

APPENDIX B
TECHNICALITIES OF COMPUTATION

1. EFFECTIVE POTENTIALS

It follows from equation (10) and properties of the functions ®y(p, ¢) (see eq. [5]) that v, ({) = st | £ ) with n, = N +
(s — |s1)2, and each vy({) is a linear combination of the functions vy, () with 5" = | 5|, |s| + 1,...,|s| + 2n,. All these functions can
be reduced to 644(0) = n/2 exp (¢) erfc (§) with the aid of recurrence relations (see, €.g., Alijah et al. 1990). The function v,({) can be
computed very fast and accurate making use of the rational approximation of erfc ({) at || < 1 and the continued-fractions
expansion at { > 1 (Abramovitz & Stegun 1972). The recurrence from vy, to v, loses stability at large { and s due to increasing
round-off errors. In this case the asymptotic expansion

O 1 { 1 1-p I3s+14+(1—-p)? }
Vol _—— —_— — R

T S +s+p 20 4s+p 8 (C+s+p’

can be applied, where p is an arbitrary parameter. Rosner et al. (1983) used the value p = 3. We use p = 1 as it minimizes the

numerators of the second and third terms in equation (B1). To estimate the potentials for N > 0 at large [, one can also use the
relation

(B1)

Do) ~ (% + 20, + |s| + 1)1, (B2)

which is valid at large {.

2. WAVE FUNCTIONS OF THE DISCRETE SPECTRUM

The cigenvalues € = —e¢,,, and cigenfunctions g,,, are computed with three nested iterations. Within the inner iteration, equation
(29) is integrated and the estimate &,,, is varied so as to meet desired boundary conditions and the number of nodes for the function
g({). Within two outer iterations, the integration length and the number of mesh points are varied. The boundary conditions are
imposed and integration is carried out following the procedure described by Simola & Virtamo (1978). We, however, apply the
Runge-Kutta (instead of “ predictor-corrector ”) method and the nonuniform mesh, {; = k%, j = 0, ..., J, which is more convenient
concerning slower variation of g({) at large {. The starting value &,,, is taken in accordance with the asymptotic estimation at large
B, the starting length {, is taken near the classical turning point, and the starting number J s taken so as the initial integration step
is less than unity. The normalizing integral is computed with adding asymptotic extension of g({)} in the region{ > {;. The procedure
is terminated when the difference between estimations €,,, at the successive iterations is less than 0.1%.

3. WAVE FUNCTIONS OF THE CONTINUUM

Equation (29) at € > 0 has the solutions g,({) which behave as exp [ +ie/(f)'* { + iln|{|/€'*] at { > F co. These functions
describe the states in which the outcoming wave is absent. In analogy to the three-dimensional case, one should use the functions
g+(0) with definite momentum directions at infinity. However, for computing the total cross section summed over the final momenta
one can use a set of real symmetric and antisymmetric wave functions, () and g({), which behave at infinity as cos [/(8)!/2
{+sign xInf{ l/\/ € + y), with y = ¥, or y,, respectively. In the dipole approximation, a nonzero contribution to the cross section
comes from only one of the two functions, depending on parity of the initial state (Osn).

To compute the functions g, and g,, we apply the Runge-Kutta scheme in the region | {| < {,,,, which gives the main contribution
to the matrix elements. The valve of { .., depends on s, i, and € ; in particular, oscillations of the integrand increase {_,, significantly
at €; » €,,. The wave functions are normalized by comparing with the asymptotic expressions. At small €,, the function g({)
approaches the large-distance asymptotes very slowly. In this case, solving equation (29) is extended to large { by a stable less-order
scheme with a larger step of integration.

4. MATRIX ELEMENTS

To calculate the matrix elements, we choose a variable step of integration equal to the minimum of those used for calculation of
corresponding bound-state and continuum wave functions. For calculation of each next term in the integral sum, the functions are
approximated by cubic polynomials with coefficients providing correct values of the function and its first derivative at two nearest
mesh points. To save the computer time and memory, the matrix elements are calculated simultaneously with the continuum wave
functions.
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