Color superconducting quark matter in compact stars

D. Blaschke1,2

1Institute for Theoretical Physics, University of Wroclaw, Poland
2Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, 141980 Dubna, Russia

Recently, observations of compact stars have provided new data of high accuracy which put strong constraints on the high-density behaviour of the equation of state of strongly interacting matter otherwise not accessible in terrestrial laboratories [1]. Indications for high neutron star masses ($M \sim 2 M_\odot$) and large radii ($R > 12$ km) could rule out soft equations of state and have provoked a debate whether the occurrence of quark matter in compact stars can be excluded as well. We show that modern quantum field theoretical approaches to quark matter, including color superconductivity and a vector mean field, allow one to develop a microscopic description of hybrid stars which fulfill the new, strong constraints [2,3,4]. For these objects, color superconductivity turns out to be essential for a successful description of the cooling phenomenology in accordance with recently developed tests [5]. We discuss QCD phase diagrams for various conditions [6,7] thus providing a basis for a synopsis for quark matter searches in astrophysics and in future generations of nucleus-nucleus collision experiments such as low-energy RHIC Brookhaven and CBM @ FAIR Darmstadt.

References