The Magnificent Seven: New limits on radio emission

V.I. Kondratiev^{1,2*}, M.A. McLaughlin^{1,2}, D.R. Lorimer^{1,2}, M. Burgay³, A. Possenti³, R. Turolla^{4,5}, S.B. Popov⁶, and S. Zane⁵

¹Department of Physics, West Virginia University, USA ²National Radio Astronomy Observatory, USA ³INAF - Osservatorio Astronomico di Cagliari, Italy ⁴University of Padua, Department of Physics, Italy ⁵Mullard Space Science Laboratory, University College London, UK

⁶Sternberg Astronomical Institute, Moscow, Russia

We have carried out a search for radio emission at 820 MHz from six X-ray dim isolated neutron stars with the Robert C. Byrd Green Bank Radio Telescope (GBT). All discovered in the *ROSAT* All-Sky Survey, these objects share very similar properties [1, 2] and are sometimes called the "Magnificent Seven" as their number has remained constant since 2001[†]. No transient or pulsed emission was found using Fast Folding Algorithm (FFA), fast Fourier transform, and single-pulse searches[‡]. The corresponding flux limits are about 20 mJy for single dispersed pulses and 0.01 mJy for pulsed emission, depending on the integration time for the particular source and assuming a duty cycle of 2%. These are the most sensitive limits to date on radio emission from X-ray dim isolated neutron stars. There is no evidence for isolated radio pulses, as seen in the newly recognized class of rotating radio transients [3, 4]. Our results imply that either the radio luminosities of these objects are lower than those of any known radio pulsars, or they could simply be long-period nearby radio pulsars with high magnetic fields beaming away from the Earth. To test the latter possibility, we would need around 40 similar sources to provide a 1σ probability of at least one of them beaming toward us.

References

- [1] Haberl, F. 2004, Advances in Space Research, 33, 638
- [2] Haberl, F. 2007, Ap&SS, 308, 181
- [3] McLaughlin, M. A., Lyne, A. G., Lorimer, D. R., et al. 2006, Nature, 439, 817
- McLaughlin, M. A. 2007, in Neutron Stars and Pulsars, 40 yrs after the discovery, ed. W. Becker, Lecture Notes (Springer), in press

^{*}E-mail: vlad.kondratiev@gmail.com

 $^{^\}dagger {\rm The}$ seventh object, RX J0420.0–5022, is not visible at the GBT and was not included in our study.

[‡]Our implementation of the FFA together with diagnostic plots for the single-pulse and FFA searches can be found at http://astro.phys.wvu.edu/pulsar/vlad/projects/xdins