3D explosion dynamics of a critical-mass neutron star in a binary system

Manukovskiy K.V.

Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia

Physics of Neutron Stars 2008

St. Petersburg, 24 June 2008

Problem statement

Imshennik V.S., Manukovskiy K.V., AstrL, 33, 2007

$$a = \frac{m^2}{M+m} \frac{G}{V_p^2} = \frac{M^2}{M+m} \frac{G}{V_{ns}^2}$$
$$[V] = \left(\frac{GM}{a}\right)^{1/2}$$

$$v = V_{ns} / [V] = \left(\frac{M}{M+m}\right)^{1/2}$$
$$w = \left(2\varepsilon_0 / m_0\right)^{1/2} / [V]$$

. 1 -

 $\varepsilon_0 = 4.7 M \Im B / nucleon$ $V_p = 1000 km / s$ $m = 0.1 M_{\odot}$

M/m = 18: v = 0.973w = 1.622

Analytical solution ($M/m \rightarrow \infty$)

Runge-Lenz vector $\mathbf{A} = -GM \frac{\mathbf{r}}{r} + (\mathbf{v} + \mathbf{w}) \times \mathbf{J}$ $A = \sqrt{(GM)^2 + 2EJ^2} = GMe \quad \mathbf{J} = \mathbf{r} \times (\mathbf{v} + \mathbf{w})$

Landau L.D., Lifshitz E.M., Mechanics

Asymptotic velocity

$$\mathbf{v}_{\infty} = \frac{1}{e} \left[-\sqrt{2E} \hat{\mathbf{A}} + \left(\frac{2EJ}{GM}\right) \hat{\mathbf{J}} \times \hat{\mathbf{A}} \right] \quad (E > 0, \ t \to \infty)$$
$$\hat{\mathbf{A}} = \frac{\mathbf{A}}{A} \qquad \hat{\mathbf{J}} \times \hat{\mathbf{A}} = \frac{\mathbf{J} \times \mathbf{A}}{JA}$$
$$e^{2} = 1 + \frac{2EJ^{2}}{(GM)^{2}} \quad (E > 0) \qquad 2E = |\mathbf{v} + \mathbf{w}|^{2} - \frac{2GM}{r}$$

Colpi M., Wasserman I., Astrophys. J., 581, 1271(2002)

Velocity components

Isotropic explosion $w_x = w \sin \theta \cos \varphi$ $w_y = w \sin \theta \sin \varphi$ $w_z = w \cos \theta$

$$v_{x\infty} = \frac{\left(w\sin\theta\cos\varphi\right)\sqrt{\Phi}}{1+\Phi\Psi} \left[w\sin\theta\sin\varphi + \sqrt{\Phi}\left(\Psi-1\right)\right]$$
$$v_{y\infty} = \frac{\sqrt{\Phi}}{1+\Phi\Psi} \left[\sqrt{\Phi}\Psi w\sin\theta\sin\varphi - (\Psi-1)\right]$$
$$v_{z\infty} = \frac{\left(v+w\cos\theta\right)\sqrt{\Phi}}{1+\Phi\Psi} \left[w\sin\theta\sin\varphi + \sqrt{\Phi}\left(\Psi-1\right)\right]$$

 $\Psi = (v + w\cos\theta)^2 + w^2\sin^2\theta\cos^2\phi$ $\Phi = (w^2 + v^2 + 2wv\cos\theta) - 2$

Energy spectrum

Velocity magnitude
$$v_{\infty}^2 = \boldsymbol{\Phi} = \left(v^2 + w^2 + 2wv\cos\theta\right) - 2$$

Critical angle
$$\cos \theta_{cr} = \frac{2 - w^2 - v^2}{2wv}$$
 $\sqrt{2} - v \le w \le \sqrt{2} + v$

Energy spectrum
$$f(E) = \frac{1}{(1 - \cos \theta_{cr})wv} = \frac{2}{(v + w)^2 - 2} = const$$

Maximum energy

hyperbolic tracks $e_{\text{max}}^{hyp} = \frac{1}{2} (v+w)^2 - 1$

elliptic tracks

$$e_{\max}^{ell} = \frac{1}{2} \left(\frac{GM}{J}\right)^2 \left(e+1\right)^2 \xrightarrow[J \to 0]{} \infty$$

0

kinetic energy

Initial energy
$$e_0 = \frac{m}{2} \left(\frac{GM}{a} \right) \left(v^2 + w^2 \right)$$

Final energy

$$e = \frac{m}{4} \left(1 - \cos \theta_{cr} \right) \left[\left(v^2 + w^2 - 2 \right) + wv \left(1 + \cos \theta_{cr} \right) \right] \left(\frac{GM}{a} \right)$$

$$\begin{cases} e = \frac{m}{2} \left(\frac{GM}{a} \right) \left(v^2 + w^2 - 2 \right), & w \ge \sqrt{2} + v \\ e = \frac{m}{16wv} \left(\frac{GM}{a} \right) \left[\left(v + w \right)^2 - 2 \right]^2, & \sqrt{2} - v \le w < \sqrt{2} + v \\ e = 0, & w < \sqrt{2} - v \end{cases}$$

Kinetic energy

Recoil momentum

$$(M + \Delta m)v'_p + (m - \Delta m)v_e = 0$$
 $\Delta m/m = \chi = \frac{1 + \cos\theta_{cr}}{2}$

$$v'_{p} = \frac{1}{M/m + \chi} \left(g^{2} + f^{2}\right)^{1/2}$$
$$f = \frac{1}{4\pi} \int_{0}^{\theta_{cr}} \left(v + w\cos\theta\right) \Phi \sin\theta d\theta \int_{0}^{2\pi} \left(\frac{\Psi - 1}{1 + \Phi\Psi}\right) d\varphi$$
$$g = -\frac{1}{4\pi} \int_{0}^{\theta_{cr}} \sqrt{\Phi} \sin\theta d\theta \int_{0}^{2\pi} \left(\frac{\Psi - 1}{1 + \Phi\Psi}\right) d\varphi$$

Normalized velocity
$$\eta = \frac{v'_p}{v_p} = \frac{v'_p}{\frac{m}{M}v} = \frac{1}{1+\chi \frac{m}{M}} \frac{1}{v} (g^2 + f^2)^{1/2}$$

Pulsar velocity and angle of rotation

Simulation using particles

schemes

2nd-order leap-frog scheme 4th-order Runge-Kutta scheme 5th-order Runge-Kutta-England scheme with automatic step selection

Simulation setup

Pulsar track

Pulsar velocity

Explosion energy

Explosion dynamics

eckon

Explosion dynamics

eckon

Energy spectrum

Captured matter

Muon neutrinos

 $Fe^{56} + Fe^{56} \rightarrow \pi^{\pm} + \dots$ $\sigma(E_{Fe}) - ?? \quad (for \ E_{Fe} \ge E_{Feth})$

Ryazhskaya O.G., UFN, 2007

main reaction

$$\pi^{-} \rightarrow \mu^{-} + \tilde{v}_{\mu} \qquad \mu^{-} + Fe^{56} \rightarrow Mn^{55} + n + v_{\mu}$$
$$\pi^{+} \rightarrow \mu^{+} + v_{\mu} \qquad \mu^{+} \rightarrow e^{+} + v_{e} + \tilde{v}_{\mu}$$