What determines the inclination angle of radio pulsars

D.P.Barsukov, P.I.Polyakova, A.I.Tsygan

Ioffe Physical Technical Institute of the Russian Academy of Sciences
Saint-Petersburg, Russia
Аннотация

В работе показано, что если потери углового момента радиопульсара представить в виде суммы магнито-дипольных и токовых потерь, то угол между магнитным моментом и осью вращения радиопульсара стремиться к некоторому равновесному значению (около 45°). Это стремление происходит за время порядка характерного возраста радиопульсара. Учет недипольности магнитного поля радиопульсара приводит к изменению этого равновесного угла.
Торможение пульсара

Состояние пульсара можно характеризовать с помощью двух векторов: \(\vec{m} \) — вектора дипольного момента магнитного поля и \(\vec{\Omega} \) — угловой скорости вращения пульсара. Если \(\vec{m} \) и \(\vec{\Omega} \) не паралельны друг другу (т.е. пульсар не соосный), то в лабораторной системе отсчета имеется тройка линейно-независимых пространственных векторов

\[
\vec{m}, \quad \vec{\Omega}, \quad [\vec{\Omega} \times \vec{m}]
\]

которые можно использовать в качестве базиса.

В частности приложенный к пульсару момент сил можно записать как

\[
\vec{K} = K_\Omega \vec{\Omega} + K_m \vec{m} + K_\perp [\vec{\Omega} \times \vec{m}]
\]
тогда уравнение вращения сферически симметричной нейтронной звезды

\[I \frac{d\vec{\Omega}}{dt} = \vec{K} \]

принимает вид

\[I \frac{d\Omega}{dt} = \left(\vec{K}, \frac{\vec{\Omega}}{\Omega} \right) = K_\Omega \Omega + K_m m \cos \chi \]

\[I \Omega \frac{d \cos \chi}{dt} = K_m m \sin^2 \chi \]

где \(\chi \) — угол между вектором дипольного момента \(\vec{m} \) и угловой скоростью вращения \(\vec{\Omega} \)

Направление эволюции угла \(\chi \) определяется только знаком \(K_m \)
Магнито-дипольный механизм торможения

В работе Dutch (1955) было найдено электромагнитное поле вокруг вращающегося проводящего шара Deutsch 1955, Annales D’Astrophysique, V.18, p.1

Они нашли, что в пределе $\frac{\Omega a}{c} \ll 1$ тормозящий нейтронную звезду момент сил равен

$$\vec{K}_{dip} = \frac{2}{3} \frac{\Omega^2}{c^3} \left[\vec{m} \times [\vec{m} \times \vec{\Omega}] \right] + \frac{1}{ac^2}(\vec{m}, \vec{\Omega})[\vec{\Omega} \times \vec{m}]$$

здесь a – радиус нейтронной звезды

Стоит сравнить этот результат с торможением простого магнитного диполя

$$\vec{K}_{dip} = \frac{2}{3} \frac{\Omega^2}{c^3} \vec{\Omega} \sin^2 \chi$$
В работе Davis, Goldstein (1970) предполагалось, что внутри нетронной звезды магнитное поле является однородным. Если же считать, что внутри звезды у нас имеется дипольное магнитное поле, то при $\frac{\Omega a}{c} \ll 1$ действующий на нейтронную звезду момент сил равен Melatos (2000)

$$\vec{K}_{dip} = \frac{2 \Omega^2}{3 c^3} \left[\vec{m} \times [\vec{m} \times \vec{\Omega}] \right] + \frac{3}{5} \frac{1}{ac^2} (\vec{m}, \vec{\Omega}) [\vec{\Omega} \times \vec{m}]$$

Более точный расчет (тоже в приближении вакуумной магнитосферы) был произведен Melatos (2000)

$$K_\Omega \Omega = -\frac{2 \Omega^3}{3 c^3} m^2 F(x_0) \quad \quad K_{m m} = \frac{2 \Omega^3}{3 c^3} m^2 F(x_0) \cos \chi$$

$$K_{\perp} \Omega m = \frac{2 \Omega^3}{3 c^3} m^2 G(x_0) \cos \chi \sin \chi$$

где

$$F(x_0) = \frac{3}{5} \frac{x_0^4}{x_0^6 - 3x_0^4 + 36} + \frac{1}{x_0^2 + 1}$$

$$G(x_0) = \frac{9}{5} \frac{1}{x_0} \frac{x_0^2 + 6}{x_0^6 - 3x_0^4 + 36} + \frac{1}{5} \frac{1}{x_0^2 + 1} \frac{3 - 2x_0^2}{x_0}$$

и $x_0 = \frac{\Omega a}{c}$
Проблема

Т.об. мы сразу видим, что

\[K_m m = \frac{2 \Omega^3}{3 \, c^3} m^2 \cos \chi > 0 \quad \text{при} \quad 0 \leq \chi \leq \frac{\pi}{2} \]

\[K_m m = \frac{2 \Omega^3}{3 \, c^3} m^2 \cos \chi < 0 \quad \text{при} \quad \frac{\pi}{2} \leq \chi \leq \pi \]

а также легко заметить, что выполняется соотношение

\[\frac{\cos \chi}{P} = \text{const} \]

и следовательно, все пульсары вынуждены за время порядка времени торможения пульсара стать соосными.

Все пульсары должны быть соосными.
Решения

- все пульсы ророждаются практически ортогональными

 Jones (1976), Beskin (2006)

- пульсы ророждаются с наблюдаемыми сейчас периодами

 т.е. они очень молоды и не успели еще стать соосными Beskin (2006)

- нейтронная звезда значительно отличается от сферической

 В этом случае, как показал для осесимметричного случая Goldreich (1970) возможна
 стабилизация угла χ из-за прецессии оси вращения пульса. В работах Melatos (1997),
 (2000) было показано, что в неосесимметричном случае тоже не наблюдается ухода на
 соосный ротатор. Угол χ постоянно осциллирует вокруг среднего значения.

- пульсы вообще не тормозятся магнито-дипольным механизмом

 В работе Beskin (1984) было показано, что в модели бессиловой магнитосферы при
 отсутствии тока в пульсарной трубке ортогональный пульсар не тормозится. Данный
 результат был подтвержден Shibata (1999).
Токовый механизм торможения

В нормальном состоянии у радиопульсара по пульсарной трубке, как принято считать, течет электрический ток. Для того, чтобы нейтронная звезда не была сильно заряженной, обычно предполагается, что в узком слое вблизи границы пульсарной трубки течет в обратном направлении такой же электрический ток. Эти два тока замыкаются на нейтронной звезде в окрестностях полярной шапки. Чтобы этим токам замкнуться им приходится (хотя бы часть пути) течь попрек магнитного поля. В результате окрестностях полярной шапки на кору нейтронной звезды действует, порожденная этими токами, сила Лоренца \(\mathbf{F} = \frac{1}{c} [\mathbf{j} \times \mathbf{B}] \) и связанный с нею момент сил.

В работе Jones (1976) было получено выражение для этого момента сил

\[
\vec{K}_c = -\frac{2}{3} \frac{\Omega^3}{c^3} m^2 \alpha \frac{\vec{m}}{m} \cos \chi
\]

gде параметр \(\alpha \) характеризует величину электрического тока текущего через пульсарную трубку.

\[
\alpha = 2 \frac{3}{4} \frac{j}{j_{GJ}} \left(\frac{R_t(\eta)}{R_0(\eta)} \right)^4
\]

где

\[
j_{GJ} = \frac{\Omega B}{2\pi} \cos \chi
\]

здесь \(j \) — плотность электрического тока в пульсарной трубке, \(j_{GJ} \) — Годрайх-Джулинановский ток, \(B \) — величина дипольного магнитного поля на магнитном полюсе нейтронной звезды, \(R_t(\eta) \) — радиус пульсарной трубки на высоте \(\eta \), \(R_0(\eta) = a \sqrt{\frac{\Omega a}{c}} \eta^{3/2} \).

Коэффициент 2 отражает то обстоятельство, что в торможении пульсара надо учитывать вклад обоих пульсарных трубок.
Как магнито-дипольные потери, так и токовые можно описать формулой (1) задачи 2 к § 72 Ландау, Лифшиц т.2. Полный момент сил, действующий на вращающуюся нейтронную звезду, определяемый максвелловским тензором напряжения, равен

$$\vec{K} = \frac{r^3}{4\pi} \int \left([\vec{n} \times \vec{E}](\vec{n} \vec{E}) + [\vec{n} \times \vec{H}](\vec{n} \vec{H}) \right) d\Omega \tag{1}$$

где $\vec{n} = \frac{\vec{r}}{r}$, \vec{E} и \vec{H} — электрическое и магнитное поле вблизи вращающейся нейтронной звезды, r — расстояние от центра звезды, a — её радиус, $a < r < \frac{c}{\Omega}$.

Плотность электрического тока в аксиально-симметричной пульсарной трубке равна

$$\vec{j} = -A(\xi) j_G j \frac{\vec{B}}{B}$$

Безразмерная переменная ξ, $0 \leq \xi \leq 1$, описывает положение точки внутри трубки, $\xi = 0$ — соответствует центру трубки, $\xi = 1$ — боковой поверхности.

В случае чисто дипольного магнитного поля

$$\vec{B} = \frac{1}{r^3} \left(3\vec{n}(\vec{n} \vec{m}) - \vec{m} \right)$$

в режиме свободного истечения зарядов с поверхности коэффициент A равен Muslimov, Tsygan (1992)

$$A = 1 - \kappa$$

где $\kappa \approx 0.15$ описывает эффект увлечения инерциальных систем отсчета.
Предполагается, что обратный ток стекает в тонком слое по боковой поверхности трубки открытых силовых линий магнитного поля. Тонкая трубка с током в сферической системе координат с осью \(O_z \), направленной по магнитному полю, описывается уравнениями

\[
\theta(\eta) = \theta_0 \sqrt{\eta} \quad \text{где} \quad \theta_0 = \sqrt{\frac{\Omega a}{c}} \ll 1
\]

Из уравнений Максвелла

\[
\text{rot} \mathbf{H} = \frac{4\pi}{c} \mathbf{j} \quad \text{и} \quad \text{div} \mathbf{H} = 0
\]

по теореме Стокса следует выражение для компоненты магнитного поля \(H_\phi \)

\[
H_\phi = \frac{2\pi}{c} j a \theta(\eta) \eta \xi = -\frac{\Omega B_0 a}{c} \xi \frac{\cos \chi}{\eta^3} \theta_0 \eta^{3/2} A \quad (2)
\]

где \(a \theta(\eta) \eta = a \theta_0 \eta^{3/2} \) — радиус трубки на расстоянии \(r \) от центра звезды, \(B_0 = \frac{2m}{a^3} \) — величина магнитного поля на магнитном полюсе нейтронной звезды.
Подставляя полное магнитное поле $\vec{B} + H_\phi \vec{e}_\phi$ в формулу (1) и учитывая $\vec{B} \vec{n} \approx B \cos \chi$ (для тонкой трубки), получаем выражение для токового момента сил (множитель 2 учитывает два полюса)

$$\vec{K}_c = 2 \frac{r^3}{4\pi} \int H_\phi [\vec{n} \times \vec{e}_\phi] d\Omega$$

(3)

учитывая, что

$$d\Omega = \sin \theta d\theta d\phi \approx \theta d\theta d\phi,$$

$$[\vec{n} \times \vec{e}_\phi] = -\vec{e}_\theta,$$

$$\theta(\eta) = \theta_0 \sqrt{\eta}\xi, \text{ т.е. } d\Omega = \theta_0^2 \eta\xi d\xi d\phi.$$

Подставляя в (3) выражение (2) и интегрируя по ϕ и ξ получим выражение для вектора \vec{K}_c:

$$\vec{K}_c = -2 \frac{m}{m} \frac{B_0^2 a^3}{8} \left(\frac{\Omega a}{c} \right) \theta_0^4 A \cos \chi$$

(4)

Таковой момент сил \vec{K}_c не зависит от высоты на которой мы интегрировали по сечению трубки (r — могло бы быть равно a). Однако при подсчете \vec{K}_c для искаженного дипольного магнитного поля следует брать такое $r > a$, чтобы там поле было практически дипольным (чтобы все l-польные моменты, кроме $l = 1$, были малы).
Проблема

Т.об. мы сразу видим, что

\[K_{mm} = -\frac{2}{3} \frac{\Omega^3}{c^3} m^2 \alpha \cos \chi < 0 \quad \text{при} \quad 0 \leq \chi \leq \frac{\pi}{2} \]

\[K_{mm} = -\frac{2}{3} \frac{\Omega^3}{c^3} m^2 \alpha \cos \chi > 0 \quad \text{при} \quad \frac{\pi}{2} \leq \chi \leq \pi \]

а также легко заметить, что выполняется соотношение

\[\frac{\sin \chi}{P} = const \]

и следовательно, все пульсары вынуждены за время порядка времени торможения пульсара стать ортогональными

Все пульсары должны быть ортогональными

несимметричность нейтронной звезды и прецессия оси вращения не предотвращают выход пульсара на ортогональный режим вращения

Beskin, Gurevich, Istomin "Physics of Pulsar Magnetosphere"
Сложение потерь

В работе Jones (1976) было предложено, что вклады в торможение нейтронной звезды от магнито-дипольного и токового механизмов можно складывать.

\[K_m m = \frac{2 \Omega^3}{3 \cdot c^3} m^2 (1 - \alpha) \cos \chi \]

\[I \Omega \frac{d\chi}{dt} = -K_m m \sin \chi \]

Отсюда сразу видно, что равновесное состояние пульсара, отличное от случаев \(\chi = 0^\circ \) и \(\chi = 90^\circ \), возможно только при \(\alpha = 1 \). Причем, если \(\alpha(\chi) = const \), то это равновесие будет неустойчивым.

равновесное состояние возможно только при \(\alpha = 1 \)
если \(\alpha(\chi) = const \), то это равновесие — неустойчивое.

Постулат
Вклады токовых и магнито-дипольных потерь в торможение нейтронной звезды можно складывать
Изменение радиуса трубки

До сих пор мы предполагали, что трубка открытых силовых линий осесимметрична, т.е. её сечение в основании — круг. Это действительно так для случая \(\cos \chi = 1 \), т.е. когда вектор \(\vec{m} \) направлен по \(\vec{m} \). Для произвольного \(\cos \chi \) сечение трубки сопрягается в плоскости векторов \(\vec{m} \) и \(\vec{m} \), т.е. в этом направлении размер пульсарной трубки уменьшается с \(\theta_0 \alpha \eta^3/2 \) до \(\theta_1 \alpha \eta^3/2 \).

В работе Biggs (1990) была найдена зависимость формы пульсарной трубки от угла \(\chi \).

\[
\sin \theta_1 = \sin \theta_0 g(\chi)
\]

\[
g(\chi) = \left(\frac{(1 - \mu)^3}{1 + 3\mu} \right)^{1/4}
\]

где \(\cos \chi = \frac{1 - 3\mu}{\sqrt{1 + 3\mu}} \)

При изменении \(\chi \) от 0 до 90° \(\mu \) меняется от 0 до \(\frac{1}{3} \), \(\chi = 90° \) соответствует \(\mu = \frac{1}{3} \)

\[
g\left(\frac{\pi}{2} \right) = \left(\frac{4}{27} \right)^{1/4} \approx 0.620
\]

В книге Малов "Радиопульсары" приведено ошибочное выражение для зависимости радиуса трубки от угла \(\chi \). В частности у него \(\theta_1 = 0.54\theta_0 \) при \(\chi = 90° \).
Изменение радиуса трубки

В результате, токовые потери начинают зависеть от угла χ. А поскольку сечение пульсарной трубки становится похожей на эллипс, одна из полуосей которого своей длины не меняет, то выражение для токовых потерь можно записать в виде

$$\alpha(\chi) = 2 \frac{3}{4} A g(\chi)^2$$

пульсар находится в устойчивом равновесном состоянии

$$\chi \approx 48^\circ$$
На рисунке показано наблюдаемое распределение пульсаров по углу χ из Малов "Радиопульсары".
Прецессия угловой скорости

Рассмотрим прецессию угловой скорости вращения в случае сферически симметричной нейтронной звезды. Направим ось Oz вдоль вектора магнитного момента \vec{m}.

$$\frac{I}{K_0} \frac{d\Omega}{dt} = -(\sin^2 \chi + \alpha \cos^2 \chi)$$

$$\frac{I}{K_0} \frac{d \cos \chi}{dt} = (1 - \alpha) \sin^2 \chi \cos \chi$$

$$\frac{I}{K_0} \frac{d\phi}{dt} = - \frac{9}{10 \Omega a} \cos \chi$$

где ϕ — азимутальный угол вектора $\vec{\Omega} = (\sin \chi \cos \phi, \sin \chi \sin \phi, \cos \chi)$, I — момент инерции нейтронной звезды и $K_0 = \frac{2}{3} \Omega^3 m^2$.

Отсюда сразу видно, что период прецессии равен

$$T_p = \frac{2\pi}{\Omega_p} \quad \text{где} \quad \Omega_p = -\frac{3}{5} \frac{\Omega m^2}{ac^2 I} \cos \chi$$

он много меньше возраста пульсара τ и характерных времен изменения величин Ω и χ

$$\frac{T_p}{\tau} = \frac{40\pi}{9} \left(\frac{\Omega a}{c} \right) \frac{\sin^2 \chi + \alpha \cos^2 \chi}{\cos \chi} \ll 1 \quad \text{где} \quad \tau = \frac{P}{2\dot{P}} = -\frac{\Omega}{2\dot{\Omega}}$$
Прецессия угловой скорости

Поэтому после усреднения по прцессии мы получаем

\[
\frac{I}{K_0} \left< \frac{d\Omega}{dt} \right> = - \left(\sin^2 \chi + \left< \alpha \right> \cos^2 \chi \right)
\]

\[
\frac{I}{K_0} \left< \frac{d \cos \chi}{dt} \right> = \left(1 - \left< \alpha \right>\right) \sin^2 \chi \cos \chi
\]

здесь \(\left< \alpha \right> \) — усредненное по периоду прцессии значение параметра \(\alpha \).

Отсюда сразу видно, что

равновесное значение угла \(\chi \) достигается если среднее за период прцессии \(\left< \alpha(\chi) \right> \) равно 1

равновесное состояние устойчиво, если среднее за период \(\left< \alpha(\chi) \right> \) убывает с ростом \(\chi \)
Магнитное поле

Недипольность магнитного поля описывается используя следующую модель Palshin (1996). Предполагается, что нейтронная звезда радиуса a обладает магнитным дипольным моментом \vec{m} (так что поле на её магнитном полюсе равно $B_0 = 2m/a^3$).
На расстоянии $a \Delta (\Delta < 1)$ от поверхности (вглубь звезды) в области полюса нейтронной звезды располагается дополнительный магнитный диполь с магнитным моментом \vec{m}_1. Вектор \vec{m}_1 перпендикулярен вектору \vec{m}, угол между \vec{m}_1 и плоскостью ($\vec{\Omega}$, \vec{m}) равен γ. Параметр Δ всюду в дальнейшем полагается равным 0.1, что примерно соответствует толщине коры нейтронной звезды, и как предполагается, не приводит к быстрому распаду дополнительного диполя \vec{m}_1.

Введем сферическую систему координат ($\eta = r/a$, θ, ϕ). При этом направим ось z— вдоль вектора \vec{m}, а ось x— вдоль вектора \vec{m}_1. Тогда используя малоугловое приближение $\theta \ll 1$ выражение для суммарного магнитного поля $\vec{B} = \vec{B}_0 + \vec{B}_1$ записывается в следующем виде:

$$B_r = \frac{B_0}{\eta^3}, \quad B_\theta = \frac{B_0}{\eta^3} \left(\frac{\theta}{2} + \lambda \cos \phi \right), \quad B_\phi = -\frac{B_0}{\eta^3} \lambda \sin \phi$$

где

$$\nu = \frac{B_1}{B_0}, \quad \lambda = \nu \left(\frac{\Delta \eta}{\eta - 1 + \Delta}\right)^3, \quad \eta = \frac{r}{a}$$
Электрической ток в пульсарной трубке

В рассматриваемой модели магнитного поля можно с хорошей точностью считать, что Годлрайх-Джулиановская плотность ρ_{GJ} постоянна по сечению трубки и меняется только с высотой η. Это означает в частности, что мы пренебрегаем Аронс-Шарлемановским членом в ρ_{GJ}.

$$\rho_{GJ} = \frac{\Omega B(\eta)}{2\pi c} \cos \chi f(\eta)$$

где

$$f(\eta) = \frac{1}{\sqrt{1 + \lambda^2}} \left(\left(1 - \frac{\kappa}{\eta^3} \right) + \lambda(\eta) \left(1 + \frac{1}{2} \frac{\kappa}{\eta^3} \right) \tan \chi \cos \gamma \right)$$

В модели тонкой трубки ($\theta_s \ll \Delta$), если нижняя обкладка диода находится на высоте η_0, через диод течет электрический ток

$$j = j_{GJ} f(\eta_0)$$
Электростатический потенциал

В этом случае электростатический потенциал Φ равен

$$\Phi = \frac{\Omega F}{2\pi c} (f(\eta) - f(\eta_0)) (1 - \xi^2) \cos \chi$$

при $\eta_0 \leq \eta \leq \eta_c$

где

$$F = \pi (\theta_s a)^2 B$$

поток магнитного поля через трубку,

η_c — высота верхней обкладки диода, если пульсар выключен, то $\eta_c = \infty$.

Отсюда сразу видно, что

для того чтобы в пульсарном диоде не было потенциальных ям, в которых могут накапливаться частицы,

$f(\eta)$ должна возрастать при $\eta_0 \leq \eta \leq \eta_c$
Расположение пульсарного диода

– электрическое поле на обкладках диода равно нулю

в частности в модели тонкой трубки должно выполняться

\[j = \text{j}_{\text{GJ}} f(\eta_0) \]

– в пульсарном диоде потенциал \(\Phi \)

монотонно возрастает

– пульсарный диод располагается настолько близко

к нейтронной звезде, насколько это возможно
\[\cos \gamma < 0 \]

В этом случае \(f(\eta) \) является всюду положительной монотонно возрастающей функцией. Поэтому, если \(f(\eta_0) \geq 0 \), то пульсарный диод можно разместить на поверхности нейтронной звезды.

\[\eta_0 = 1 \quad \text{при} \quad f(1) \geq 1 \]

тогда плотность тока электронов в трубке равна

\[j = j_G J f(1) \]
\[
\cos \gamma < 0
\]

Однако возможен случай, когда на поверхности нейтронной звезды \(f(1) < 0 \). Тогда предполагается, что вся область \(f(\eta) < 0 \) заполнена стоячими протонами или позитронами (наподобие тех, что висят в Голдрайх-Джулиановских ушах вне трубки). Они удерживаются от падения на нейтронную звезду очень маленьким электрическим полем. Это электрическое поле компенсирует силу гравитационного притяжения для положительных частиц, а для электронов оно (совместно с гравитационным полем) образует потенциальным барьером, который электронам надо преодолеть, чтобы достичь пульсарного диода. Поэтому электронный ток очень мал и мы можем положить начало пульсарного диода в точке \(f(\eta_0) = 0 \).

По сути весь электронный ток здесь является термотоком и пульсарная трубка работает в режиме Рудермана-Сазерленда. В этом случае очень возможно образование искр.

пульсарная трубка работает в режиме Рудермана-Сазерленда
\(\cos \gamma > 0 \)

В этом случае функция \(f(\eta) \) всюду положительна, однако она уже не является монотонной. В результате этого нельзя расположить пульсарный диод прямо на поверхности нейтронной звезды, поскольку тогда

- либо \(E_\parallel \) отлично от нуля на поверхности нейтронной звезды
- либо потенциал \(\Phi \) сразу становится отрицательным, предотвращая истечение электронов

Потому будем помещать пульсарный диод в точке минимума \(f(\eta) \). В этом случае у нас истекают с поверхности нейтронной звезды электроны и

\[f(\eta_0) \approx 1 \]

Ниже области диода \(\eta < \eta_0 \) находится область, подобная нижней части пульсарной трубки у "внешнего зазора". Здесь либо потенциал осциллирует Shibata (1997) — если темпы рождения электрон-позитронных пар не велики, либо, если электрон-позитронные пары рождаются очень интенсивно, чередуются области небольших поднятий потенциала (мини-диодов) с областями, где продолжное электрическое поле равно нулю и присутствует среда из стоячих электронов.

Нельзя впрочем исключать и варианта, когда практически вся трубка заполнена средой из стоячих электронов, а на высотах \(\eta \sim \eta LC = \frac{c}{\Omega a} \) находится "внешний зазор", в котором могут ускоряться идущие вверх протоны. Однако, очевидно, что протоны не могут пройти огромный потенциальный барьер в ножке "внешнего зазора", поэтому \(j = 0 \).

Впрочем в этом диоде могут ускоряться также падающие вниз электроны, текущие на нейтронную звезду из-за светового цилиндра. В этом случае \(j < 0 \).
Зависимость $< j >$ от χ

Текущий через пульсарную трубку электрический ток хорошо аппроксимируется следующей формулой

\[j = j_{GJ} \quad \max \left(1 + v \tan \chi \cos \gamma, 0 \right) \quad \text{при} \quad \cos \gamma < 0 \]
\[j = j_{GJ} \quad \text{при} \quad \cos \gamma > 0 \]

поэтому усредненный за период прецессии ток в пульсарной трубке будет равен при $v \tan \chi < 1$

\[< j > = 2 \frac{3}{4} j_{GJ} \left(1 - \frac{v}{\pi} \tan \chi \right) \]

При усреднении предполагалось, что недипольность v одна и та же для обеих пульсарных трубок. А вот угол γ может быть произвольным.
Представлена зависимость усредненного по периоду прессии тока в пульсарной трубке \(<j> \) от угла \(\chi \).
На правом рисунке представлена аналитическая аппроксимация этой зависимости.
Красная кривая соответствует — чисто дипольному магнитному полю \(\nu = 0 \), зеленая — \(\nu = 0.3 \), синяя — \(\nu = 0.5 \), фиолетовая кривая соответствует \(\nu = 0.7 \), сине-зеленая — \(\nu = 0.8 \), черная — \(\nu = 1.0 \).
Видно что при \(\nu \geq 0.8 \) ток всегда меньше \(\frac{2}{3} jGJ \), т.е. пульсар станет соосным.
Представлена зависимость токовых потерь α усредненных по периоду прецессии от угла χ.
Учитывается зависимость радиуса трубки от угла χ.
На правом рисунке представлена аналитическая аппроксимация этой зависимости.
Красная кривая соответствует - чисто дипольному магнитному полю $\nu = 0$, зеленая - $\nu = 0.3$, синяя - $\nu = 0.5$, фиолетовая кривая соответствует $\nu = 0.7$, сине-зеленая - $\nu = 0.8$, черная - $\nu = 1.0$.
Видно что при $\nu \geq 0.8$ токовые потери всегда меньше 1, т.е. пульсар станет соосным.
Равновесный угол

Показана зависимость равновесного угла χ от недипольности ν. При этом учитывается зависимость радиуса трубки от угла χ.
Видно что при $\nu \geq 0.8$ ток упал настолько, что пульсары вынуждены становиться соосным.
Показано, что если потери углового момента радиопульсара представить в виде суммы магнито-дипольных и токовых потерь, то, угол между магнитным моментом и осью вращения радиопульсара стремиться к некоторому равновесному значению (около 45°). Причем это равновесие устойчивое. Здесь существенно, что форма пульсарной трубки зависит от угла χ.
Учет недипольности магнитного поля радиопульсара приводит к изменению этого равновесного угла.
В рамках этой модели не удалось получить пульсары с углами порядка $\chi \sim 60^\circ - 80^\circ$. Кроме того, наиболее обильная пульсарами область углов $\chi \sim 10^\circ - 30^\circ$ соответствует очень узкому интервалу недипольности магнитного поля $\nu \sim 0.7 - 0.8$.

Результаты