

A shallow water analog for asymmetric core-collapse, neutron star kick and spin

T. Foglizzo, CEA Saclay J. Guilet, J. Sato, S. Fromang, F. Masset, G. Durand

Theoretical framework: stellar core-collapse,

neutrino-driven delayed explosion (Bethe & Wilson 1985)

Stationary Accretion Shock Instability : SASI

The unexpected possible consequences of SASI

- successful explosion of 15M_{sol} driven by neutrino energy

(Marek & Janka 09, Nordhaus et al. 10a, Suwa et al. 10)

- pulsar kick (Scheck et al. 04, 06, Nordhaus et al. 10b, Wongwathanarat et al. 10)

- pulsar spin?

- H/He mixing in SN1987A (Kifonidis et al. 06, Hammer et al. 09)

(Ott et al. 06, Kotake et al. 07, Marek et al. 09, Ott 08, Murphy et al. 09, Kotake et al. 11)

- gravitational waves

- magnetic field amplification ?

(Endeve et al. 10, Guilet et al. 11, Obergaulinger & Janka 11)

Linear coupling between the acoustic wave

and the entropy/vorticity wave

(Sato, Foglizzo & Fromang 09)

Linear coupling between the acoustic wave

and the entropy/vorticity wave

(Sato, Foglizzo & Fromang 09)

From SN explosions to a shallow water experiment

Observations of SN and pulsars

Complex comprehensive simulations

(Marek & Janka 09, Burrows et al. 06)

Multi-D hydro processes:

ideal gas, stationary accretion

- SN light curve, polarimetry, neutrinos, grav. waves, nucleosynthesis,
- Pulsar kick and spin

progenitor structure + nuclear EOS

- + neutrino transport & interactions
- + relativistic corrections + multi-D hydro (no magnetic effects, moderate rotation)

- equatorial approx. with cooling (Blondin & Shaw 07)

- adiabatic approx. 3D (Blondin & Mezzacappa 07)

- cylindrical approx. with cooling & rotation (Yamasaki & Foglizzo 08)

SWASI experiment

complexity

త

alism

ě

- shallow water inviscid approx.

simplicity & understanding

SWASI: a shallow water SASI experiment (Low Cost Laboratory Astrophysics)

St Venant approximation

$$\Phi = gz$$
 $\frac{\partial v}{\partial t} + w \times v + \nabla \left(\frac{v^2}{2} + c^2 + \Phi\right) = 0$

$$c^2 = gH$$
 $\frac{\partial H}{\partial t} + \nabla \cdot (Hv) = 0$

Vorticity-driven advective-acoustic instability ?

- + energy and angular momentum budgets ?
- + spiral/sloshing mode ?
- + non linear saturation ?
- + destabilizing effect of rotation ?

Formal similarity between SASI and SWASI

accretion of gas on a cylinder

0

density ho, velocity v, sound speed $\ c \propto
ho^{rac{\gamma-1}{2}}$

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) &= 0 \\ \frac{\partial v}{\partial t} + w \times v + \nabla \left(\frac{v^2}{2} + c^2 \log \frac{\rho}{\rho_0} + \Phi \right) &= 0 \\ \frac{\partial v}{\partial t} + w \times v + \nabla \left(\frac{v^2}{2} + \frac{c^2}{\gamma - 1} + \Phi \right) &= \frac{c^2}{\gamma} \nabla S \end{aligned} \qquad \text{adiabatic}$$

inviscid shallow water accretion

depth H, velocity v, wave speed $c=(gH)^{rac{1}{2}}$

$$\Phi = gz \qquad \frac{\partial H}{\partial t} + \nabla \cdot (Hv) = 0$$

$$c^{2} = gH$$

$$\frac{\partial v}{\partial t} + w \times v + \nabla \left(\frac{v^{2}}{2} + c^{2} + \Phi\right) = 0$$

- Inviscid shallow water: analogue to an isentropic gas γ =2 (intermediate between "isothermal" and " γ =2 without entropy")

isothermal shock
$$\mathcal{M}_2 = \frac{1}{\mathcal{M}_1}$$
 hydraulic jump
$$\mathcal{M}_2 = \frac{2^{\frac{3}{2}}\mathcal{M}_1}{\left[(1+8\mathcal{M}_1^2)^{\frac{1}{2}}-1\right]^{\frac{3}{2}}}$$

jump conditions: conservation of mass flux and momentum flux (energy is dissipated)

SWASI: experimental setup

SWASI: simple as a garden experiment

SWASI: simple as a garden experiment

1. Check the stationary, axisymmetric injection in a stable configuration

Fr=13.8, H=0.5mm, Q=1.0L/s, stable

Axisymmetric, stationary injection

Fr=13.8, H=0.5mm, Q=1.0L/s, stable

2. Unstable sloshing oscillations in supernova simulations and in the SWASI experiment

Blondin et al. 03

SWASI experiment Fr=7.0, H=1mm, Q=1.4L/s, T=2.9s

sloshing m=1 mode

Fr=7.0, H=1mm, Q=1.4L/s, T=2.9s

3. unstable spiral oscillations in supernova simulations and in the SWASI experiment

Blondin & Mezzacappa 07

SWASI experiment Fr=17.1, H=0.5mm, Q=1.2L/s, T=2.4 to 3.2

growing m=1 spiral

Fr=17.1, H=0.5mm, Q=1.2L/s, T=2.4 to 3.2

Blondin & Mezzacappa 07

inviscid, 2D

F. Masset

Spiral SASI mode and the angular momentum budget

(Iwakami et al. 09)

Spiral SASI mode and the angular momentum budget:

propagating wave + advected vorticity = 0

Spiral SASI mode and the angular momentum budget:

propagating wave + advected vorticity = 0

Input parameters: Flow rate Q (0-3L/s), injection slit H (0.5-1mm), "shock" radius R_{sh} (10-30cm)

- Measure of H(r): estimate the viscous drag
- Measure of the stability threshold (Fr, R_{sh}/R_{*}, Q)
- Measure of the oscillation frequency (1-3 sec) and shape of the dominant mode (m=1)

Comparaison with a perturbative analysis and numerical simulations of a shallow water 2D model

$$\frac{\partial v}{\partial t} + w \times v + \nabla \left(\frac{v^2}{2} + c^2 + \Phi\right) = -\nu \frac{v}{H^2}$$

laminar drag

Instability parameter space

Conclusions

Potential consequences of SASI are numerous:

neutrino driven explosion, NS kick & spin mixing, grav. waves, magnetic field

Uncertainties are also numerous

3D validity of 2D results ? SASI vs convection ? effect of EOS ? GR ?

SWASI: an experimental view on SASI

complementary to the perturbative and numerical approaches makes SASI more intuitive + public outreach

- inner boundary effect ?
- saturation mechanism ?
- symmetry breaking ?
- destabilized by rotation ?

A new SWASI prototype built at CEA Saclay:

- improved accuracy
- global rotation

