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Introduction and formulation of the problem



• Studying the pulsations of General Relativistic neutron stars (NSs)
is very important and actively developing area of research, 
since comparison of pulsation theory with observations can give 
valuable information about the properties of superdense matter.

• Yet, it is a very difficult theoretical problem even for normal 
(nonsuperfluid) stars.

• Additional complication: At                              baryons in the internal 
layers of NSs become superfluid                            



Lindblom and Mendell (1994) were the first who studied global 
pulsations of superfluid NSs.

Considering a simple model of a Newtonian star with nucleon core 
they numerically found two distinct classes of pulsation modes:

• normal-like modes, which practically coincide with 
the corresponding modes of a normal star

• superfluid modes in which the matter pulsates in such 
a way that the mass current density approximately vanishes

Lindblom and Mendell (1994):

Subsequent numerical studies verified the result of Lindblom and Mendell
though no general explanation of this result has been proposed.



• Normal and superfluid modes are described by two sets of weakly 
coupled equations

• The coupling between them is parameterized by just ONE 
coupling parameter s which is small for realistic equations of state

In the first part of  the talk we explain these numerical results 
for npe-matter by demonstrating that: 

These results allow us to formulate a simple perturbative
(in parameter s) scheme which considerably simplifies

the problem of calculation of the pulsation spectrum for superfluid NSs.
They also lead to a number of important physical conclusions about 

the properties of superfluid oscillations 

In the second part of the talk, we briefly discuss how these results 
can be extended to a more general case of superfluid hyperon stars.



The main assumptions

• We first consider npe-matter

• Unperturbed star is in beta-equilibrium:

• Quasineutrality (also for perturbed star): 

is the chemical potential for particles i=n, p, e

In this talk it is additionally assumed that:

• a star is nonrotating (no Feynman-Onsager vortices)

• in the first part of the talk we also assume that protons are normal while neutrons 
are superfluid in some region of a NS core

These assumptions are made just to simplify the presentation 
and do not affect our principal results.

is the number density of particles i=n, p, e



Superfluid hydrodynamics



The main feature of superfluid hydrodynamics is the presence of
two (or more) independent velocity fields

For normal matter: 

When neutrons are superfluid:

is the velocity of a normal component
(electrons, protons, and normal neutrons)

is the velocity of superfluid neutrons

the standard expressions
for particle current density

proportional to a difference between 
the superfluid and normal velocity

where the “superfluid” four-vector             is given by: 

2 velocity fields instead of one



strong temperature 
dependence!

(Gusakov, Kantor & Haensel , PRC,  80, 015803, 2009)

The physical meaning of the coefficient           : 



The basic equations

• Conservation of baryons and electrons

• Einstein equation

• Potentiality condition for motion of superfluid neutrons

• The second law of thermodynamics

velocity of baryons



Pulsation equations
in the linear approximation



The linearized Einstein equations can be presented (very schematically) 
in the following symbolic form:

contains only the metric 
perturbations

this quantity is formally given by exactly the same
expression as the perturbation of              for 
normal matter

One can derive the following  linearized “superfluid” equation:

depends on the perturbations of

coupling parameter

Generally, both these equations are coupled!

However, it can be shown that if s is small, then one can present the solution to 

the system of pulsation equations in the form of a series in parameter s. 

So, let us inspect the coupling parameter s.



The coupling parameter versus density

The stiffer EOS, 
the smaller s.

Recent measurements 
of the mass of the pulsar

PSR J1614-2230 by
P. Demorest et al. (2010)
indicate that EOS is stiff 

approximation of vanishing s
should be very reasonable



Superfluid and normal modes



If s=0 then the normal equation does not depend on             and has 
exactly the same form as in the absence of superfluidity 

contains only the metric 
perturbations

The solution (the spectrum of eigenfunctions and eigeinfrequencies )     
is indistinguishable from that for a nonsuperfluid star.

What will happen if s vanishes?

this quantity is formally given by exactly the same
expression as the perturbation of              for 
normal matter

We obtained the normal modes



Assume that s still vanishes. Is it possible for a NS to oscillate on a 
frequency which is not an eigenfrequency of a normal star?

If yes then the Einstein equations will be satisfied only if:

In this approximation the superfluid equation is self-contained and allows 
to determine the eigenfrequencies and the eigenfunctions

depends only on 

We obtained the superfluid modes



Properties of the superfluid modes in the zero approximation (s=0)

• They do not emit gravitational waves,

• The oscillating quantity is                                  ; the pressure 
and baryon current density are not perturbed,                   

• The modes are entirely localized in the superfluid region of a star
(in particular, they do not appear at the NS surface)

In the consideration above we assumed that s=0. Clearly, superfluid 
and normal modes should remain approximately decoupled also at 
small but finite coupling parameter s. 

Moreover,  since                             , the approximation of vanishing s 
is already sufficient to calculate the spectrum within accuracy    
(i.e., a few per cent).



Example: Radial pulsations
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(Akmal et al. 1998)

Neutrons in the core are superfluid
at                                            . 

Superfluid (dashes) and normal (solid lines) modes for a radially
pulsating NS. The spectrum is calculated assuming s=0.

Six superfluid modes (1,…,6) and three normal modes (I, II, III)



Comparison with the exact solution to the 
system of coupled pulsation equations

Approximate Exact

Exact solution:  Gusakov & Andersson , 
MNRAS, 372, 1776 (2006)

The spectrum is 
not plotted in the 
shaded region

avoided
crossings

2nd mode

ordinary crossings



Approximate (dashes) and exact (solid lines) spectra

Approximate solution
fits very well the exact

solution and differs 
from it by 1—3 %



Decoupling in superfluid hyperon stars



Could this approach be generalized to hyperon matter?

“lepton” coupling parameter

“strange” coupling parameter

The answer is YES! 

- strangeness

However, in this case one has TWO coupling parameters instead of one:

Pressure:



Are these coupling parameters small?

To answer this question we used 2 stiff hyperon EOSs:

The “old”           -model of Glendenning  
(his model III)

Recent highly nonlinear                   -model 
of Bednarek & Manka (2009) 

(hereafter    EOS MB16)

Three types of hyperons for stable 
neutron-star configurations:

Based on TM1 parameter set

hereafter    EOS GIII



Coupling parameters

-model (EOS GIII) -model (EOS MB16)

Thus, the approximation of                                       should be reasonable.



Let us illustrate this conclusion by considering sound waves 
in superfluid nucleon-hyperon matter

It can be shown that generally there are 3 sound modes 
in such matter (Kantor & Gusakov, PRD, 79, 043004, 2009)

2 superfluid sound modes 1 normal mode



Exact solution to the system of coupled pulsation equations

Approximate solution of completely decoupled superfluid and normal equations

Speed of sound modes versus temperature 

-model (EOS GIII) -model (EOS MB16)

The approximation of decoupled pulsation equations works well also for hyperon matter



Conclusions



• We demonstrate that equations governing oscillations of superfluid neutron and hyperon
stars can be split into two systems of weakly coupled equations. One system of equations 
describes normal modes, another one – superfluid modes.  

• The coupling of these systems is small for realistic EOSs. We have 1 coupling parameter for
neutron stars (                              ) and 2 coupling parameters for hyperon stars (                          ).

• Already an approximation of vanishing coupling parameters is sufficient to calculate 
the pulsation spectrum within accuracy of a few per cent.

• Pulsation spectra for normal modes can be calculated using the ordinary nonsuperfluid
hydrodynamics. (However, to study dissipation of normal modes one has to take into account 
the specific superfluid dissipative terms! We know these terms since we can easily 
calculate  the “superfluid” eigenfunctions using the method proposed in this talk.)

• The obtained results suggest a simple perturbative (in coupling parameters) scheme which 
considerably simplifies the problem of calculation of the pulsation spectrum for superfluid
neutron and hyperon stars.

• The proposed approach allows to take into account realistic EOSs, temperature effects, 
dissipation, baryon superfluidity, density-dependent profiles of critical temperatures, 
and stellar rotation.



Properties of superfluid modes

• In the zero approximation (            or                     ) superfluid modes:
(a)   do not perturb pressure and baryon current density;
(b) do not appear at the stellar surface

(localized in a superfluid region of a star); 
(c)  do not perturb metric (no gravitational radiation).

• These results indicate that superfluid modes should be very difficult to 
observe at small but finite coupling parameters. This means that observational 
properties of a pulsating superfluid star and a normal star of the same mass 
should be very similar, so that it will be very hard to discriminate one from the 
other.

• Gravitational radiation from the global  superfluid modes is possible only in 
the next (first) order of perturbation theory in coupling parameters. 
Thus, it should be suppressed in comparison to that from normal modes by a 
factor of                        for neutron stars and                              for hyperon stars.

For more details see:    M.E. Gusakov & E.M. Kantor,  PRD 83, 081304(R) (2011)

and a poster by A.I. Chugunov & M.E. Gusakov at this conference!







consequence of the requirement of equilibrium with 
respect  to the fast  reaction

consequence of the requirement of equilibrium 
with respect  to the fast  reaction

Using this hydrodynamics one obtains the following superfluid equations

consequence of charge neutrality

is the relativistic entrainment matrix, generalization of             to the case 
of superfluid mixtures [see the poster of M. Timofeeva et al. at this conference]. 

2 main equations:

and 3 supplementary equations independent of pulsation frequency      :

5 equations for 5 superfluid four-vectors:



Following the same strategy as in the case of npe-matter, 
one can present the linearized Einstein equation in the form

contains only the metric 
perturbations

coincides with                for  normal matter

strangeness

“lepton” coupling parameter

“strange” coupling parameter

Again, as for npe-matter, if                                     then superfluid degrees of freedom are 
completely decoupled from metric perturbations           and the baryon four-velocity 

Two coupling parameters instead of one!

Let ‘s look, whether these coupling parameters are small or not


