

Consortium & Pulsar Search Consortium

1.81 1821

- Launch June 2008 from Cape Canaveral
- Circular orbit, 565 km altitude (96 min period 25.6 deg inclination.

- R - 1

The Fermi Observatory

Large AreaTelescope (LAT) 20 MeV - >300 GeV

Gamma-ray Burst Monitor (GBM) Nal and BGO Detectors & KEY FEATURES

- Huge field of view
 - -LAT: 20% of the sky at any instant; in sky survey mode, expose all parts of sky for ~30 minutes every 3 hours. GBM: whole unocculted sky at any time.

 Huge energy range, including largely unexplored band 10 GeV -100 GeV. Total of >7 energy decades!

• Large leap in all key

Overview of LAT: How it works

 <u>Precision Si-strip Tracker</u> (TKR) Measure the photon direction; gamma ID.

Gamma-ray Space Telescope

- <u>Hodoscopic Csl Calorimeter</u> (CAL) Measure the photon energy; image the shower.
- <u>Segmented Anticoincidence</u> <u>Detector (ACD)</u> Reject background of charged cosmic rays; segmentation removes self-veto effects at high energy.
- <u>Electronics System</u> Includes flexible, robust hardware trigger and software filters.

ν Tracker ACD [surrounds Calorimeter 4x4 array of TKR towers Atwood et al, ApJ 2009

Systems work together to identify and measure the flux of cosmic gamma rays with energy 20 MeV - >300 GeV.

Pulsar Timing Campaign

Known γ-ray pulsars

Space Telescope

Vela Pulsar spectrum

New young radio-loud pulsars

Gamma-ray Space Telescope

Young radio-loud pulsars

Pulsars Found in Blind Searches

After 4 months of data taking, 16 pulsars found with blind search technique!

(Abdo et al., Science 325, 840, 2009).

13 were unidentified sources for EGRET

At present, 26

Radio Follow-up of New LAT Pulsars

PSR J1741-2054

- Radio pulsar found in archival Parkes multibeam data
- Extremely low DM (4.7 pc cm-3), implies D=400pc
- May be lowest luminosity of any radio

pulsar (L ~0.025 mJy kpc2)

PSR J2032+4127

- Pulsations discovered at GBT
- DM=115 implies D=3.6 kpc, but may be

at half that distance (possibly associated with Cyg OB2)

Camilo et al.

Millisecond Pulsars

Sermiamma-ray MSPs – the Fermi original 8

Gamma-ray Space Telescope

• With 9 months of data, the LAT had detected 8 gammaray MSPs (Abdo et al. Science 325, 848, 2009).

 Gamma-ray peaks not aligned with radio pulses

 Similar γ-ray characteristics to young pulsars

Fermi detection of globular cluster <u>47 Tuc</u>

47 Tuc is a globular cluster (GC) in which 23 MSPs are known.

The Fermi LAT detects 47 Tuc as a point source. We might be seeing the collective emission from MSPs in 47 Tuc.

A population of γ-ray globular clusters

M 62

354 353

NGC 6440

Galactic longitude (deg)

counts degi

8 Galactic longitude (deg)

counts deg²

352

800 1000

Abdo et al. 2010, A&A, 524, A75

Also Liller 1, NGC 6624, and NGC 6752 (Tam et al. 2011)

Name	d (kpc)	$L_{\gamma} (10^{34} \text{ erg s}^{-1})$	N _{MSP}
47 Tucanae	$4.0 \pm 0.4^{(1)}$	$4.8^{+1.1}_{-1.1}$	33^{+15}_{-15}
Omega Cen	$4.8 \pm 0.3^{(2)}$	$2.8^{+0.7}_{-0.7}$	19^{+9}_{-9}
M 62	$6.6 \pm 0.5^{(3)}$	$10.9^{+3.5}_{-2.3}$	76^{+38}_{-34}
NGC 6388	$11.6 \pm 2.0^{(4)}$	$25.8^{+14.0}_{-10.6}$	180^{+120}_{-100}
Terzan 5	$5.5 \pm 0.9^{(5)}$	$25.7^{+9.4}_{-8.8}$	180^{+100}_{-90}
NGC 6440	$8.5 \pm 0.4^{(6)}$	$19.0^{+13.1}_{-5.0}$	130^{+100}_{-60}
M 28	$5.1 \pm 0.5^{(7)}$	$6.2^{+2.6}_{-1.8}$	43^{+24}_{-21}
NGC 6652	$9.0 \pm 0.9^{(8)}$	$7.8^{+2.5}_{-2.1}$	54^{+27}_{-25}
NGC 6541	$6.9 \pm 0.7^{(9)}$	<4.7	<47
NGC 6752	$4.4 \pm 0.1^{(10)}$	<1.1	<11
M 15	$10.3 \pm 0.4^{(11)}$	<5.8	<56

Freire et al.

Radio observations of unidentified Fermi sources 16

Variability index

2010

MSPs discovered in Fermi unID sources

34 new radio MSPs discovered in Fermi unidentified sources!

Credit: Paul Ray

34 Young Radio-selected

27 Young γ -selected

27 MSP Radio-selected

Credit: LAT Coll. and R.

ermi Fermi gamma-ray pulsars

Gamma-ray Space Telescope

10% of MSP are γ-ray pulsars!

Where do the pulsations come from?

Pulsar particle accelerators

Formation of caustics

- Emission on leading field lines
- Spreads out in phase
- Arrives at inertial observer at different times

Emission on trailing field lines

- Bunches in phase
- Arrives at inertial observer simultaneously

Caustic emission

- In narrow gaps along edge of open volume
- Phase delays from aberration, light travel time and field line curvature cancel

Sky distribution of intensity

Light Curve vs. Viewing Angle

MSPs light curve types

- γ-ray peak(s) lag main 1. radio peak
 - similar to young pulsars

- y-ray peak(s) lead main 1. radio peak
 - Exclusive to MSPs

radio peaks

MSPs

PSR J0030+0451

95%

99%

ζ(°)

ζ(°)

Tyrel Johnson PhD thesis (University of Maryland 2011)

PSR J1744-1134

Pair-starved polar cap

PSPC, α = 510, **ζ = 85**0, -log(L)=227

Maximum likelihood fits of aligned

Fit results for 19 MSPs

Large viewing angles with the rotation axis favored expected for outer magnetosphere model emission

Uniform MSP inclination angle distribution, unlike young pulsars

Conclusions from MSP fits

Gamma-ray emission comes from the outer magnetosphere
 – Outer gap, slot gap (TPC) or pair starved models provide good fits

- cate radio caustic
- Aligned radio and emission – mostly short period MSFS
- Most MSPs are NOT pair starved (narrow gaps) how are they producing pair cascades?
- Few radio-quiet MSPs expected: larger radio beam widths than for canonical pulsars

Light Curve Trends

Magnetic field geometry

Retarded vacuum dipole (Deutsch 1954) - No charges, no currents

Force-free magnetosphere (Spitkovsky 2008)

Non-ideal MHD magnetosphere Kalapotharokos et al. 2011

γ-ray light curves and phaseresolved spectroscopy will help constrain

 $\underline{E \ } B = 0$ s currents +
on!
ontopoulos)

Force-free electrodynamics: $E \pi B = 0$ <u>everywhere</u> No accelerator gaps!

Slot gap light curves: vacuum vs. forcefree

Fits to Vela pulsar

Gamma-ray/radio phase lag

spectra?

 Balance CR losses with acceleration gain

$$eE_{\parallel} = \mathcal{G}_{CR} = \frac{2e^2g^4}{3r_c^2}$$

 Steady-state Lorentz factor

$$\gamma_{CRR} = \frac{\Phi_3}{\sqrt{2}} \frac{E_{\parallel} \rho_c^2}{e} \overset{\text{H}}{B} = 2 \cdot 10^7$$

 Curvature radiation peak energy:

$$\boldsymbol{\mathcal{E}}_{CR} = \frac{2}{3} \frac{t_c g_{CRR}^3}{r_c} = \sum_{c} \frac{\Phi_3 \tilde{\mathcal{K}}^4}{2} \frac{\Phi_c}{\Gamma_c} \frac{\Phi_c}{R} \frac{\tilde{\mathcal{K}}^4}{r_c} \frac{\Phi_c}{r_c} \frac{\tilde{\mathcal{K}}^4}{R} \frac{\Phi_c}{R} \frac{\tilde{\mathcal{K}}^4}{r_c} t_c r_c^{1/2} \stackrel{\text{ll}}{=} 3 \text{ GeV}$$

Is $E = \epsilon$?

Does E variation map magnation

Vela

Megan DeCesar thesis LAT data

Slot gap model emission radius and magnetic field radius of curvature

Derived $E_{\parallel} \parallel E_c^{4/3} r_c^{2/3}$ And B(r_{\min}) in retarded dipole field

E_{II}(r) can be compared with models

 $E_{\parallel}/B_{max} > 1 \text{ not}$

physical

Electric field in accelerator gap – CTA1

Summary

- We are finally answering fundamental questions of γ-ray pulsar astrophysics – but raising new ones
 - High-energy emission comes from outer magnetosphere
 - Likely curvature radiation from continuously accelerated particles
- The mystery of unidentified Galactic gamma-ray sources from the EGRET era has largely been solved – they're pulsars - many radio-quiet
- Radio-loud, radio-quiet and millisecond pulsars have similar gamma-ray light curves and spectra
 - Similar emission mechanisms and geometry
- Fermi has so far detected about 88 γ-ray pulsars including ms pulsars -- more to come!
- Fermi is aiding discovery of new millisecond pulsars perfect for nanosecond timing arrays – first direct detection of gravitational radiation may