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Introduction

® Exploit neutron stars to learn about matter:

® extreme densities
® extreme magnetic fields

® Exploit soft X-rays to learn about neutron stars
® Cooling: need distances, ages
® Radius measurements: need ages

® Both need real understanding of surfaces!
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The Problem With Pulsars
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The Problem With Pulsars

® Strong, complicated
non-thermal emission

® Makes radius
estimation difficult

® Also heats surface:
cooling compromised

® Need a new sample
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The Problem With Pulsars

Strong, complicated
non-thermal emission

Makes radius
estimation difficult

Also heats surface:
cooling compromised

Need a new sample

p Look in Soft X-rays:
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|Isolated Neutron Stars
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|Isolated Neutron Stars

RX | 856.5-3754\

(Walter et al. 1996)
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|Isolated Neutron Stars

R Cr A Star-Forming Region
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|Isolated Neutron Stars

L —
® Bright, cool X-ray sources w/ very faint optical counterparts

® Currently 7 (review: Kaplan 2008, arXiv:0801.1143)

® Properties:
® temperatures ~ | million degrees (peak at ~100 eV=124 A)
® spin periods 3-10 sec.
® no confirmed radio (bursts or continuous: limits sub-m]y)
» nearby, < | kpc
® high proper motions
® Jlow interstellar absorption
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|Isolated Neutron Stars

L —
® Bright, cool X-ray sources w/ very faint optical counterparts

® Currently 7 (review: Kaplan 2008, arXiv:0801.1143)

® Properties:
® temperatures ~ | million degrees (peak at ~100 eV=124 A)
® spin periods 3-10 sec.
® no confirmed radio (bursts or continuous: limits sub-m]y)
» nearby, < | kpc
® high proper motions
® Jlow interstellar absorption
® Why this sample!?

® Nearby — bright
® Relatively young — can use for cooling curves

® Emission is thermal = comes only from surface

Friday, July 15, 2011



Isolated Neutron Stars

* Bright ([RXJ1856.5-3754 thslimal X-rays
1071 = -
e Curre /
® Prope ‘Ng e 5 o
® ter E 1) eV=124 A)
® spi £l |
® no sub-mJy)
pone 5.0 :
e | X
>
o | L ] / )
® Whyt : ‘thermal optical/UV
o NE 10_16_ . /| . || ’ Ll

1017 1018

F_requency_ (Hz)

® |Emission is thermal = comes only from surface
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What We Know from X-rays

® ROSAT All-Sky Survey (>0.05 count/sec): D =no radio

® Soft X-rays (0.1-2.4 keV)

® Efficient way to find young/energetic/nearby neutron stars

Pulsars (non-thermal, P<400 ms)
v.young!{ Crab (48.4 s

INS (thermal, P>3 s)
RX |1856.5-3754 (3.64 s°')

Vela (3.4 s°')

RX J0720.4-3125 (1.64 s)

PSR B0656+14 (1.92 s

Geminga (0.54 s°')

PSR B1055-52 (0.35 s°)

RX J1605.3+3249 (0.90 s-')

RX J0806.4-4123 (0.38 s°')

RX J1308.6+2127 (0.29 s

old! | PSR J0437-4715 (0.20 s

old or young? [Calvera (0.08 s

PSR J0538+2817 (0.06 s°)

RX J2143.0+0654 (0.18 s°')

RX ]0420.0-5022 (0.14 s
No Beaming!

PSR BI951+32 (0.07 s

Kaplan (arXiv:0801.1143); Kaplan and van Kerkwijk (2009, Ap], 705, 798);

Zane et al. (201 1, MNRAS, 410, 2428)
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Optical Counterparts
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Astrometry
Ages: 0.5-0.7 Myr
Distances: 120-500 pc

Gal. Plane

HST « WFPC2

(OB assns adapted from de Zeeuw et al."99)
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Is Emission Thermal?

® Compare:
® X-ray luminosity Lx=411d*Fx
® Spin-down luminosity E=d(/21Q?)/dt

* Radio pulsars: * INS
e Lx«<E ® Lx/E~ (103%/1039~100
® Much non-thermal emission ® [ittle non-thermal emission

T 1 T 1 ¥ y

10710: T T T T T T T T T T T
F RX J1856.56-3754 1

-1 ¥ ¥ ¥ ¥ ! ¥ ! y g

+ optical
— XMM~=Newton

¢ 0OSSE

8 COMPTEL

< keV™1)

¢ EGRET
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Log Flux (keV s

1
.......
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RXJ1856: Optical to X-rays

1077 - - - —— e )
[ oxoueT A Blackbody Fits!
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°2 107"} i h S
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D ]
£ 4| ihterstellar
~~ .
v ‘ ’ + | absorption
C L v
\q)/ 10_14_- 'r/ \'\-_
pre _ . N
> / :
L !

/!

XMM/RGS CXO/LETG EUV :

/

1071 ' ' ' ——
10’ 10°

Wavelength (A)

(Drake et al.“02; Pons et al.‘02; Burwitz et al. ’03; Kaplan et al. 2002, 2003, 2003b)
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RXJ1856: Optical to X-rays

1077 . . —
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(Drake et al.“02; Pons et al.‘02; Burwitz et al. ’03; Kaplan et al. 2002, 2003, 2003b)
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Puzzles

® X-ray blackbody does not match O/UV

® OJ/UV not the same across objects (talk by
Kamble)

Spectra are not blackbodies (talk by Potekhin)

Magnetic field is high: standard atmosphere
models not valid, might decay (talk by Popov)

® Ho nebula from RX |1856
® Variability
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RX |1856.5-3754

a more realistic model

107 %¢ — .

VLT/FORSH1 | ]
HST/STIS |
CXO/LETG |3
- XMM/RGS |1
\ - EUVE -
EREN * VLT/FORS2 |1

N HST/WFPC2|

R | ® Thin (~ g/cm?) layer
i of partially ionized H

XMM/RGS
CXO/LETG
HST/STIS

| ® On top of
' condensed surface

Fk (ergs s cm™ A'1)

VLT/FORSH1

Wavelength (A)

(Ho, Kaplan et al. 2007; Ho 2007; also see Motch et al.’03, Zane et al.‘04)
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RX |1856.5-3754

-
a more realistic model
il T [ viwomst |
sl - HST/STIS 1
10 3 - CXO/LETG |A
XMM/RGS
ol v - EUVE -
107 ~~. VLT/FORS2 | -
AN HST/WFPC2
< 10 N . | ® Thin (~ g/cm?) layer
£ MR- i of partially ionized H
Issues: . 1 Ontop of
e|s this unique? 2 1 condensed surface
eHow to maintain thin layer? [\,
*Are physics correct!? o
10"
otch et al.’03, Zane et al.‘04)
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RX |1856.5-3754

-
a more realistic model
il T [ VirFomst ||
sl - HST/STIS 1
10 3 - CXO/LETG |A
- XMM/RGS
_14| h \ - EUVE 1
107F iy EREN * VLT/FORS2 |4
.. HSTIWFPC2] -
< 10 N 0 | ® Thin (~ g/cm?) layer
1= MR- i of partially ionized H
Issues: . 1 Ontop of
e|s this unique? 2 1 condensed surface
eHow to maintain thin layer? [\,
*Are physics correct!? N
Problem: -
*VWrong B 1o’
otch et al.’03, Zane et al.‘04)
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RX |1856.5-3754

-
a more realistic model
i [ viTFoRst | ]
sl - HST/STIS 1
10 3 - CXO/LETG |A
XMM/RGS
ol v - EUVE -
107°F ~~. VLT/FORS2 | -
AN HST/WFPC2
< 10 N . | ® Thin (~ g/cm?) layer
£ MR- i of partially ionized H
Issues: . 1 Ontop of
e|s this unique? 2 1 condensed surface
eHow to maintain thin layer? [\,
*Are physics correct!? o
Problem: §
*VWrong B 1o’
*See talks by Potekhin, Kamble Y. c: 103, zane et al. 04
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Spectral Absorption Features

cits=X-ray absorption

et
ot ‘J*%%%

| Haberl et al. (2003, 2004)
| van Kerkwijk et al. (2004)
| Zane et al. (2005)

Flux (photons/ks/cm2/A)

Wavelength (A)




Complex Absorption

-
. Energy (keV)
® A number of Ob]eCt5: o 02 03 o;gj 05 060708091 12
® absorption is complex, _

hot a single line 2
® multiple lines? g
. . 210 ¢
® harmonic relation S
between line energies -
1.2r
(1:2,2:3,7) 17l
0.9r
_ 08}
S 12;
2 1.%-
S 0.9
8 95t
1.2r
1.1r
1
0.9r

0.8 | | | | | L .

007.15lG 0.2 0.3 04 05 06 0708091 1.2

Haberl (2007), Kaplan & van Kerkwijk (2009) Energy (keV)
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What Causes Features?

® Cyclotron (proton)

® Neutral hydrogen

® Molecular H

® He (neutral, ionized, molecular,...)

® Other species

® See Haberl (2007)

Need to consider:
evacuum resonance suppression (Ho & Lai 2003)
*high B: absorption weaker
*role of condensation (Medin & Lai 2007)
*high B/low T: solid surface
*Multiple lines in some sources
*Cyclotron harmonics not possible (Potekhin; Suleimanov+ ’10)
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What Causes Features?
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see van Kerkwijk & Kaplan (2007), K & vK ‘09
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What Causes Features?

should be S
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What Causes Features?
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What Causes Features?

should be ——meee
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-1 Timing results

' !
Magnetic Field (G no lines seen!
5 ( ) see van Kerkwijk & Kaplan (2007), K & vK ‘09
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iscrepancy!?!

What Causes Features?
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iscrepancy?!

What Causes Features!?

should be S
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Energy (eV)

Timing results
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Magnetic Field (G no lines seen!
5 ( ) see van Kerkwijk & Kaplan (2007), K & vK ‘09
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This is Not A Cooling Curve

® Temperature
represents at least

most of surface,
blackbody model

® For > | Myr, most
pulsars have polar
cap and/or PL

® Systematic offset:
T(INS)~10*T(PSR)
for same kT

® What about
composition! Radio!?

® |SM “bias”: cooler
sources not visible

250

(\®]
S
)

[E—
()
-

100

Dominant Blackbody Temperature (eV)

N
-]

focus here
R 100
® INS
®m  Pulsar 90
m1119-6127 20
- m1734-3333 1
01718-3718 70
m1916+14 0
M0538+2817 %)
B (q\l
m1819-1458 N2
m1951+32 -
104608.7 40
| v1124-5916 1605 ®1308-92143 30
m0726-2612 @0 .
{ ]
.065%2ﬁ24+§f055—52 1856 [ 10
I Ll ) L ) 1 :&4&@_1
4 5 6 7
10 10 10 10

[
-

Characteristic Age (yrs)

Also see Zhu et al. (2009, 201 1), talk by Kaspi (that Canadian woman)
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This is Not A Cooling Curve

® Temperature
represents at least
most of surface,
blackbody model

® For > | Myr, most
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This is Not A Cooling Curve

® Temperature
represents at least
most of surface,
blackbody model

® For > | Myr, most
pulsars have polar
cap and/or PL

® Systematic offset:
T(INS)~10*T(PSR)
for same kT

® What about
composition! Radio!?

® |SM “bias”: cooler
sources not visible

focus here
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Evidence for Some B Decaz
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Evidence for Some B Decaz

® |xtoo high for spin-down
age (by factor >10):
® FEither has extra
energy source
® Or spin-down age
systematically wrong
= Either way, implies B
evolution!
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Evidence for Some B Decaz

® |xtoo high for spin-down
age (by factor >10):
® Either has extra
energy source
® Or spin-down age
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= Either way, implies B
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® B decay for INS explains:
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Evidence for Some B Decaz

® |xtoo high for spin-down

decay: B(end) ~ constant
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Evidence for Some B Decaz
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Orientation Effects?

® Contopoulos & Spitkovsky (2006):

10
® Orientation changes spin-down

law, appears like field decay

o0
T

® Could explain lack of radio for
INS (orientation bias)!?

@)
T

® But: timescales do not work:

INS spindown

INS cooling

® spin-down deviations only for
2107 yrs (n=3) with B~10"3 G

Characteristic Age / True Age

(\O]
T

® this age is even less likely than 600
10° yrs for INS (kT would be e > 0 o 7 "
even weirder) Age (yrs)

I . = 13 =
o Higher B — faster integrate P(0) for B=3x10'3 G, Po=0.1 s

® Then decay would still happen
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Orientation Effects?
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B vs. kT Correlation?
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B vs. kT Correlation?

B
Originally in 3 sources 5 "
0806, 2143 contradict? 45l :
® orientation!? 5 E T~B/\,
But, new data on 0420 (K =} !
y | 1 1308 -
& vK I I) support 53.5 e
[3) L
= 3r } m
) o1
3 : 0720 | a
£ 25 660%‘”00 T e
< o LT 1 2143
E 2_ A% ,\/ :
Q s
S 1856 :
'E-‘ 1.5 ,/\, ® [
0420~ 0806 g
tr @ #@
\/\, '8
0.5 ’ L L L 1| L
40 60 80 100 120 140 160

Effective Temperature (eV)

Kaplan & van Kerkwijk (2009) also see:Turolla et al. (2004), Pons et al. (2007)

Friday, July 15, 2011



B vs. kT Correlation?
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B vs. kT Correlation?
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B vs. kT Correlation?

Originally in 3 sources
0806, 2143 contradict?
® orientation!?

But, new data on 0420 (K

& vK I I) support

Cooling sequence!
® Prob. not: 856 younger
than 0720 (Kaplan et al.
'07; Tetzlaff et al.’ I I)
Surface physics!?
® Medin & Lai (2007)
New source agrees! Radio
pulsar w/ B=3x10"3 G

Kaplan & van Kerkwijk (2009)
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B vs. kT Correlation?
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PSR J0726-2612: Proto-INS!?

® Radio pulsar (Burgay et al. 2005)
® P=3.4s,B=3x10"3 G, T=2x10°y
® New Chandra observation

® purely thermal, kT=90 eV
(cooler than RX 0720, but
younger)

® Blackbody consistent with
data, not H atmosphere

® Sinusoidal pulsations at 2*P
= A lot like a young INS!
® Lx/E=0.5 dipc?

® But cool: less B decay?

—

| L%HHMM& %IJ:HJL% + | +
BAH U

Energy (keV)

also see talk by Vicky Kaspi
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PSR J0726-2612: Proto-INS!?

® Radio pulsar (Burgay et al. 2005)
® P=3.4s,B=3x10"3 G, T=2x10> -

® New Chandra observation X-ray

. |Mﬂé.i. |

B
1

® purely thermal, kT=90 eV
(cooler than RX J0720, but 4r

younger)

® Blackbody consistent with
data, not H atmosphere

Rate (counts s‘1)

i

Radio

W n M i

Pulse Phase (cycles)

® Sinusoidal pulsations at 2*P
= A lot like a young INS! 0
® Lx/E=0.5 dipc? p

® But cool: less B decay?

also see talk by Vicky Kaspi
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INS As Old Magnetars

By (G)

irrotational (slow) mode
(Heyl & Kulkarni ‘98)

Age (yr)
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INS As Old Magnetars

. Magneta’r: neUtron Star ' ith I T T TTTTI T NNHNW T NNNHW T NHHW T TTTT
. WOTES
energy supplied by B, not ()

® |NS: X-ray emission from cooling

® Were the INS magnetars, with

cooling augmented by B decay! 1070
(Heyl & Kulkarni ‘98)
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INS As Old Magnetars

® Magnetar: neutron star with
energy supplied by B, not ()

® |NS: X-ray emission from cooling

® Were the INS magnetars, with

cooling augmented by B decay?
(Heyl & Kulkarni ‘98)

= Probably not much (Kaplan et al.
'02; Zane et al.’02)

® age(cooling) = age(kinematics)
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INS As Old Magnetars

. Magnetar: neUtron Star ' ith I T T TTTTI T NNHNW T NNNHW T NHHW I T T TTTTI
. WOTES
energy supplied by B, not ()

® |NS: X-ray emission from cooling

® Were the INS magnetars, with

cooling augmented by B decay! 1070
(Heyl & Kulkarni ‘98)

= Probably not much (Kaplan et al. %
'02; Zane et al.’02) Q.

® age(cooling) = age(kinematics)

J

® age*Lx >» Eg (dipole only)

10 - irrotational (slow) mode =
(Heyl & Kulkarni ‘98) i

l‘ | lllHH‘ | llHHT

Age (yr)
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INS As Old Magnetars

. Magneta’r: neUtron Star ' ith I T T TTTTI T NNHNW T NNNHW T NHHW I T T TTTTI
. WOTG
energy supplied by B, not ()

® |NS: X-ray emission from cooling

® Were the INS magnetars, with

cooling augmented by B decay! 1010
(Heyl & Kulkarni ‘98)

= Probably not much (Kaplan et al.
'02; Zane et al.’02)

® age(cooling) = age(kinematics)
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—\
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J

® age*Lx >» Eg (dipole only)
® (Caveats: | |
e Simple model of field decay 10+ —irrotational (slow) mode E
® Ep(toroidal) » Eg(dipole)? (Heyl & Kulkarni ‘98) i
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INS As Old Magnetars

. Magneta’r: neUtron Star ' ith I T T TTTTI T NNHNW T NNNHW T NHHW I T T TTTTI
. WOTG
energy supplied by B, not ()

® |NS: X-ray emission from cooling

® Were the INS magnetars, with

cooling augmented by B decay! 1010
(Heyl & Kulkarni ‘98)

= Probably not much (Kaplan et al.
'02; Zane et al.’02)

® age(cooling) = age(kinematics)
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Magnetic Field Decay
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Magnetic Field Decay

® Several mechanisms of decay (Goldreich & Reisenegger 1992):
® Ohmic decay |resistors in crust

® Ambipolar diffusion

® Hall effect
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Magnetic Field Decay

® Several mechanisms of decay (Goldreich & Reisenegger 1992):
® Ohmic decay |resistors in crust

® Ambipolar diffusion |B drags e & p* in superfluid interior

® Hall effect  |ions fixed in crust, moves energy to small scales
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Magnetic Field Decay

® Several mechanisms of decay (Goldreich & Reisenegger 1992):
® Ohmic decay |resistors in crust

® Ambipolar diffusion |B drags e & p* in superfluid interior

® Hall effect  |ions fixed in crust, moves energy to small scales

® Decay fastest on smallest length scales (~turbulent cascade)

® Decay non-linear, coupled with thermal evolution (Pons et al. 2009)
® Some modes: B=B(B), some not
® Temperature affects decay rate
® Decay leads to hotter stars
® B also affects thermal conductivity
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Magnetic Field Decay

® Several mechanisms of decay (Goldreich & Reisenegger 1992):
® Ohmic decay |resistors in crust

® Ambipolar diffusion |B drags e & p* in superfluid interior

® Hall effect  |ions fixed in crust, moves energy to small scales

® Decay fastest on smallest length scales (~turbulent cascade)

® Decay non-linear, coupled with thermal evolution (Pons et al. 2009)
® Some modes: B=B(B), some not

Temperature affects decay rate
® Decay leads to hotter stars
® B also affects thermal conductivity

® “Magneto-thermal evolution”
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Looking at the Surface

B
RXJ I85§: §inus'oildall & v:/elll l?eha\(ed

Energy

Pulse Phase
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Looking at the Surface

® Assumption: smooth dipole B, leads to
dipole T

RXJ I85§: §inusloildall & vyelll l?ehayed

® Phase-resolved spectra/energy-
resolved pulsations map the surface

(e.g., Zane & Turolla 2006; Gotthelf et
al. 2010)

® See different parts as the NS rotates

® Could help understand origin of

spectral features (more absorption — r
more B?)

Energy

Pulse Phase
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Looking at the Surface

® Assumption: smooth dipole B, leads to
dipole T

RXJ I85§: §inusloildall & vyelll l?ehayed

® Phase-resolved spectra/energy-

resolved pulsations map the surface
(e.g., Zane & Turolla 2006; Gotthelf et
al. 2010)

® See different parts as the NS rotates

Energy

® Could help understand origin of

spectral features (more absorption — r
more B?)

Pulse Phase

® Some sources OK
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Looking at the Surface

® Assumption: smooth dipole B, leads to [py
dipole T }

jl85§: Isinusloildall & vyelll l?eljayed

® Phase-resolved spectra/energy-
resolved pulsations map the surface  [RXJ2143:2 peaks at high energy?

(e.g., Zane & Turolla 2006; Gotthelf et i ‘L SN
al. 2010)

® See different parts as the NS rotates

® Could help understand origin of

spectral features (more absorption —
more B?)

® Some sources OK
® Others: no

® cannot be produced by symmetric
B, T
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Looking at the Surface

® Assumption: smooth dipole B, leads to
dipole T

® Phase-resolved spectra/energy-
resolved pulsations map the surface

(e.g., Zane & Turolla 2006; Gotthelf et
al.2010)

® See different parts as the NS rotates

® Could help understand origin of

spectral features (more absorption —
more B?)

® Some sources OK
® Others: no

® cannot be produced by symmetric
B, T

RXJ I85§: 'sinus'oi'dall & vyelll l?ehayed

%

RX J2143: 2 peaks at high energy?

RX J0806: phase shift at high E

J VTt b ' "\rVVI

Energy
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Conclusions

® Goal is real physics, but not there yet
Lots of interesting astrophysics
® Evidence for B decay over 10° yrs, explains:
® Apparent ages of neutron stars
® Overabundance of high-B objects nearby (factor of ~2? Popov et al.)
® Still need to understand how decay happens
® Continuum of decay?
® Can we reconcile surface emission with atmospheric physics!?
® H models do not work
® proton cyclotron models do not work
® where next!
® phase-resolved spectroscopy even more puzzling
Complicated magnetospheres!?
Find more objects (Pires, Rutledge, etc.)! Eventually eRosita
® Puzzles remain: 0720 variability, 1856 Hc, ...
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Conclusions

® Goal is real physics, but not there yet

Lots of interesting astrophysics : .
® Evidence for B decay over 10° The Sun is not a dipole

® Apparent ages of neutron st

® Overabundance of high-B ol
® Still need to understand how d

® Continuum of decay?
® Can we reconcile surface emis
H models do not work
proton cyclotron models dqg
where next?
phase-resolved spectroscop
Complicated magnetospheres!?
Find more objects (Pires, Rutlc®$
® Puzzles remain: 0720 variability, 1856 Hc, ...

(Solar Dynamics Observatory)
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Optical In Detail
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A HX Nebula Around RX [I856

® HX nebulae around pulsars: usually “bowshocks”
® Size Ro comes from pressure balance: :

® |SM ram pressure = pulsar wind pressure ' ‘
Pism Vns2 = E/4TTcRo2 | ‘

® Additional constraint: match photon flux to
number of incoming atoms (ny < nn) -

w

T

Neutron Star
(van Kerkwijk & Kulkarni 2001; van Kerkwijk & Kaplan 2008)
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Interstellar Medium “flowing at” NS
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A HX Nebula Around RX [I856

® HX nebulae around pulsars: usually “bowshocks”
® Size Ro comes from pressure balance: :
® |SM ram pressure = pulsar wind pressure ' ‘

Pism Vns? = E/4TTcR¢? | - 00
-~ A
unknown Mn (with P,p,d)

® Additional constraint: match photon flux to
number of incoming atoms (ny < nn) -

Interstellar Medium “flowing at” NS
supersonically

¢ Cannot match data
® Small E implies tiny density
® Then flux requires ~30 photons/atom!

(van Kerkwijk & Kulkarni 2001; van Kerkwijk & Kaplan 2008)
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RX J0720:Variability
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RX J0720:Variability

van Kerkwijk, Kaplan et al.‘07
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RX J0720:Variability
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RX J0720:Variability

v, 2000 2001 2 Spectral change 5 2006
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Demographics: PSRs vs. INS

® |NS are significant
fraction (up to 50%) of
nearby sources

® But no PSRs resemble
INS

® Radio quiet:

® Old pulsar: non-
Young ' thermal emission has
shut off?

® Expect narrow radio
beams for long P

® Extends B dist’'n upward
(as with pulsars;
Vranesevic et al.,, Faucher-
Giguere & Kaspi)
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Demographics: PSRs vs. INS

® INS are significant
fraction (up to 50%) of
nearby sources

But no PSRs resemble
INS

® Radio quiet:

® Old pulsar: non-
thermal emission has
shut off?

® Expect narrow radio
beams for long P

Total: 62 pulsars

Extends B dist'n upward
(as with pulsars;
Vranesevic et al.,, Faucher-
Giguere & Kaspi)
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