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Disk-magnetosphere interaction
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Pringle & Rees (1972); Ghosh & Lamb (1978-79)



Inflation of the field lines :

magnetosphere open field
(closed field line region

line region)

Lovelace, Romanova & Bisnovatyi-Kogan 1995
Aly 1985; Aly & Kuijpers 1990



Two main possiblilities:
Slow rotation Fast rotation

Accretion “Propeller” regime
ler 2 T r,<r.
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Lovelace, Romanova & Bisnovatyi-Kogan
(1999) lllarionov & Sunyaev (1975)
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2D and 3D simulations

Non-relativistic MHD

Godunov-type numerical scheme

2D: viscosity and diffusivity

3D: viscosity

Developed quasi-stationary initial conditions

0|

Few groups performed 2D simulations of the disk-

magnetosphere interaction, but in regime:
Hayashi, Shibata & Matsumoto 1996; Miller & Stone 1997; Goodson,
Winglee, & Bohm 1997, 1999



VIscosity

The average value of the viscous stress Is a part

of the integral gas pressure in the disk
(Shakura & Sunyaev 1973).

T=all =a/pdz

an~5x107°—0.6

a=5x10-3-0.6

Balbus 2003, Hawley & Stone —
MRI simulations




Magnetic Diffusivity

Magnetic diffusivity may be determined by the same process

as viscosity: magnetic turbulence (Bisnovatyi-Kogan & Ruzmaikin 1976,
Parker 1979)

Nm = QgifCsh

where a,. IS a-coefficient of magnetic diffusivity

gg vis=0.01-1  adif=0.01-

1



Two types of propellers:

(1) “weak” propellers:
no outflows

(2) “strong” propellers:
with outflows




“Weak” propeller:

[ Low accretion rate

M Small viscosity / diffusivity
@ Star spins-down

[ Weak or no outflows

“Strong” propeller:

@ High accretion rate
@ High viscosity / diffusivity

[ Matter penetrates to the
region of fast rotating
magnetosphere

@ Strong outflows



Matter accretes to the star quasi-periodically

Matter accumulates near magnetopause

Accretes to the star through
reconnection

Accumulates again

Star spins-down all the time 08
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Romanova, Ustyugova, Koldoba & Lovelace (2004)



“tower”

forming a

Magnetic field lines expand up

Romanova, Ustyugova, Koldoba & Lovelace (2004)



Physics of “Weak” Propellers

Magnetic field
becomes non-
dipole

B — component
dominates

fCr i« r (expanded)



“Strong” propeller:

Investigation of propeller at different
parameters: 4, Qja , O

a >0.1, a >0.03
OUTFLOWS !







Cycle of the Disk-Magnetosphere Interaction
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Goodson & Winglee (1999)



Variation of the Disk Radius with Time

Ry = T

(pv2/2 = B2/8m)

see also Spruit & Taam 1993

m






Angular velocity




Mixing of the Disk Matter to the Magnetosphere

REGION OF DISK THREADED
BY MAGNETOSPHERIC FLUX /

=

E'E' Goodson & Winglee (1999)
timescale = — ~ 1s,
Thm
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Bursting oscillations

Matter flux to the star
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Matter flux to the jet




Quasi-periodic osclillations

Matter flux to the star

| -
4]
e
)
@
-
e
O
4
>,
=
u—
| -
@
=
4]
=

500 1000
Periods of rotation




Larger viscosity case:

Matter flux to the star
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Matter flux to the jet




Larger viscosity case:

Matter flux to the star
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Matter flux to the jet

Accretion and outflows simultaneously



Well-tuned Oscillations:




Fourier Analysis:
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The dominant frequency iIs v = 0.16
P = 6.2 rotations at r=1



Mass Ejection / Accretion

Dependence on magnetic moment



Hartman et al. (2008) SAX J1808

Pulsar wind: Spitkovsky (2006)
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Propeller outflow:
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Patruno et al. 2009 SAX J1808




Propeller Regime — episodic accretion and outflows due
to MRI accretion to rotating star with dipole field

1000 —. 1500 2000 2500
me

_ ~ Outbursts every 300 ms
Similar to Spruit & Taam 1993

D’Angelo & Spruit 2011 Ustyugova et al. 1011, in prep



2 There are two types of propellers:
"strong”. oscillations + outflows
“weak”: only oscillations, weak or no outflows

[ “Weak” propellers are observed for a wide set of
parameters

2 “Strong” propellers appear at larger viscosity and
diffusivity
2 Matter flows in conical outflow with super-escape

velocities, magnetic energy and some matter flows to
a collimated, magnetically dominated jet
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Conical outflows:




VIscosity

The average value of the viscous stress Is a part

Of the integral gas pressure in the disk (zeldovich,
Shakura & Sunyaev 1973).

a=5x10-3-0.6

Balbus 2003, Hawley & Stone —
simulations




Magnetic Diffusivity

Magnetic diffusivity may be determined by the same process

as viscosity: magnetic turbulence (Bisnovatyi-Kogan & Ruzmaikin 1976,
Parker 1979)

where a,. IS a-coefficient of magnetic diffusivity

o/ -=0.01-1 o '=0.01-1






