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Motivations
Interiors of neutron stars : very complex physical system,
far beyond experimental capacities of Earth-based
laboratories.
Observations can be done in many parts of the
electro-magnetic spectrum, from neutrinos and, possibly
with gravitational wave emission.

⇒ Need for realistic (GR + microphysics) stationary models,
used to determine some of the observable data (maximal
rotation frequency, mass, . . . ).

⇒ Need for initial data for dynamical models: collapse to a
black hole, oscillations and glitches (superfluidity,
two-stream instability).

Inversely, having detailed models permits some “inversion”
of observational data to infer composition of neutron stars
and very dense matter properties (e.g. if gravitational
waves from oscillations are observed).



Model
Two-fluids model

↙ ↘
neutrons

Superfluid neutrons in the crust
and the outer core. No viscosity,
so they can flow freely through
the other component.

“protons”
Nuclei, electrons, muons and
protons are locked together
on short timescales by
viscosity and magnetic field.

⇒these two components are coupled together by strong
nuclear force.

General Relativity for the gravitational field

stationarity and axisymmetry

uniform rotation of both components / common axis,
but different rotation rates.



Relativistic gravity
Bonazzola et al. 1993

Need for General Relativity?
deviation from Newton’s law given by the compactness

2GM

Rc2
∼ 0.3− 0.4 for cold neutron stars,

notion of maximal mass does not appear in Newtonian
gravity,
Tolmann-Oppenheimer-Volkoff (spherical symmetry)
system easy to solve numerically,
other tools publicly available for rotating stars
(rotstar/lorene, rns)

* stationary, axially symmetric system ⇒4 coupled,
Poisson-like, non-linear PDEs for the gravitational field
* no local notion of mass or angular momentum



Two-fluid hydrodynamics
from Carter, Langlois, et al.

For each fluid define the conserved 4-current nµn and nµp,

The Lagrangian density Λ = −E depends only on the
three possible scalar products between these 4-vectors.

Define momenta as conjugates of currents:

dΛ = pn
µdnµn + pp

µdnµp.

The equations of motions (in the absence of direct
dissipative forces) are:

nµn∇[µp
n
µ] = 0 and nµp∇[µp

p
µ] = 0

The stress-energy tensor T ν
µ = pn

µn
ν
n + pp

µn
ν
p + Ψδ ν

µ ,

with the generalized pressure Ψ = −E − pn
µn

µ
n − pp

µn
µ
p



Equation of state
The EOS depends only on densities and “relative speed” ∆:
E(nn, np,∆

2), and the first law of thermodynamics reads
(defining the chemical potentials µn and µp)

dE = µndnn + µpdnp + e d∆2,

and the equations of motion take the integral form:

N

Γn

µn = Cn and
N

Γp

µp = Cp

We have used a simple (2-fluid polytrope) EOS

E = ρc2 +
1

2
κnn

2
n +

1

2
κpn

2
p + κnpnnnp + κ∆nnnp∆2.

⇒all physical features: entrainment + symmetry energy,
and the inversion (µn, µp)↔ (nn, np) is made easy
(linear system).



Numerical methods
spectral methods (Grandclément & Novak 2009)

Need: solve Poisson-like PDEs with sources of non-compact
support.
⇒use a linear Poisson solver with iteration and relaxation.

Decomposition f(r, θ):
Chebyshev polynomials for ξ,
Spherical harmonics Y`(θ) for the
angular part.

symmetries and coordinate
singularity at the origin and on the
axis of spherical coordinates

compactified variable for elliptic
PDEs ⇒boundary conditions are
well imposed

Crude initial guess → T µν
grav. eq.−→ metric

eq. of motion−→ (µn, µp)
EOS−→ T µν · · ·



Comparison to previous

works
Most models have been devised in the “slow-rotation”
approximation:

Prix et al. 2002 in the Newtonian regime,
Anderson & Comer 2001 in Relativistic theory.
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In the Newtonian case, one
can obtain an analytical
expression for the solution
and, depending on the type
of EOS inversion, the
behavior of the difference as
a function of Ω is recovered.

In the relativistic case, the agreement on
gauge-independent quantities ranges from 10−4 to a few
percent, depending on the rotation rate.



Results
oblate / prolate configurations

It is possible with
non-realistic
parameters to get a
configuration with one
fluid surface having
oblate shape, while the
other has a prolate
one.
made possible by
counter-rotation and
the effective
interaction potential,
which tends to
“separate” both fluids.
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Results
Kepler limit

(a) (b) Om
Om

Slow-rotation approximations overestimate the Kepler
frequencies by ∼ 15%.

If no chemical equilibrium at the center, the Kepler
limit is determined by the outer fluid, even if it is
rotating slower than the inner one.



Outlook

Allow for differential rotation of superfluid component.

Need for more realistic nuclear-physics EOS,
particularly for the entrainment term (Anderson et al.
2006, Goriely et al. 2010).

What about mutual friction in such situations?

Add a solid crust. . .

Study the dynamical evolution: oscillation modes and
gravitational wave emission.
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