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Correlation between low and high frequency QPOs in WD, NS and BH

Typical high frequencies

for white dwarfs (WD), νhigh ≈ 0.1 Hz

for neutron stars (NS), νhigh ≈ 1 kHz

for black holes (BH), νhigh ≈ 100 Hz

In any kind of compact object, the relation seems to
be

νhigh ≈ 15 νlow

Why this relation ?
Do general-relativistic effects matter ?

(Mauche 2002, Warner et
al. 2003)

Our basic assumption

There must be

one same physical mechanism producing these QPOs

irrespective of the nature of the compact object.
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Accreting neutron stars : slow vs fast rotators

For accreting neutron stars in LMXBs, observations reveal that they can be divided into
two categories

slow rotator fast rotator
spin rate ν∗ in Hz ≈ 300 ≈ 600

QPO frequency difference ∆ν ≈ ν∗ ≈ ν∗/2
between the two peaks
QPO frequency ratio ν2/ν1 ≈ 3/2

Questions
⇒ how could we explain this segregation ?
⇒ which model can account for this ?

(van der Klis, 2006)
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Some models

General idea

Inhomogeneities forming in the disk

create clumps of matter orbiting around the compact object

generate a modulation in the intensity of the radiation.

In the case of interest here, emission occurs mostly in the X-ray range

=> what are these inhomogeneities : density waves, blobs of plasma ?

A cartoon

Risco

X−ray emission

CO
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Idea

Aim of this work

find a new model for the high-frequency quasi-periodic oscillations (kHz QPOs)

observed in accretion disks orbiting around Low Mass X-ray Binaries (LMXBs).

The physical mechanism

To show that an accretion disk evolving in

either a gravitational potential

or a magnetic field

which possesses the two following essential properties

an asymmetry with respect to the rotation axis of the disk

a rotating motion compared to the disk

will be subject to some resonances.
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Test particles in gravitational field

Three kind of resonances are expected

a corotation resonance at the radius where the angular velocity of the disk equals
the rotation speed of the star, only possible for prograde motion

Ωk = Ω∗

an inner and outer Lindblad resonance at the radius where the radial/vertical
epicyclic frequency equals the rotation rate of the the gravitational potential
perturbation as measured in the frame locally corotating with the disk

m |Ωk − Ω∗| = κz

a parametric resonance related to the periodically time-varying radial/vertical
epicyclic frequency, (Mathieu equation)

m |Ωk − Ω∗| = 2
κz

n

m, n are integers (m azimuthal mode number)

Ω∗ neutron star rotation rate

Ωk keplerian orbital frequency

κz vertical epicyclic frequency
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Newtonian theory

Characteristic frequencies

For a test particle, the rotation is Keplerian and

κr = κz = Ωk =

r

G M∗

r 3

Parametric resonance conditions

Ωk

Ω∗

=
m

m ± 2/n
⇒

Ω∗

3
≤ Ωk ≤ 3 Ω∗

The two highest frequencies are ν1 = 2ν∗, ν2 = 3ν∗ thus ∆ν/ν∗ = 1.

Orbital frequency at resonance, ν in Hz

Mode m ν∗ = 600 Hz ν∗ = 300 Hz
n = 1 n = 2 n = 1 n = 2

1 -600 / 200 —- / 300 -300 / 100 — / 150
2 —- / 300 1200 / 400 — / 150 600 / 200
3 1800 / 360 900 / 450 900 / 180 450 / 225
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General relativistic motion

Application to a neutron star with spin ν∗

Ω(r , a∗) ± 2
κz(r , a∗)

m n
= Ω∗

For a given angular momentum a∗, we have to solve these equations for the radius r .
For a neutron star, we adopt the typical parameters

mass M∗ = 1.4 M⊙

spin frequency ν∗ = Ω∗/2π = 300 − 600 Hz

moment of inertia I∗ = 1038kg m2

angular momentum a∗ = c I∗
G M2

∗

Ω∗ = 5.79 ∗ 10−5 Ω∗

Orbital frequency at vertical resonance, ν(r , a∗) in Hz

Mode m ν∗ = 600 Hz ν∗ = 300 Hz
n = 1 n = 2 n = 1 n = 2

1 —- / 200 —- / 300 — / 100 — / 150
2 —- / 300 1198 / 400 — / 150 599 / 200
3 1790 / 360 899 / 450 898 / 180 450 / 225
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Discrimination between slow and fast rotators

Model prediction

accounts for the segregation if the ISCO is taken into account

for a neutron star with a typical mass of M∗ = 1.4M⊙ the orbital frequency at the
ISCO is νisco = 1571 Hz

=> upper limit for any QPO frequency (a∗ ≪ 1)

νQPO ≤ νisco = 1571 Hz (1)

Discarding the resonance frequencies in the relativistic disk which are higher than νisco

slow rotator (300 Hz) fast rotator (600 Hz)
highest frequencies < νisco not stable

ν1, ν2 in Hz 599,898 899,1198
∆ν in Hz 299 299
∆ν/ν∗ 1 1/2
ν2/ν1 ≈ 3/2

These conclusions apply to magnetized as well as to hydrodynamical accretion disks.
(Pétri, 2005, A&A Letter, 439, 27)
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Can we do better ?

Where is the frontier between slow and fast rotator, if any ?

sample of a dozen of LMXBs showing this
properties

transition around ν∗ ≈ 400 Hz
if interpreted as due to ISCO, constraints
on

=> neutron star mass
=> moment of inertia
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Slow vs fast rotator

(Pétri, Ap&SS, 2011)
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Constraint on M∗ and I∗

Four constraints
1 for slow rotator, νs

2 = 3ν∗ and νs
1 = 2ν∗,

thus νisco ≥ 3ν∗

νisco(363 Hz) ≥ 1089 Hz

2 for fast rotator, νs
2 = 2ν∗ and νs

1 = 1.5ν∗,
thus νisco ≤ 3ν∗

νisco(401 Hz) ≤ 1203 Hz

3 fastest rotator at 619 Hz but still
∆ν/ν∗ ≈ 0.5

νisco(619 Hz) ≥ 1238 Hz

4 no naked singularity in Kerr space-time
=> |a∗| ≤ 1

„

I∗
1038 kg m2

«

≤ 2.26
„

M∗

M⊙

«2
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Constraint on M∗ and I∗

Assumes mass/rotation relation
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Slow vs fast rotator

average mass of M∗ ≈ 2.0 M⊙

average moment of inertia of I∗ ≈ 1.2 × 1038 kg m2.

(Pétri, Ap&SS, 2011)
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Application to black hole binaries

QPO frequencies predicted for
GRS 1915+105.

νQPO (in Hz) for GRS 1915+105

m n (−)
1 2 3 4

1 -56.0 — 168.0 112.0
2 — 56.0 42.0 37.3
3 56.0 28.0 24.0 22.4

Observations have detected QPOs at
168/113/56/42/28 Hz.

⇒ deduce a mass-spin relation knowing
the fundamental frequency.

Mass-spin relation for four BHB
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GRS1915+105 with fundamental at
56 Hz

H1743-322 with 82 Hz

XTE J1550-564 with 92 Hz

GRO J1655-40 with 150 Hz
(Pétri, Ap&SS, 2008)
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Conclusions & Perspectives

Conclusions

resonance model can account for HF-QPOs in NS and BHC

for NS ⇒ constraints on MNS and INS

for BHBs ⇒ mass-spin relation (aBH, MBH)

Perspectives

from linear to (weakly/strongly) non-linear oscillations

=> kHz-QPO frequency variation

from test particle to more realistic fluid description

=> radiation processes, light-curves, curved space-time effects ?
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