Constraining the mass and moment of inertia of neutron stars from quasi-periodic oscillations in X-ray binaries

Jérôme Petre

Observatoire Astronomotie de Strasbeurg Universite de Strasbeurg

Physics of Neuron Stars 11-15 July 2011, Saint-Petersburg, Russia

Jérôme Pétri (Observatoire de Strasbourg)

kHz-QPOs and NS equation of state

Saint-Petersburg, Russia - 14/7/2011

1/19

Outline

Very brief reminder on QPOs

- QPOs around compact objects
- some aspects of several models

Parametric resonance model

- the idea
- resonances for test particles

Results

- Newtonian field
- general relativistic field
- slow against fast rotator
- black hole binaries

Very brief reminder on QPOs

- QPOs around compact objects
- some aspects of several models

Parametric resonance model

- the idea
- resonances for test particles

Results

- Newtonian field
- general relativistic field
- slow against fast rotator
- black hole binaries

Typical high frequencies

- for white dwarfs (WD), $\nu_{\rm high} \approx 0.1~{\rm Hz}$
- for neutron stars (NS), $\nu_{\rm high} pprox$ 1 kHz
- for black holes (BH), $u_{\rm high} pprox$ 100 Hz

In any kind of compact object, the relation seems to be

 $u_{\rm high} \approx 15 \, \nu_{\rm low}$

Why this relation? Do general-relativistic effects matter?

(Mauche 2002, Warner et

al. 2003)

Our basic assumption

There must be

- one same physical mechanism producing these QPOs
- irrespective of the nature of the compact object.

For accreting neutron stars in LMXBs, observations reveal that they can be divided into two categories

	slow rotator	fast rotator
spin rate ν_* in Hz	pprox 300	pprox 600
QPO frequency difference $\Delta \nu$	$\approx u_*$	$pprox u_*/2$
between the two peaks		
QPO frequency ratio	$ u_2/ u_1 pprox 3/2$	

Questions

- \Rightarrow how could we explain this segregation?
- \Rightarrow which model can account for this?

General idea

- Inhomogeneities forming in the disk
- create clumps of matter orbiting around the compact object
- generate a modulation in the intensity of the radiation.
- In the case of interest here, emission occurs mostly in the X-ray range
- => what are these inhomogeneities : density waves, blobs of plasma?

A cartoon

Very brief reminder on QPOs
QPOs around compact objects

some aspects of several models

Parametric resonance model

- the idea
- resonances for test particles

Results

- Newtonian field
- general relativistic field
- slow against fast rotator
- black hole binaries

Aim of this work

- find a new model for the high-frequency quasi-periodic oscillations (kHz QPOs)
- observed in accretion disks orbiting around Low Mass X-ray Binaries (LMXBs).

The physical mechanism

- To show that an accretion disk evolving in
 - either a gravitational potential
 - or a magnetic field
- which possesses the two following essential properties
 - an asymmetry with respect to the rotation axis of the disk
 - a rotating motion compared to the disk

will be subject to some resonances.

Test particles in gravitational field

Three kind of resonances are expected

 a corotation resonance at the radius where the angular velocity of the disk equals the rotation speed of the star, only possible for prograde motion

$$\Omega_k = \Omega_*$$

 an inner and outer Lindblad resonance at the radius where the radial/vertical epicyclic frequency equals the rotation rate of the the gravitational potential perturbation as measured in the frame locally corotating with the disk

$$m|\Omega_k-\Omega_*|=\kappa_z$$

• a parametric resonance related to the periodically time-varying radial/vertical epicyclic frequency, (Mathieu equation)

$$m|\Omega_k - \Omega_*| = 2\frac{\kappa_z}{n}$$

- *m*, *n* are integers (*m* azimuthal mode number)
- Ω_{*} neutron star rotation rate
- Ω_k keplerian orbital frequency
- κ_z vertical epicyclic frequency

Very brief reminder on QPOs

- QPOs around compact objects
- some aspects of several models

Parametric resonance model

- the idea
- resonances for test particles

Results

- Newtonian field
- general relativistic field
- slow against fast rotator
- black hole binaries

Characteristic frequencies

For a test particle, the rotation is Keplerian and

$$\kappa_r = \kappa_z = \Omega_k = \sqrt{\frac{GM_*}{r^3}}$$

Parametric resonance conditions

$$rac{\Omega_k}{\Omega_*} = rac{m}{m\pm 2/n} \Rightarrow rac{\Omega_*}{3} \leq \Omega_k \leq 3\,\Omega_*$$

The two highest frequencies are $\nu_1 = 2\nu_*, \nu_2 = 3\nu_*$ thus $\Delta \nu / \nu_* = 1$.

Orbital frequency at resonance, ν in Hz

Mode m	$ u_* = 600 \text{ Hz} $		$ u_* = 300 \text{ Hz} $	
	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 1	<i>n</i> = 2
1	-600 / 200	<u> </u>	-300 / 100	— / 150
2	<u> </u>	1200 / 400	— / 150	<mark>600</mark> / 200
3	1800 / 360	900 / 450	<mark>900</mark> / 180	450 / 225

Application to a neutron star with spin ν_*

$$\Omega(\mathbf{r},\mathbf{a}_*) \pm 2 \, \frac{\kappa_z(\mathbf{r},\mathbf{a}_*)}{m \, n} = \Omega_*$$

For a given angular momentum a_* , we have to solve these equations for the radius *r*. For a neutron star, we adopt the typical parameters

- mass $M_* = 1.4 \, M_{\odot}$
- spin frequency $u_* = \Omega_*/2\pi = 300 600 \text{ Hz}$
- moment of inertia $I_* = 10^{38} \text{kg m}^2$
- angular momentum $a_* = \frac{c I_*}{G M_*^2} \Omega_* = 5.79 * 10^{-5} \Omega_*$

Orbital frequency at vertical resonance, $\nu(r, a_*)$ in Hz

Mode m	$ u_* = 600 \text{ Hz} $		$\nu_* = 300 \text{ Hz}$	
	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 1	<i>n</i> = 2
1	<u> </u>	<u> </u>	— / 100	— / 150
2	<u> </u>	<mark>1198</mark> / 400	— / 150	<mark>599</mark> / 200
3	1790 / 360	899 / 450	<mark>898</mark> / 180	450 / 225

Application to a neutron star with spin ν_*

$$\Omega(\mathbf{r},\mathbf{a}_*)\pm 2\,\frac{\kappa_z(\mathbf{r},\mathbf{a}_*)}{m\,n}=\Omega_*$$

For a given angular momentum a_* , we have to solve these equations for the radius *r*. For a neutron star, we adopt the typical parameters

- mass $M_* = 1.4 M_{\odot} \Rightarrow \nu_{
 m QPO} \le \nu_{
 m isco} = 1571 \ {
 m Hz} \ (a_* \ll 1)$
- spin frequency $u_* = \Omega_*/2\pi = 300 600 \text{ Hz}$
- moment of inertia $I_* = 10^{38} \text{kg m}^2$
- angular momentum $a_* = rac{c I_*}{G M_*^2} \Omega_* = 5.79 * 10^{-5} \Omega_*$

Orbital frequency	/ at vertical	resonance, <i>i</i>	י(r,a∗) in Hz
-------------------	---------------	---------------------	--------	---------

Mode m	$ u_* = 600 \text{ Hz} $		$\nu_* = 300 \text{ Hz}$	
	<i>n</i> = 1	<i>n</i> = 2	<i>n</i> = 1	<i>n</i> = 2
1	<u> </u>	<u> </u>	— / 100	— / 150
2	<u> </u>	<mark>1198</mark> / 400	— / 150	<mark>599</mark> / 200
3	1790 / 360	<mark>899</mark> / 450	<mark>898</mark> / 180	450 / 225

Model prediction

- accounts for the segregation if the ISCO is taken into account
- for a neutron star with a typical mass of $M_* = 1.4 M_{\odot}$ the orbital frequency at the ISCO is $\nu_{\rm isco} = 1571$ Hz
- => upper limit for any QPO frequency ($a_* \ll 1$)

$$\nu_{\rm QPO} \le \nu_{\rm isco} = 1571 \text{ Hz} \tag{1}$$

Discarding the resonance frequencies in the relativistic disk which are higher than ν_{isco}

	slow rotator (300 Hz)	fast rotator (600 Hz)
highest frequencies	$< u_{ m isco}$	not stable
ν_1, ν_2 in Hz	599,898	899,1198
$\Delta \nu$ in Hz	299	299
$\Delta u / u_*$	1	1/2
ν_{2}/ν_{1}	pprox 3/2	

These conclusions apply to magnetized as well as to hydrodynamical accretion disks. (Pétri, 2005, A&A Letter, 439, 27) Where is the frontier between slow and fast rotator, if any?

- sample of a dozen of LMXBs showing this properties
- transition around $\nu_* \approx 400 \text{ Hz}$
- if interpreted as due to ISCO, constraints on
 - => neutron star mass
 - => moment of inertia

Four constraints

• for slow rotator, $\nu_2^s = 3\nu_*$ and $\nu_1^s = 2\nu_*$, thus $\nu_{isco} \ge 3\nu_*$

$\nu_{\rm isco}(363 \, {\rm Hz}) \ge 1089 \, {\rm Hz}$

② for fast rotator, $\nu_2^s = 2\nu_*$ and $\nu_1^s = 1.5\nu_*$, thus $\nu_{isco} \le 3\nu_*$

$u_{\rm isco}(401~{\rm Hz}) \le 1203~{\rm Hz}$

I fastest rotator at 619 Hz but still $\Delta \nu / \nu_* \approx 0.5$

```
u_{\rm isco}(619\,{\rm Hz}) \geq 1238\,{
m Hz}
```

$$\left(\frac{I_*}{10^{38} \text{ kg m}^2}\right) \le 2.26 \, \left(\frac{M_*}{M_{\odot}}\right)^2$$

Four constraints

$\nu_{\rm isco}(363 \,{\rm Hz}) \ge 1089 \,{\rm Hz}$

9 for fast rotator, $\nu_2^s = 2\nu_*$ and $\nu_1^s = 1.5\nu_*$, thus $\nu_{isco} \le 3\nu_*$

$\nu_{\rm isco}(401~{\rm Hz}) \leq 1203~{\rm Hz}$

I fastest rotator at 619 Hz but still $\Delta \nu / \nu_* \approx 0.5$

```
\nu_{\rm isco}(619~{\rm Hz}) \ge 1238~{
m Hz}
```

$$\left(\frac{I_*}{10^{38} \text{ kg m}^2}\right) \le 2.26 \, \left(\frac{M_*}{M_{\odot}}\right)^2$$

Four constraints

$\nu_{\rm isco}(363 \, {\rm Hz}) \ge 1089 \, {\rm Hz}$

9 for fast rotator, $\nu_2^s = 2\nu_*$ and $\nu_1^s = 1.5\nu_*$, thus $\nu_{isco} \le 3\nu_*$

 $u_{\rm isco}(401 {\rm ~Hz}) \le 1203 {\rm ~Hz}$

3 fastest rotator at 619 Hz but still $\Delta \nu / \nu_* \approx 0.5$

 $\nu_{\rm isco}(619 \, {\rm Hz}) \ge 1238 \, {\rm Hz}$

$$\left(\frac{I_*}{10^{38} \text{ kg m}^2}\right) \le 2.26 \, \left(\frac{M_*}{M_\odot}\right)^2$$

Four constraints

for slow rotator,
$$\nu_2^{\rm s} = 3\nu_*$$
 and $\nu_1^{\rm s} = 2\nu_*$,
thus $\nu_{\rm isco} \ge 3\nu_*$

$\nu_{\rm isco}(363 \, {\rm Hz}) \ge 1089 \, {\rm Hz}$

2 for fast rotator, $\nu_2^s = 2\nu_*$ and $\nu_1^s = 1.5\nu_*$, thus $\nu_{isco} \le 3\nu_*$

 $u_{\rm isco}(401 {\rm ~Hz}) \le 1203 {\rm ~Hz}$

3 fastest rotator at 619 Hz but still $\Delta \nu / \nu_* \approx 0.5$

 $\nu_{\rm isco}(619 \, {\rm Hz}) \ge 1238 \, {\rm Hz}$

$$\left(\frac{I_*}{10^{38} \text{ kg m}^2}\right) \le 2.26 \, \left(\frac{M_*}{M_\odot}\right)^2$$

Four constraints

for slow rotator,
$$\nu_2^{\rm s} = 3\nu_*$$
 and $\nu_1^{\rm s} = 2\nu_*$,
thus $\nu_{\rm isco} \ge 3\nu_*$

$\nu_{\rm isco}(363 \, {\rm Hz}) \ge 1089 \, {\rm Hz}$

9 for fast rotator, $\nu_2^s = 2\nu_*$ and $\nu_1^s = 1.5\nu_*$, thus $\nu_{isco} \le 3\nu_*$

$u_{\rm isco}(401 \, {\rm Hz}) \le 1203 \, {\rm Hz}$

3 fastest rotator at 619 Hz but still $\Delta \nu / \nu_* \approx$ 0.5

 $\nu_{\rm isco}(619~{\rm Hz}) \geq 1238~{\rm Hz}$

$$\left(\frac{I_*}{10^{38} \text{ kg m}^2}\right) \le 2.26 \, \left(\frac{M_*}{M_\odot}\right)^2$$

Assumes mass/rotation relation

average mass of $M_* \approx 2.0 M_{\odot}$ ۲

 M/M_{\odot}

average moment of inertia of $I_* \approx 1.2 \times 10^{38} \text{ kg m}^2$. ٢

(Pétri, Ap&SS, 2011)

QPO frequencies predicted for GRS 1915+105.

$ u_{\rm QPO}$ (in Hz) for GRS 1915+105					
m	n (–)				
	1 2 3 4				
1	-56.0	_	168.0	112.0	
2	—	56.0	42.0	37.3	
3	56.0	28.0	24.0	22.4	

Observations have detected QPOs at 168/113/56/42/28 Hz.

 \Rightarrow deduce a mass-spin relation knowing the fundamental frequency.

Mass-spin relation for four BHB

- GRS1915+105 with fundamental at 56 Hz
- H1743-322 with 82 Hz
- XTE J1550-564 with 92 Hz
- GRO J1655-40 with 150 Hz

17/19

Very brief reminder on QPOs

- QPOs around compact objects
- some aspects of several models

Parametric resonance model

- the idea
- resonances for test particles

Results

- Newtonian field
- general relativistic field
- slow against fast rotator
- black hole binaries

Conclusions

- resonance model can account for HF-QPOs in NS and BHC
- for NS \Rightarrow constraints on $M_{\rm NS}$ and $I_{\rm NS}$
- for BHBs \Rightarrow mass-spin relation (a_{BH}, M_{BH})

Perspectives

- from linear to (weakly/strongly) non-linear oscillations
- => kHz-QPO frequency variation
 - from test particle to more realistic fluid description
- => radiation processes, light-curves, curved space-time effects?

