MAXIMALLY MODEL INDEPENDENT EQUATION OF STATE FOR NEUTRON STAR MATTER

Sergey Postnikov Instituto de Astronomía UNAM, México D.F. México

instituto de astronomía

unam

<u>Collaborators:</u> Madappa Prakash (OU), Andrew Steiner (INT)

and Jim Lattimer (Stony Brook) Talk at NS-2011, St.-Petersburg, Russia

Content

Objectives.

- The Tolman-Oppenheimer-Volkov (TOV) equations.
- Potentially observable parameters of a NS.
- Observational data with errors and their effects on the inferred Equation of State (EOS).
- Argument for smoothness of EOS.
- Schemes to generate wide class of EOS.
- Simplest inference from 4 stars using X-ray bursts data.
- Sequential Bayesian analysis.
- The TOOL for astronomers.
- Taking steps further.
- Summary.

Objectives

- 1. Use observations of masses and radii (binding energy, moment of inertia, Love number, period and etc.) of several individual NS stars to determine the dense nuclear matter EOS.
- 2. To provide a benchmark maximally model-independent dense matter EOS for ongoing microscopic studies.

Neutron Star in hydrostatic equilibrium Tolman-Oppenheimer-Volkov (TOV) equations

Sera

1) Equations of stellar structure connects the matter pressure P(r) and the enclosed gravitational mass M(r) at the macrophysical level

2) Equation of State (EOS): $P \equiv P(\rho)$ connects pressure and energy density through microphysics of dense matter

3) Due to compactness, gravitational force is large and General Relativity (GR) must be considered

Center:
$$\begin{cases} \rho(0) = \rho_c & TOV \\ P(0) = P_c = P(\rho_c) & EOS & Surface: \begin{cases} M(R) \text{ total mass} \\ P(R) = 0 \\ \hline microphys & the \\ ics & bridge \\ NS-2011, St. Petersburg, 13 July 2011 & sics \\ \hline macrophys &$$

Potentially observed properties of a NS $\beta \equiv GM/Rc^2$

(http://nobelprize.org/nobel_prizes/physics/laureates/1993/p ress.html)

Sergey Postnikov, IA-UNAM

Mass and radius of a NS

Sergey Postnikov, IA-UNAM

"The American Pie"

Sergey Postnikov, IA-UNAM

Direct approach: from EOS to <u>M vs R</u>

Neutron Star Matter Pressure and the Radius

How several observed individual stars determine the EOS.

Smoothness of the EOS in NS matter Phase transitions with more than one conserved charge Gibbs' rules Glendenning Phys Rev D 46 (1992) 1274

P = P (mechanical equilibrium)

E.g., $\mu = \mu + \mu$ (chemical eq.)

- System with one conserved charge
 - Maxwell construction
 - NS profile o(r) has discontinuity
 - dP/dp discontinuities are large
- Charge and baryon number conservation
 - Chemical beta equilibrium: E.g. : d(or s) \leftrightarrow u + e₋ + ν e
 - Global charge neutrality
 - p(r) is continuous
 - dP/dp discontinuities are small

In NS matter we can start with smooth EOS's and later correct for discontinuities (phase 11, St.-Peters Glendenning 1992) transitions

"Pressure, energy density, and chemical potentials a function of weighted b density when there is more than one conserved charge."

- 0. Use low density "known" EOS to set starting poir
- 1. Recast the hypothetical EOS as speed of sound squared c (h)=dP/dp vs h (where $dh=dp/(p+\rho)$) in the unknown region
- 1. Since c (h) is chosen to be smooth and varies slowly, at each next small step in h we can generate a

linear piece of curve with slight deviation in its slope from the previous step: "tree"

$\boldsymbol{\alpha} = \boldsymbol{\alpha} \qquad (\mathbf{1} + \delta \mathbf{j} / \mathbf{N})$

$$\alpha(h_{[0,0]\dots[i,j]}, c_{s\,[0,0]\dots[i,j]}^{2}) = \frac{\alpha(h_{[0,0]\dots[i-1,j_{i-1}]}, c_{s\,[0,0]\dots[i-1,j_{i-1}]}^{2}) + \tan\left(\delta_{i}\frac{j}{N_{\alpha}}\right)}{1 - \alpha(h_{[0,0]\dots[i-1,j_{i-1}]}, c_{s\,[0,0]\dots[i-1,j_{i-1}]}^{2}) \tan\left(\delta_{i}\frac{j}{N_{\alpha}}\right)},$$

- 1. For every piecewise c (h), calculate corresponding P(p)
- 2. Now I am also using faster Monte Carlo scheme

Masses are well measured in binary systems but radii are not precisely known.

The other systems, in which the radiation radius R is measured, do not

Object	R_{∞}	D	$kT_{eff,\infty}$	Ref.
	(km)	(kpc)	(eV)	
Omega Cen	13.5 ± 2.1	$5.36\pm6\%$	66^{+4}_{-5}	Rutledge
(Chandra)				et al. ('02)
Omega Cen	13.6 ± 0.3	$5.36\pm6\%$	67 ± 2	$\operatorname{Gen}\operatorname{dre}$
(XMM)				et al. ('02)
M13	12.6 ± 0.4	$7.80\pm2\%$	76 ± 3	$\operatorname{Gen}\operatorname{dre}$
(XMM)				et al. ('02)
47 Tuc X7	$14.5^{+1.6}_{-1.4}$	$5.13\pm4\%$		Rybicki
(Chandra)	$(1.4 M_{\odot})$			et al. ('05)
M28	$14.5^{+6.9}_{-3.8}$	$5.5\pm10\%$	90^{+30}_{-10}	Becker
(C) indra)				et al. ('03)
0748-676	13.8 ± 1.8	9.2 ± 1.0		Ozel ('06)
andra)	$(2.10\pm 0.28~M_{\odot})$			

 $R_{\infty} = R/\sqrt{1 - (2GM/c^2R)}$; $F = 4\pi T_{eff}^4 (R_{\infty}/D)^2$ Atmospheric (sometimes magnetic) modeling required.

Sergey Postnikov, IA-UNAM

Thermonuclear X-ray Bursts

bursts.

NA SA

Accretion on neutron star

Rise time $\approx 0.5 - 5$ seconds Decay time $\approx 10 - 100$ seconds Recurrence time \approx hours to day Energy release in 10 seconds $\approx 10^{39}$ ergs Burst light curve

Unstable nuclear burning of accreted

matter on the neutron star surface

causes type I (thermonuclear) X-ray

Sun takes more than a week to release this energy.

Why is *unstable* burning needed? Energy release:

Gravitational ≈ 200 MeV / nucleon Nuclear ≈ 7 MeV / nucleon

Accumulation of accreted matter for hours \rightarrow Unstable nuclear burning for seconds \Rightarrow Thermonuclear X-ray burst.

Sudip Bhattacharyya

NASA's Goddard Space Flight Center

M & R from X-Ray Bursts

Sources of observational data:

4U 1745-248: Özel et al. (2009) 4U 1608-522: Güver et al. (2010) 4U 1820-30: Güver et al. (2010) 4U 1724-307: Suleimanov et al. (2010)

Jim Lattimer (2010)

n =0.16 fm)

Sergey Postnikov, IA-UNAM

NS-2011, St.-Petersburg, 13 July 2011

e]

16

< p =0.16)

The band vs model EOSs and <u>Andrew's work.</u>

Sequential Bayesian analysis

Sergey Postnikov, IA-UNAM

R

The TOOL

Dependence on seed EOS

Sergey Postnikov, IA-UNAM

Sergey Postnikov, IA-UNAM

Bayesian analysis with contours (AP3)

Resulting EOS band

Sergey Postnikov, IA-UNAM

Many seed EOSs

Sergey Postnikov, IA-UNAM

Recent 2 solar mass star

Sergey Postnikov, IA-UNAM

Next steps being taken

- Generation of complementary EOSs from TOV inversion schemes (M-R plane). Schemes are developed and ready for use.
- Inclusion of more constraints.
 - Rotational period, redshift, B.E., Love number...
 - Data from nuclear experiments
 - Cooling and bursting data
- Sequential data analysis as more individual stars available.
- Strange quark matter stars, very deferent seed EOS.

The Nuclear (A)Symmetry Energy

Courtesy M. Prakash

Summary

- The way to use available observations of several stars to determine a maximally model-independent EOS is being developed.
- Scheme to generate EOS with incorporation of observational errors is constructed on the basis of sequential Bayesian analysis and 'smoothness' assumption. It uses EOS expressed as the speed of sound c (h) and the variable h and

complementary inversion scheme from M-R into EOS.

- Scheme is tested on 4 stars from X-ray burst data and produced reasonable and consistent band of EOSs.
- Additional theoretical constrains and phase transitions can be easily implemented.
- New measurements of several individual stars is expected to get us closer and closer to pinpointing benchmark EOS.

Acknowledgments

Prof. Madappa Prakash

Prof. Jim Lattimer
Dr. Andrew Steiner
Stony Brook University INT

The end

Thank you! Questions?

Examples of generated "phase transition"

Upper Limit from LIGOII

FIG. 3.—Range of Love numbers for the estimated NS parameters from X-ray observations. *Top to bottom sheets*: EXO 0748-676, ω Cen, M13, and NGC 2808. For an inspiral of two 1.4 M_{\odot} NSs at a distance of 50 Mpc, LIGO II detectors will be able to constrain λ to $\lambda \leq 20.1 \times 10^{36}$ g cm² s² with 90% confidence (Flanagan & Hinderer 2008).

Sergey Postnikov, IA-UNAM

Maximum Mass, Minimum Period Theoretical limits from GR and causality

• $M_{max} = 4.2 (\epsilon_s/\epsilon_f)^{1/2} \mathrm{M}_{\odot}$

Rhoades & Ruffini (1974), Hartle (1978)

• $R_{min} = 2.9GM/c^2 = 4.3(M/M_{\odot}) \text{ km}$

Lindblom (1984), Glendenning (1992), Koranda, Stergioulas & Friedman (1997)

• $\epsilon_{central} < 4.5 \times 10^{15} (M_{\odot}/M_{largest})^2 \text{ g cm}^{-3}$

Lattimer & Prakash (2005)

• $P_{min} \simeq 0.74 (M_{\odot}/M_{sph})^{1/2} (R_{sph}/10 \text{ km})^{3/2} \text{ ms}$

Koranda, Stergioulas & Friedman (1997)

• $P_{min} \simeq 0.96 \pm 0.03 (M_{\odot}/M_{sph})^{1/2} (R_{sph}/10 \text{ km})^{3/2} \text{ ms}$

(empirical) Latti

Lattimer & Prakash (2004)

- $\epsilon_{central} > 0.91 \times 10^{15} (1 \text{ ms}/P_{min})^2 \text{ g cm}^{-3}$ (empirical)
- $cJ/GM^2 \lesssim 0.5$ (empirical, neutron star)

<u> J.M. Lattimer. NIC XI. Heidelberg. 20/07/10 – p. 6/31</u>

Possible Kinds of Observations

- Maximum and Minimum Mass (binary pulsars)
- Minimum Rotational Period*
- Radiation Radii or Redshifts from X-ray Thermal Emission*
- Crustal Cooling Timescale from X-ray Transients*
- X-ray Bursts from Accreting Neutron Stars*
- Seismology from Giant Flares in SGR's*
- Neutron Star Thermal Evolution (URCA or not)*
- Moments of Inertia from Spin-Orbit Coupling*
- Neutrinos from Proto-Neutron Stars (Binding Energies, Neutrino Opacities, Radii)*
- Pulse Shape Modulations*
- Gravitational Radiation from Neutron Star Mergers* (Masses, Radii from tidal Love numbers)
- * Significant dependence on symmetry energy

J.M. Lattimer. NIC XI. Heidelberg. 20/07/10 – p. 14/31

Remarks

χ2 histogram to analyze array of generated EOS