Statistical Study of Type-I X-ray Bursts in LMXB 4U 1636-53 with RXTE

Tomaso M. Belloni, Jeroen Homan

Outline

- 1. Motivation
- 2. Bursts properties in 4U 1636-53
- 3. The burst cooling phase
- 4. Summary

More than 1300 RXTE observations from 1996 until now.

15 years ASM light-curve

Bursts along Color-color Diagram

a monotonic function of mass accretion rate.

Bursts with/without oscillations along Color-color Diagram

Bursts distributions along Sz

Number of bursts as a function of Sz normalized by the total exposure at each position on the CD

Peak flux along Sz

Burst with oscillations

PRE bursts

Bursts duration along Sz

by the peak flux of the bursts.

Summary 1

- All the PRE bursts are located at high S_z
- Multi-peaked bursts only appear at high S_z
- Bursts with oscillation everywhere on CD
- Burst duration correlated with S_z
- Bimodal peak flux distribution.

Cooling phase of Type-I X-ray Bursts in 4U 1636-53

Cooling phase of Type-I X-ray Bursts

kT distribution at different flux level

kT distribution at different flux level

0-1.0×10-8 erg cm-2 s-1

Fitting the flux-temperature relation

Color correction factor

data

Zhang et al. 2011

$$f_{\rm c} = \sqrt{\frac{R_\infty}{d\sqrt{\frac{F}{\sigma T_{\rm bb}^4}}}} = \sqrt{\frac{R(1+z)}{d\sqrt{\frac{F}{\sigma T_{\rm bb}^4}}}},$$

R=9 km, z= 0.35 and d=6.0 kpc

Suleimanov et al. 2010

Color correction factor

data

R=9 km, z= 0.35 and d=6.0 kpc

Summary 2

- Bursts in 4U 1636-53 don't follow Fb~Tbb4
- The average Fb~Tb relation is different in for PRE, hard non-PRE and soft non-PRE bursts.
- The temperature distribution at different flux levels is significantly different for different type bursts.
- Hard non-PRE bursts ignite in a hydrogen-rich atmosphere, soft non-PRE and PRE bursts ignite in a metal-rich atmosphere.
- Metal abundance in the NS atmosphere decrease as the bursts decay.