Discovery of a new transient in Terzan 5

Arash Bahramian

C. O. Heinke, G. R. Sivakoff, D. Altamirano, R. Wijnands, J. Homan, M. Linares, D. Pooley, N. Degenaar, J. C. Gladstone

PNS 14 conference - July 30, 2014

Spectral evolution of NS LMXB outburst cycle

- High-Soft state: Optically thick accretion disk; $L_x > 10^{37}$ erg/s
- Low-Hard state: Comptonized corona; below $L_x \sim 10^{37}$ ergs/s
- Quiescent state: Very soft, from NS surface; $L_x < 10^{34}$ erg/s

Hard (blue) and soft (red) states of Cyg X-1 (Gierlinski et al 1999)

Theory: Continuing accretion in LMXBs

- Hard state: Infalling material Comptonizes
- Lower fluxes: Cooler atmosphere visible

Theory: Cooling of NS LMXB after outburst

Crust cooling: leakage of the heat stored during accretion from NS's crust. Observed in several LMXBs after outbursts

(e.g. Cackett+06, Degenaar+11, etc.)

Decay of NS temperatures postoutburst (Degenaar et al. 2011)

Spectral evolution during outburst decay

 As L_x decays, cooler thermal emission (from NS) appears; from <u>falling matter onto NS</u> or <u>cooling NS crust</u>?

Spectral evolution during rise of outburst

- Test through rise of outburst:
 - If thermal component present:

powered by accretion during rise and decay

 If no significant thermal contribution:
 low-level accretion gives only non-thermal emission cooling crust provides thermal emission in decay

Terzan 5: Best target to catch outbursts

- Two previously known bright X-ray transients
- 50 other X-ray sources (Heinke+06), 33 radio pulsars (Ransom+05)
- We monitored with Swift to look for faint X-ray outbursts

Credit: Hubble Space Telescope (NASA/ESA)

Terzan 5 X-ray image

Credit: Bahramian et al., Chandra X-Ray Observatory (NASA)

Swift/XRT monitoring

- Monitored Terzan 5 weekly with Swift/XRT in 2012
- Terzan 5 X-3 brightened in July 2012:
 - \circ Identified rising L_x at ~5e34 erg/s
 - Complete monitoring of the outburst

Some of Swift/XRT observations of Terzan 5 X-3

Determining location and identification

- Terzan 5 X-3's position consistent with a previously identified quiescent NS LMXB.
- Detected X-ray burst, confirming NS nature.

Chandra/ACIS images of Terzan 5

Outburst spectral analysis

(Bahramian et al. 2014)

- First evidence of hardening of the spectrum from 5e34 up to 1e36 erg/s.
- Possible only by intensive Swift monitoring.

Spectral evolution of the source; Chandra in quiescence (black), Swift/XRT in outburst (coloured).

Spectral evolution: Rise

- Thermal component required in fits
- Non-thermal component dominates at the end of rise
- Blackbody gives R=4.3+-1.3 km; from (part of) NS surface

Luminosity of the two components during rise (blue squares shifted to right for clarity)

Evolution during outburst rise

- Detected thermal component, & its relative weakening during rise for the first time
- Evidence for contribution from accretion (instead of crust cooling) during rise and fall

Conclusions

- Discovered third transient LMXB in Terzan 5; monitored during outburst.
- Quiescent counterpart looks like NS, X-ray burst confirms NS nature.
- Observed spectral hardening during a NS LMXB outburst rise for first time.
- This proves thermal component at Lx~1e35 from accretion, not crustal cooling.
- Hardening due to relative weakening of thermal component; Agrees with spectral modeling of NSs accreting at low rates.

Supplementary

High accretion rate

Low accretion rate

(Deufel et al. 2001)

Spectral evolution: Rise

• Due to the relative reduction in strength of a thermal component.

-							
			$F_{X,BB}$ (0.5-10 keV)	$F_{X,PL}$ (0.5-10 keV)		$L_{X,total}(0.5-10 \text{ keV})$	
Obs. ID	MJD	kT (keV)	$(10^{-12} \text{ erg s}^{-1} \text{ cm}^{-2})$	$(10^{-12} \text{ erg s}^{-1} \text{ cm}^{-2})$	$F_{X,PL}/F_{X,total}$	$(10^{34} \text{ erg s}^{-1})$	$\chi^2_{ m u}/{ m D.O.F}$
91445006	56114.8	$0.31 {\pm} 0.03$	5 ± 2	5 ± 2	$50\pm20\%$	4 ± 1	0.53/6
32148003	56115.8	$0.36{\pm}0.03$	9 ± 3	13 ± 4	$59^{+15}_{-16}\%$	9 ± 2	0.68/5
32148004	56117	$0.41{\pm}0.02$	15^{+4}_{-3}	17 ± 6	$53^{+12}_{-16}\%$	13 ± 3	1.19/9
32148005	56118.1	$0.44^{+0.05}_{-0.07}$	$20{\pm}10$	$70{\pm}20$	$78^{+12}_{-15}\%$	37 ± 9	0.55/6
32148006	56120.7	$0.67 {\pm} 0.06$	$110{\pm}40$	500^{+60}_{-70}	$82_{-8}^{+7}\%$	250 ± 30	1.39/19

Thermonuclear burst

- Absorbed blackbody used for spectral analysis
- Burst timescale ~ 29 s (following Galloway et al. 2008)
- No photospheric radius expansion detected
- Long (>10 s) timescale suggests hydrogen burning
- Orbital period > 1.5 hours

Thermonuclear burst from Terzan 5 X-3

(Bahramian et al. 2014)

Thermonuclear burst: Spectral analysis

Rapid cooling can be seen during the burst.