Abstract

We formulate the equations of state of static neutron stars taking into account strong, weak, electromagnetic, and gravitational interactions within the framework of general relativity. We develop the model fulfilling global and not local charge neutrality. The equilibrium conditions are given by our recently developed theoretical framework based on the Einstein-Maxwell-Thomas-Fermi equations along with the constancy of the general relativistic Fermi energies of particles, the “Klein potentials”, throughout the configuration. From the microphysical point of view, the weak interactions are accounted for by requesting the stability of the system, and the strong interactions by using the μ-c-γ nuclear model, where μ, c, and γ are the mediator massive vector mesons. The equations are solved numerically in the case of zero temperatures and for selected parameterizations of the nuclear models. The solutions lead to a new structure of the star: a positively charged core at supranuclear densities surrounded by an electron distribution of thickness $\sim \rho_s^2/(\rho_c \rho_u) \sim 10^{20} \rho_s^2/(\rho_c \rho_u)$ of opposite charge, as well as a neutral crust at lower densities. Inside the core there is a Coulomb potential well of depth $\sim \rho_c^2$. The constancy of the Klein potentials in the transition from the core to the crust, impose the presence of an overcritical electric field $E_{\text{cr}} = \rho_s^2/(\rho_c \rho_u) E_c^2/(\rho_c \rho_u)$. The electron chemical potential and the density decrease, in the boundary interface, until values $\mu_e^c = \mu_e^u$ and $\rho_e^c = \rho_e^u$. For each central density, an entire family of core-crust interface boundaries and, correspondingly, an entire family of crusts with different mass and thickness, exist. The configuration with $\rho_{\text{crust}} = \rho_{\text{core}} \sim 4 \times 10^{14} \text{g/cm}^3$ separates neutron stars with and without inner crust. The equilibrium configurations of slowly rotating neutron stars are obtained by using the Hartle formalism in the case of the EMFT equations indicated above. We integrate these equations of equilibrium for different central densities ρ_c and circular angular velocities Ω and compute the map M, polar R_p and equatorial R_e radii, angular momentum J, eccentricity e, moment of inertia I, as well as quadrupole moment Q of the configurations. Both the Keplerian mass-shedding limit and the axisymmetric secular instability are used to construct the new mass-radius relation. We compute the maximum and minimum masses and rotation frequencies of neutron stars. We compare and contrast our global neutron solutions with the locally neutral obtained from the traditional Tolman-Oppenheimer-Volkoff treatment.

Thermodynamical Equilibrium, Charge Neutrality and Boundary Conditions

For a Fermionic self-gravitating system in GR, the thermodynamical equilibrium is ensured by the constancy both of the temperature (here $T = 0$) and the chemical potential (Klein Potential)

- gravitational field $\mu_e \sim -\mu_e^c \sim \mu_e^u \sim -\text{const}^2$
- gravitational field + strong interactions $\sim \mu_e \sim \mu_e^c \sim \mu_e^u \sim -\text{const}^2$

It has been shown that

- a self-gravitating system of degenerate neutrons, protons and electrons in μ-c-γ equilibrium fulfills Global Charge Neutrality and NOT Local Charge Neutrality, the latter violating the thermodynamical equilibrium conditions
- the mass-difference between electrons and protons induces the presence of an electric field E_{cr} in the core is charged
- to solve such a system, the Tolman-Oppenheimer-Volkoff (TOV) equations must be replaced by the general relativistic Thomas-Fermi equations, coupled with the Einstein-Maxwell ones (EMFT equations)

To join the thermodynamical equilibrium we have to replace the TOV-like solution with a new configuration, where core and crust are separated by a transition layer, allowing the constancy of the Klein Potentials:

EMTF System of Equations

\[
\begin{align*}
\frac{e^{\varphi}}{1} & = \frac{1}{1 - \frac{8 \pi G T}{c^4}} \quad \text{TOV-like eqs.} \\
\frac{e^{\varphi}}{(1 - \frac{2 M}{r})} & = \frac{1}{1 - \frac{8 \pi G T}{c^4}}
\end{align*}
\]

- Electric field
- Strong Ints

Klein Potentials

NS Global Structure

Figure: Total mass-radius relation for four nuclear models. In the crust we have used the Baym-Pethick-Sutherland (BPS) equation of state.

Transitional Layer

Figure: Left: upper panel: electric field in the transition layer in units of the critical field for vacuum polarization $E_{\text{cr}} = \rho_{\text{crust}}^2/(\rho_{\text{core}} \rho_u)$. lower panel: particle density profiles in the boundary interface in units of 10^9. We use the NL3 equation of state for the nuclear interactions, $\lambda_{\mu}(\rho_n,\rho_p)$. 4.4 fm denotes the sigma-maxon Compton wavelength. The density at the edge of the crust in this example is $\rho_{\text{crust}} = \rho_{\text{core}} = 0$. Right: the same for Ω.

- Left region: mean-field-like region -- all the fields vary slowly with length scale $\sim \lambda_{\mu}$ (damped due to Coulomb repulsion)
- Central region: strongly interacting region $\sim \lambda_{\mu}$ (ρ_n and ρ_p decreasing due to surface tension plus skin effect).
- Right region: Thomas-Fermi-like region $\sim \lambda_{\mu}$ (full screening of the core due to the electronic density).

Hartle5 Slow Rotation Approximation and Thermodynamical Equilibrium

- Solution obtained through a perturbative method, expanding the metric functions up to the second order in the angular velocity Ω.
- The structure of compact objects can be approximately described by M, J, and Q.
- Slow rotation regime $\omega \to 0$ owing to rotation $< \omega$ the known non-rotating geodesic.
- Interior solution derived by solving numerically a system of ordinary differential equations for the perturbation functions.
- The exterior solution for the vacuum surrounding the star, can be written analytically in terms of M, J, and Q.

As in the static case, the Klein Potentials have the form

\[
\left(\frac{1}{M} \left(\frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r} - \frac{J^2}{M^2} \frac{1}{r^2} \right) \right) \text{Klein Potentials}
\]

Figure: Left: Global Charge Neutrality. Right: Local Charge Neutrality.

Max and Min Mass and Rotation Frequency

- $Q \sim T / W_1\Omega$,