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Abstract

We analyze hydrodynamic equations governing oscillations of superfluid neutron stars with hyperon cores (hyperon stars). With this aim we extend the approximate method presented
in [1] in application to npe–matter and split the oscillation equations into two weakly coupled systems of equations, describing normal and superfluid modes. The proposed scheme
allows us to significantly simplify calculations of these modes. An efficiency of this scheme is illustrated by calculation of sound waves in hyperon stars at arbitrary temperature.

1. Introduction

Theory of neutron-star (NS) oscillations is complicated by the fact that at a tem-

perature T < 108−1010K baryons in the internal layers of NSs become superfluid.

Thus, to model oscillations one has to employ superfluid hydrodynamics which is

much more complex than the ordinary one, describing “normal” (nonsuperfluid)

matter.

Lindblom and Mendell in 1994 [2] numerically found two distinct classes of pulsa-

tion modes for a simple model of a superfluid Newtonian star: (i) normal modes

which practically coincide with the corresponding modes of a normal star; and (ii)

superfluid modes in which the matter pulsates in such a way that the mass cur-

rent density approximately vanishes. General explanation of this result has been

proposed by Gusakov and Kantor in 2011 [1]. These authors also presented an

approximate scheme which allows one to decouple equations describing normal

and superfluid modes and greatly simplifies calculations of pulsating superfluid

NSs (consisting of npe–matter).

We extend this approximate method tomassive neutron stars, whose cores are

composed of neutrons (n), protons (p), electrons (e), muons (µ), as well as Λ–,
Ξ−–, Ξ0– and Σ−–hyperons. We illustrate this scheme by calculating sound

waves and r–modes in hyperon stars for various equations of state [3] in wide

range of temperatures T and baryon number densities nb.

2. Relativistic superfluid hydrodynamics

2.1 Definitions

i, k = n, p,Λ,Ξ−,Ξ0,Σ− indices for baryons

l = e, µ indices for leptons

qi, ql charge of given particle

α, β, γ = 0, 1, 2, 3 spacetime indicies

uα 4-velocity of normal fluid

vαsfl(i) 4-velocity of superfluid particles i

wα
(i) = µi(v

α
sfl(i) − uα) superfluid 4-velocity

µi, µl relativistic chemical potential

Yik Symmetric relativistic entrainment matrix

jα(i) = niu
α + Yikw

α
(k) 4-current of baryons i

jα(e) = neu
α, jα(µ) = nµu

α 4-currents of electrons and muons

ni, nl number density of particles i, l
nb =

∑
i ni baryon number density

jα(b) =
∑
i

jα(i) = nbU
α
b = nb(u

α + W α) baryon 4-current

si strangeness of particle i
ns = −∑i sini = nΛ + 2nΞ− + 2nΞ0 + nΣ− (minus) strangeness concentration

jα(s) = −∑
i

sij
α
(i) = nsU

α
s “strange” 4-current

T αβ energy-momentum tensor

X;α covariant derivative of quantity X

2.2 Main processes of particle transformations

Strong processes in nucleon-hyperon matter:

Λ + Λ↔ p + Ξ−, Λ + Λ↔ n + Ξ0, n + Λ↔ p + Σ−. (1)

We assume that the perturbed matter is always in chemical equilibrium with re-

spect to these reactions:

2µΛ = µp + µΞ−, µn + µΛ = µp + µΣ−, 2µΛ = µn + µΞ0. (2)

2.3 Hydrodynamic equations

Hereafter we consider small perturbations in non-rotating spherically symmetric

neutron star. We give a brief overview of superfluid relativistic hydrodynamics

(see, e.g., [4] for details).

Density currents for baryons and leptons are expressed in terms of the “normal”

four-velocity uα and additional four-vectors wα
(i) = µi(v

α
sfl(i)− uα), responsible for

superfluid degrees of freedom.

jα(i) = niu
α + Yikw

α
(k), jα(l) = nlu

α, uαj
α
(i) = ni. (3)

Note that in equilibrium uα = (u0, 0, 0, 0), wα
(i) = 0. The system of hydrodynamic

equations is formulated below.

The baryon current and continuity equation for baryons are:

jα(b) =
∑
i

jα(i) = nbu
α +

∑
i

Yikw
α
(k) = nb (uα + W α) , jα(b);α = 0. (4)

We also assume that weak processes of particle transformations are slow on

typical hydrodynamic timescale. This assumption leads to the following continuity

equations for electrons, muons and strangeness:

jα(e);α = jα(µ);α = jα(s);α = 0. (5)

Energy-momentum conservation law takes the form:

T αβ ;β = 0, with Tαβ = (P + ε)uαuβ + Pgαβ + Yik

[
wα

(i)w
β
(k) + µiw

α
(k)u

β + µkwβ
(i)u

α
]
.

(6)

In case of small perturbations T αβ can be simplified:

T αβ = (P + ε)uαuβ + Pgαβ + µnnb
(
W αuβ + W βuα

)
+ (quadratically small terms).

(7)

Einstein equations read:

Rαβ − 1

2
gαβR = 8πT αβ. (8)

Thermodynamic relations in the low temperature limit:

P + ε = µini + µlnl = µnnb − δµΛns − δµene − δµµnµ, (9)

dP = nbdµn − nedδµe − nµdδµµ − nsdδµΛ, (10)

δµe ≡ µn − µp − µe, δµµ ≡ µn − µp − µµ, δµΛ ≡ µn − µΛ. (11)

In equilibrium δµe = δµµ = δµΛ = 0

Quasineutrality condition, qij
α
(i) + qlj

α
(l) = 0, implies 2 equations:

qini + qlnl = qp(np − ne − nµ − nΞ− − nΣ−) = 0, (12)

qiYikw
α
(k) = qp(Ypk − YΞ−k − YΣ−k)w

α
(k) = 0. (13)

Potentiality of superfluid motion (Aα is four-potential of electromagnetic field):(
w(i)α + µiuα + qiAα

)
;β −

(
w(i)β + µiuβ + qiAβ

)
;α = 0. (14)

In superfluid npeµΛΞ−Ξ0Σ−–matter there are 6 superfluid four–velocities:

(wα
(n), w

α
(p), w

α
(Λ), w

α
(Ξ−), w

α
(Ξ0)

, wα
(Σ−)) which are subject to 4 constraints (quasineu-

trality condition (13) and equilibrium conditions for fast reactions (1)).

Using these constraints one can write the expression for baryon current in terms

of just 2 additional variables, e.g wα
(n) and w

α
(Λ):

jα(b) = nbu
α +

∑
i

Yikw
α
(k) = nbu

α + Ỹnw
α
(n) + ỸΛw

α
(Λ). (15)

Here Ỹn and ỸΛ can be expressed through the entrainment matrix Yik.

3. Decoupling of superfluid and normal equations

3.1 Superfluid equations

We follow derivation of ref. [1] applied to npe–matter.
Using the energy-momentum conservation law (6) and the potentiality equation

for neutrons (14) we compose a vanishing combination

Tα
β

;β + uαuγT
γβ

;β − nbuβ
[(
w(n)α + µnuα

)
;β −

(
w(n)β + µnuβ

)
;α

]
=

= (P + ε− µnnb)uβuα;β + (P ;β − nbµn;β)uαu
β + (P ;α − nbµn;α) +

+(gαγ+uαuγ)u
β(µnnbW

γ);β+µnnb
(
uβ ;βWα + uα;βW

β
)
−nbuβ

[
w(n)α;β − w(n)β ;α

]
= 0.
(16)

Employing thermodynamic relations (9) and (10) it is easily verified that each term

in equation (16) depends on one of the small (and vanishing in equilibrium) quan-

tities δµe, δµµ, δµΛ, w
α
(n), w

α
(Λ). Thus, in linear approximation, one can replace all

other quantities in this equation with their equilibrium values.

Now let us consider nonrotating star with the Schwarzschild metric, ds2 =
−eνdt2 + eλdr2 + r2(dθ2 + sin2 θdφ2) , and assume that all perturbations depend on
time as eiωt. In this case spatial components (α = 1, 2, 3) of superfluid equation

take a simple form:

iωnb(µnWα − w(n)α) = ne
∂

∂xα

(
δµee

ν/2
)

+ nµ
∂

∂xα

(
δµµe

ν/2
)

+ ns
∂

∂xα

(
δµΛe

ν/2
)
.

(17)

The second superfluid equation can be derived by subtracting the potentiality

equation (14) for neutrons from the potentiality equation for Λ–hyperons,

iω
(
w(Λ)α − w(n)α

)
=

∂

∂xα

(
δµΛe

ν/2
)
, α = 1, 2, 3. (18)

Note that disbalances of chemical potentials play the role of “driving force” for

superfluid oscillations.

3.2 Normal equation and coupling parameters

In the linear approximation a perturbation δ of energy-momentum tensor (7) T αβ

can be written as

δT αβ = (δP + δε)Uα
b U

β
b + (P + ε)

(
Uα
b δU

β
b + Uβ

b δU
α
b

)
+ δPgαβ + Pδgαβ. (19)

Here Uα
b , P , ε, g

αβ are taken in equilibrium (note that in equilibrium Uα
b = uα).

We describe perturbations in superfluid npeµΛΞ−Ξ0Σ−–matter by choosing δgαβ,
δUα

b , w
α
(n), w

α
(Λ) as independent variables.

All thermodynamic quantities in degenerate matter are functions of (nb, ne, nµ, ns),
hence their perturbations can be expressed in terms of (δnb, δne, δnµ, δns) or, us-
ing continuity equations, in terms of (δUα

b , δg
αβ, wα

(n), w
α
(Λ)).

Now let us express δε and δP through nb, ne, nµ, ns:

δε = µnδnb, δP = nb
∂P (nb, ne, nµ, ns)

∂nb

(
δnb
nb

+ se
δne
ne

+ sµ
δnµ
nµ

+ sstr
δns
ns

)
, (20)

se =
∂ lnP/∂ lnne
∂ lnP/∂ lnnb

, sµ =
∂ lnP/∂ lnnµ
∂ lnP/∂ lnnb

, sstr =
∂ lnP/∂ lnns
∂ lnP/∂ lnnb

, (21)

where we introduced the electron, muon and strange coupling parameters

se, sµ, sstr, respectively.
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Figure 1: Coupling parameters se, sµ, sstr vs baryon number density nb for
EOS GM1A, GM1’B, TM1C [3]. Vertical lines: thresholds of appearance for

muons and Λ–, Ξ−–, Ξ0–hyperons.

Note that δnb depends only on (δUα
b , δg

αβ). Thus, if we set se = sµ = sstr = 0,
then δT αβ = δT αβ(δnb) = δT αβ(δUα

b , δg
αβ) does not depend on superfluid veloci-

ties and has exactly the same form as in the absence of superfluidity. This means

that perturbed Einstein equations (8), δ
(
Rαβ − 1

2g
αβR

)
= 8πδT αβ, coincide with

the corresponding equations for normal matter.

As a result, a solution to hydrodynamic equations in the approximation of van-

ishing coupling parameters has the following properties:

• Equations governing relativistic oscillations are split into two completely de-

coupled systems.

• The first system describes normal modes which depend on the variables

δUα
b , δg

αβ. Frequencies of normal modes can be calculated within nonsuperfluid

hydrodynamics.

• The second system describes superfluid modes which depend only on super-

fluid variables wα
(n), w

α
(n). Frequencies of superfluid modes can be calculated

by using only two “superfluid” equations (17), (18) instead of full system con-

taining Einstein equations.

• For decoupled superfluid modes perturbations of baryon velocity δUα
b , baryon

number density δnb, metric δg
αβ and pressure δP vanish.

4. Sound waves

Let us consider small harmonic perturbations (∼ ei(ωt−kx)) in homogeneous super-

fluid matter in Minkowski spacetime: gαβ = diag(−1, 1, 1, 1). Equations describing
sound waves follow from the general equations described above,

ω(P + ε)δUb = kδP, (22)

ω(µnỸnw(n) + µnỸΛw(Λ) − nbw(n)) = −k (neδµe + nµδµµ + nsδµΛ) , (23)

ω
(
w(Λ) − w(n)

)
= −kδµΛ. (24)

After expressing δP, δµe, δµµ, δµΛ in terms of δUb, w(n), w(Λ) one can see that this

system reduces to the cubic equation on squared speed of sound c2
S = ω2/k2.

We calculate sound waves for EOS GM1A, GM1’B, TM1C [3]. We adopt the

following values for baryon critical temperatures:

Tcn = 5× 108 K, Tcp = TcΞ− = TcΞ0 = 5× 109 K
As for Λ–hyperons, we consider 2 different cases: (i) Λ–hyperons are superfluid,
TcΛ = 109K; (ii) Λ–hyperons are normal at T > 107K.
At low temperatures, in the first case, the additional degree of freedom and,

as a consequence, second superfluid mode (SFL-II) arises after the appearance

of Λ–hyperons (see fig. 2). If Λ–hyperons are normal, second superfluid mode

arises after the appearance of Ξ−–hyperons (see fig. 5).
Note that, at high densities, a difference between the exact and decoupled solu-

tions is determined mainly by the strange coupling parameter sstr (see fig. 1).
The temperature dependence of sound modes is determined by temperature de-

pendence of entrainment matrix Yik.

4.1 Results for the case of superfluid Λ–hyperons, TcΛ = 109K
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Figure 2: Speed of sound cS (in units of c) vs baryon number density nb for
EOS GM1A, GM1’B, TM1C [3] at log10 T = 7.5. Solid lines: exact solution.

Dotted lines: decoupled solution. Vertical lines: thresholds of appearance for

muons and Λ–, Ξ−–, Ξ0–hyperons.
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Figure 3: Speed of sound cS (in units of c) vs temperature log10 T, K for EOS

GM1A, GM1’B, TM1C [3] at nb = 0.5 fm−3. Solid lines: exact solution. Dotted

lines: decoupled solution. Vertical lines: critical temperatures for baryons.
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Figure 4: Speed of sound cS (in units of c) vs temperature log10 T, K for EOS

GM1A, GM1’B, TM1C [3] at nb = 1.1 fm−3. Solid lines: exact solution. Dotted

lines: decoupled solution. Vertical lines: critical temperatures for baryons.

4.2 Results for the case of non-superfluid Λ–hyperons
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Figure 5: Speed of sound cS (in units of c) vs baryon number density nb for
EOS GM1A, GM1’B, TM1C [3] at log10 T = 7.5. Solid lines: exact solution.

Dotted lines: decoupled solution. Vertical lines: thresholds of appearance for

muons and Λ–, Ξ−–, Ξ0–hyperons.
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Figure 6: Speed of sound cS (in units of c) vs temperature log10 T, K for EOS

GM1A, GM1’B, TM1C [3] at nb = 0.5 fm−3. Solid lines: exact solution. Dotted

lines: decoupled solution. Vertical lines: critical temperatures for baryons.
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Figure 7: Speed of sound cS (in units of c) vs temperature log10 T, K for EOS

GM1A, GM1’B, TM1C [3] at nb = 1.1 fm−3. Solid lines: exact solution. Dotted

lines: decoupled solution. Vertical lines: critical temperatures for baryons.

5. Conclusion

• Equations governing relativistic oscillations of hyperon stars can be split into

two systems of weakly coupled equations with the coupling parameters se, sµ,
and sstr given by eq. (21). These two systems describe normal and superfluid
oscillation modes.

• Neglecting this small coupling (se = sµ = sstr = 0), the normal modes coincide
with the ordinary modes of nonsuperfluid star.

• In this approximation superfluid modes can be calculated by using only two

“superfluid” equations (17) and (18) instead of the full system of hydrodynamic

equations. These modes do not perturb metric, pressure, baryon current

density and are localized in superfluid region of a star.

• An efficiency of this decoupling scheme is illustrated by calculation of the

sound waves in superfluid hyperon matter at arbitrary temperature, which

gives qualitatively correct results.

•We also calculated the frequencies of r–modes in hyperon stars in both cou-

pled and fully decoupled cases. We found that 2 classes of r-modes exist:

superfluid and normal r–modes. We showed that their frequencies are both

equal to ωr = 2mΩ
l(l+1) up to the terms ∼ (Ω/ΩK)3 , where Ω is the rotation stellar

frequency, ΩK is the Kepler frequency, and m and l are the spherical harmonic
indices.

References

[1] M. E. Gusakov and E. M. Kantor. Decoupling of superfluid and normal modes in pulsating neutron stars. Phys. Rev. D, 83(8):081304,
apr 2011.

[2] L. Lindblom and G. Mendell. The oscillations of superfluid neutron stars. ApJ, 421:689–704, February 1994.

[3] M. E. Gusakov, P. Haensel, and E. M. Kantor. Physics input for modelling superfluid neutron stars with hyperon cores. MNRAS,
439:318–333, March 2014.

[4] M. E. Gusakov and N. Andersson. Temperature-dependent pulsations of superfluid neutron stars. MNRAS, 372:1776–1790, nov 2006.This work was partially supported by RFBR (grants 14-02-00868-a and 14-02-31616-mol-a), by RF president programme (grants MK-506.2014.2 and NSh-294.2014.2) and by Dynasty Foundation.


