

Glitches & Timing Noise

Cristóbal Espinoza Instituto de Astrofísica, PUC, Chile.

Andrew Lyne, Ben Stappers, Patrick Weltevrede Jodrell Bank Centre for Astrophysics, UK. Danai Antonopoulou, Anna Watts Astronomical Institute Anton Pannekoek, Amsterdam.

PNS-14, St. Petersburg | 1 Aug. 2014

NS as a solid, compact and very dense rotating body

Ideal Pulsar rotation

Secular spindown

Steady moment of inertia

Remarkable long-term stability

$$\phi(t) = \phi_0 + \nu_0(t - t_0) + \dot{\nu}_0 \frac{(t - t_0)^2}{2} + \cdots$$

Ideal model works: <u>Pulsar timing</u>

(motions and propagation effects corrected for)

Jodrell Bank data

Many pulsars exhibit smooth trends deviating from the simple slow down

Proposition to

improve the model:

- Add variable plasma content in magnetosphere
- Add (partially decoupled) neutron superfluid inside
- Get timing noise and glitches
- Get observed irregular deviations from simple slowdown

Outline

- Glitches | general
- Small glitches | confusion
- Timing noise
- Co-existence
- Summary / Questions

Glitches

Occasional spin-up events

Observed sizes cover ~5 decades $10^{-3} \leq \Delta \nu \leq 100 \,\mu {\rm Hz}$

In general, radiatively quiet. Associated to the interior of NSs.

Present in most pulsar populations

Glitches

Commonly followed by a <u>negative</u> change in spin-down rate.

> Post glitch relaxations: rich phenomenology

What can produce a glitch?

- Quakes: discrete crust rearrangements driven by cooling or spindown (re-shaping) (Baym et al. 1969)
- Magnetic field stresses on the crust: vortices dragging magnetic fluxtubes in their outward migration.

Cannot reproduce, alone, high activity of Vela (-like) pulsar(s).

Assumptions:

- core magnetic field?
- vortex/flux-tube
 interaction?

(Ruderman et al. 1998)

CORE

What can produce a glitch?

Vortex pinning:

rapid angular momentum transfer from internal superfluid to outer crust. Result of halted vortex migration.

(Anderson & Itoh 1975

<u>Triggers:</u>

- Critical lag: magnus force > pinning force
 Instabilities
- Predicts narrow size distribution, regularity.
- Avalanches
- Thermal unpinning by heating event.

Predict power law size distributions, poissonian waiting times.

- > Alpar et al. 1984; many many others)
- > Glampedakis & Andersson (2009)
- > Melatos et al. (2008, 2009)
- > Link & Epstein (1996)
 - Not complete !!

Timing noise

- Intrinsic to pulsar rotation.
- Common to all pulsars.
- Quasi-periodic (if enough data).
- Alternating between 2(+) spindown rates can emulate residuals

Hobbs, Lyne & Kramer (2010)

Timing residuals

ン

Rate

Slowdown

Simulation of data with spindown switching

In general the largest spindown rate happens during pulse profile with enhanced emission *

Natural connection to nulling phenomenon, intermittent pulsars and maybe even RRATS.

Extreme emission change

Intermittent pulsars: 2 emission states and two spindown rates. Magnetospheric variability seems common feature. There are different time-scales and behaviours already observed at different wavelengths.

Models (some):

Li et al. (2014) : conductivity variations

magnetosphere

Timokhin: close field lines region / current densities.

Ian Jones (2011): modulated by precession.

To understand we need more cases, more data.

W. Hermsen's talk: PSR 0943+10 rapid mode switching in radio / X-rays (Hermsen et al. 2013)

like the two following cases....

Fermi Gamma-ray pulsar: 20% flux decrease (>100 MeV) associated with a 4% increase in spindown rate (in I week).

Allafort et al. (2013)

Timing noise (spindown changes) related to magnetospheric variability

Correlation between pulse shape variations and spindown switches only after glitch

(d)

3100 MHz

10

15

Crab pulsar:

Measured <u>all</u> small irregularities like if they were glitches (or "anti-glitches") It could be that this is not the right description (DM variations; pure spindown rate changes)
Maybe there is a second regime of superfluid effects (+, -). E.g.: Kantor & Guzakov; Melatos & Link (superfluid turbulence, 2014)
Magnetospheric timing noise

Summary/Questions

- glitches and timing noise are the major deviations from simple slowdown model.
- they correspond to external and internal dynamical processes capable of affect the rotation.
- What modulates magnetospheric states?
- Is the magnetospheric timing noise all the same?
- Is all timing noise produced in the magnetosphere? Is there a component produced by the superfluid? -- Second glitch regime
- Glitch triggers could be multiple. E.g.: quakes + critical lag

cespinoz@astro.puc.cl

However, spindown switches can be slow

