Simultaneous XMM-Newton Radio Observations of the Mode-switching Radio Pulsar PSR B1822-09

Wim Hermsen^{1,2}

Collaborators:

J.W.T. Hessels^{3,2}, L. Kuiper¹, J. van Leeuwen^{3,2}, D. Mitra⁴, J.M. Rankin^{2,5}, B. Stappers⁶, G.A.E. Wright⁷ & R. Basu⁴

¹ SRON Netherlands Institute for Space Research

² Astronomical Institute "Anton Pannekoek", University of Amsterdam

³ ASTRON Netherlands Institute for Radio Astronomy

⁴ National Centre for Radio Astrophysics, Ganeshhkind, Pune, India

⁵ Physics Department, University of Vermont, Burlington, USA

⁶ Jodrell Bank Center for Astrophysics, Manchester, UK

⁷ Astronomy Centre, University of Sussex, Falmer, Brighton, UK

University of Amsterdam

Netherlands Institute for Space Research

Outline

- Introduction: XMM-Newton revealed synchronous X-ray and radio-mode changing in pulsar PSR B0943+10.
 (Hermsen et al. 2013, Science 339, 436)
- Simultaneous radio and X-ray observations of PSR B1822-09: results
- Conclusions / Dilemma's

PSR B0943+10; 6x6 hrs of simultaneous XMM-Newton X-ray and GMRT/LOFAR radio observations

Characteristics of PSR B0943+10

- P = 1.10 s
- $\dot{P} = 3.5 \times 10^{-15}$
- E = 1.0 x 10³² ergs s⁻¹
- $B_p = 2 \times 10^{12} \text{ G}$
- $T = 5.0 \times 10^6 \text{ yr}$
- Nearly aligned rotator

- LOFAR 140 MHz
- mode switching between radio B(right) and Q(uiet) modes

XMM-Newton PN, Maximum-Likelihood Maps, 0.2-10 keV

windows t_{eff} 39.7 ks 9.9 σ detection 174 ± 36 cnts (0.44 ± 0.07)

10⁻² cnts/s

B-mode

Q-mode windows t_{eff} 43.5 ks 20 σ detection 470 \pm 33 cnts (1.08 \pm 0.08) 10⁻² cnts/s

Discovery of correlated Radio – X-ray mode changes Anti correlation !

Discovery of X-ray pulsation only in radio Q mode intervals !

XMM-Newton EPIC PN + MOS-1 + MOS-2

Difference between X-ray emissions in radio B and Q mode is addition of a pulsed X-ray component in Q mode !

X-ray pulse aligned with radio main pulse with precursor

Pulsed fractions

. Pulsed fractions of PSR B093+10 as a function of energy, defined as the ratio of the flux in the pulse profile over the total flux of the point source measured in the sky maps. Errors are 1 σ .

Energy interval	Pulsed
keV	fraction
0.2 - 0.5	0.10 ± 0.15
0.5 - 0.8	0.44 ± 0.16
0.8 - 1.3	0.62 ± 0.14
1.3 - 2.0	0.60 ± 0.17
2.0 - 10	0.72 ± 0.53

Pulsed emission X-ray spectrum of PSR B0943+10: radio **Q-mode**

•
$$N_{H} = 4.3 \times 10^{20} \text{ cm}^{-2}$$
 (fixed)

- BB: kT = 0.319 ± 0.012 keV
- F_{BB} (0.5-8 keV)= (7.8 ± 1.6) 10⁻¹⁵ erg cm⁻² s⁻¹ (unabsorbed)

PL fit;
$$\chi^2/v = 9.50/3$$
, ~2.3%

Conclusions on X-ray spectral characteristics

- Radio B mode: unpulsed, non-thermal emission (index and normalization within 1 σ the same as for power-law component in Q mode)
- Radio Q mode: same unpulsed non-thermal emission plus
 pulsed thermal emission

Many unanswered questions, dilemma's:

• The polar cap region is viewed continuously: how to produce a 100%-pulsed thermal component in the Q mode?

 How to switch off a thermal X-ray component in the B mode while the radio emission becomes bright and ordered.

etc., etc,

Improved geometrical model

New X-ray and radio campaign on PSR B1822-09

Cł	naracteristics: PSR B0943+10	PSR B1822-09
•	P = 1.10 s	0.77 s
•	$\dot{P} = 3.5 \times 10^{-15}$	5.2 x 10 ⁻¹⁴
•	$\dot{E} = 1.0 \times 10^{32} \text{ erg s}^{-1}$	4.5 x 10 ³³ erg s ^{-:}

- $B_p = 2.0 \times 10^{12} \text{ G}$ 6.4 × 10¹² G
- $T = 5.0 \times 10^6 \text{ yr}$ $2.3 \times 10^5 \text{ yr}$
- nearly aligned rotator

nearly orthogonal rotator

(but, Malov & Nikitina 2011, 2013: aligned rotator)

• Both pulsars mode switching between radio B(right) and Q(uiet) mode

PSR B1822-09 @ 624 MHz (GMRT)

Mode switching

- 1: Precursor
- 2: Main pulse
- 3: Interpulse

Typical mode durations less than 5 minutes

SRON

XMM-Newton observation times (ks) in September, October 2013, and March 2014

Date /CCDs	10/09 2013	18/09 2013	22/09 2013	28/9 2013	30/09 2013	06/10 2013	10/03 2014	12/03 2014	Mode
PN	23.1	21.1	24.8	21.1	27.9	21.1	21.1	34.1	Large Window
MOS-1	24.8	22.8	26.5	22.8	29.6	22.8	22.8	35.8	Small Window
MOS-2	24.8	22.8	26.5	22.8	29.6	22.8	22.8	35.8	Small Window

Simultaneous radio observations with the WSRT, Lovell and GMRT

 Total XMM-Newton
 PN
 194.3 ks

 MOS-1
 209.3 ks

 MOS-2
 209.3 ks

X-ray spatial analysis of skymaps

- Maximum Likelihood Analysis
- Two sources are detected separated by 5.3"±0.5"
- A soft-spectrum source at the position of PSR J1822-09, dominating below 1.4 keV
- A hard-spectrum source dominating above 1.4 keV

Example Maximum Likelihood maps PN detector, Runs 1-3

X-ray timing analysis (Runs 1-8, PN+MOS1+2)

Detection of X-ray pulsation in energy band 0.4-1.4 keV

Phase folding with ephemeris from Jodrell Bank

- Broad sinusoidal X-ray pulse shifted by ~0.07 in phase with respect to radio main pulse (0.0)
- No indication for X-ray pulse from radio interpulse
- Pulsed fraction ~35%

9.8 o detection significance

X-ray timing analysis

Profiles in differential energy bands: pulse detections only between 0.4 and 1.4 keV $(z_1^2 \text{ statistic})$

Dashed profiles are fits with profile shape for integral energy band 0.4-1.4 keV at fixed phase.

X-ray mode switching ?

PSR B1822-09, 5.55 hrs observing with the WSRT

S/N of detection in bins of 10 s

RON

Q-mode 85.5 ks and B-mode 50.4 ks

- Skymap analysis with Maximum Likelihood Method of count maps separately for PN and MOS1+2 detectors and ΔE:
 - 0.15-0.4 keV & 0.4-1.4 keV fitting 1 source (PSR B1822-09)
 1.4-10 keV fitting 2 sources

Q-mode 85.5 ks and B-mode 50.4 ks

Count rates total emission PSR B1822-09

ΔΕ	0.15 – 0.4 keV	0.4 – 1.4 keV	1.4 – 10 keV
No mode selection	(2.52±0.21)x10-3	(8.97±0.34)x10 ⁻³	(0.73±0.27)x10 ⁻³
B-mode	(2.67±0.35)x10-3	(7.98±0.53)x10 ⁻³	(0.96±0.44)x10 ⁻³
Q-mode	(2.41±0.27)x10-3	(9.60±0.44)x10 ⁻³	(0.57±0.34)x10-3
Δ B-Q modes	0.6 σ	-2.4 σ	0.7 σ

 only 2.4 σ hint for X-ray mode switching in 0.4-1.4 keV band, which contains pulsed signal

Q-mode 85.5 ks and B-mode 50.4 ks

 Timing/phase resolved imaging for 10 phase bins

Upper figure shows source count rates: broken lines B mode, solid line Q mode

Lower figure: count rate difference (Q-B) as a function of phase

KS-test: 30% chance probability that both distributions are drawn from same parent distribution

Q-mode 85.5 ks and B-mode 50.4 ks

 Timing/phase resolved imaging for 10 phase bins

Upper figure shows source count rates: broken lines B mode, solid line Q mode

No significant evidence for mode switching

as a function of phase

KS-test: 30% chance probability that both distributions are drawn from same parent distribution

2.0

Spectral analysis

- Distance PSR B1822-09: Upper limit 1.9 kpc (Johnston et al. 2001), often quoted d~1 kpc (e.g. Zhou et al. 2005).
- N_H at ~1.9 kpc is ~3 10^{21} cm $^{-2}$
- N_H is in initial analysis treated as free parameter

Pulsed emission X-ray spectrum of PSR B1822-09: 'absorbed'

- BB fit: $\chi^2_v = 1.14$ (d.o.f. 6)
- $N_{H} = (2.03^{+0.35}_{-0.30}) \ 10^{21} \ cm^{-2}$
- $BB_{norm} = 0.0047 \pm 0.0007^{+}$
- $kT = 0.138^{+0.003}_{-0.004} \text{ keV}$

RON

- PL fit: χ²_v = **1.11 (d.o.f. 6)**
- $N_{\rm H} = (9.28^{+0.36}_{-0.30}) \ 10^{21} \ {\rm cm}^{-2}$

• $a = (1.85 \pm 0.28) \ 10^{-5}$ ph cm⁻² keV⁻¹ at 1 keV

• $\Gamma = -9.5^{+0.5}_{-0.4}$

Pulsed emission X-ray spectrum of PSR B1822-09 ('unabsorbed')

- $N_{H} = (2.03^{+0.35}_{-0.30}) \ 10^{21} \ cm^{-2}$
- BB: kT = 0.138^{+0.003}-0.004 keV
- $R_{hot spot} \approx 213 \text{ m} (d = 1 \text{ kpc})$

• PL fit: $\chi^2_v = 1.11$ (d.o.f. 6)

- $N_{\rm H} = (9.28^{+0.36}_{-0.30}) \ 10^{21} \ \rm cm^{-2}$
- $\Gamma = -9.5^{+0.5}_{-0.4}$
- \rightarrow Values for NH and Γ in PL fit are not acceptable/realistic

Total emission X-ray spectrum of PSR B1822-09 ('unabsorbed')

- PL fit: $\chi^2_{v} = 1.65$ (d.o.f. 32) ~1% prob.
- $N_{\rm H} = (4.15 \pm 0.05) \ 10^{21} \ \rm cm^{-2}$
- $\Gamma = -6.77 \pm 0.07$
- BB fit : $\chi^2_v = 1.60$ (d.o.f. 32) ~1-2% prob.

- BB+PL fit: $\chi^2_v = 1.43$ (d.o.f. 30) ~7.5% prob.
- N_H = (2.85±0.08) 10²¹ cm⁻²
- $BB_{norm} = 0.093 \pm 0.010$
- $kT = 0.098 \pm 0.002 \text{ keV}$
- $R_{hot spot} \approx 948 \text{ m} (d = 1 \text{ kpc})$ a = (1.85±0.28) 10⁻⁵ ph cm⁻² keV⁻¹ at 1 keV
- $\Gamma = -5.76 \pm 0.15$ •

JOINT FIT TO TOTAL AND PULSED SPECTRA OF PSR B1822-09

Assuming that:

- pulsed emission is a BB and equals BB component in total spectrum.
- Unpulsed emission has a PL shape

- BB+PL fit: χ²_v =1.40 (d.o.f. 39)
 ~5% prob.
- $N_{\rm H} = (3.39 \pm 0.08) \ 10^{21} \ {\rm cm}^{-2}$
- $BB_{norm} = 0.0345 \pm 0.0046$
- kT = 0.112±0.002 keV
- R_{hot spot} ≈ 578 m (d = 1 kpc)
- $a = (5.0 \pm 0.4) \ 10^{-6}$ ph cm⁻² keV⁻¹ at 1 keV
- $\Gamma = -6.62 \pm 0.13$

SRON

Conclusions / Dilemma's

- PSR B1822-09 has been detected with XMM-Newton with a pulsed fraction of ~35% in the energy band 0.4-1.4 keV
- The pulse profile is sinusoidal; maximum within 0.1 phase from the peak of the radio main pulse; no pulse detected at the phase of the weak radio inter pulse.
- There is no significant evidence for simultaneous X-ray-radio mode-switching by PSR B1822-09. What causes this difference with PSR B0943+10?
- The spectrum of the total emission is best fitted with a thermal BB-component plus a non-thermal PL component.
- The spectrum of the pulsed component is best fitted with a thermal component, consistent with a heated polar cap passing through our line-of-side for an orthogonal rotator. But, what about a non-thermal unpulsed component?
- The X-ray-radio characteristics of PSR B1822-09 do not shed more light on the interpretation of the X-ray/radio characteristics of PSR B0943+10

Etc .etc..... Many open questions

Thank you for listening!

