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Accuracy of surface gravity and gravitational redshift determination for neutron stars
in X-ray bursters from simulated LOFT spectra

Agnieszka Majczyna', Agata Rozanska?, Jerzy Madej’ i Mirostaw Nalezyty>*

! National Centre for Nuclear Research, ul. Andrzeja Sottana 7, 05-400 Otwock, Poland
*Nicolaus Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland

> Astronomical ObservatoryUniversity of Warsaw, Al. Ujazdowskie 4, 00-478 Warsaw, Poland
*Narcyza Zmichowska High School, ul. Klonowa 16, 00-591 Warsaw, Poland

We present sample simulated spectrum of a hot neutron star, as seen by the LAD detector on board the LOFT satellite. The spectrum was
computed for the effective temperature T¢ = 2.2%x 107 K, the surface gravity log(g) = 14.3 (cgs) and the surface gravitational redshift z = 0.3. We
assumed hydrogen, helium and iron composition of solar proportion. These parameters correspond to the compact star in a Type | X-ray burster.
Fitting of the simulated spectrum by our extensive grid of 4200 model spectra with XSPEC 12.0.8 software we retrieved previously assumed values
of all three parameters (Te = 2.2%107 K, log(g) = 14.3 and z = 0.3) with 3o confidence ranges of z = 0.25 - 0.36 and log(g) = 14.20 - 14.64.
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