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Annotation
We present an analytic approximation for neutrino-pair bremsstrahlung emissivity in the inner and outer neutron star envelope (crust). The results are expressed though an effective potential of electron-
nucleus scattering. This potential i1s equally valid in liquid and solid states of neutron star matter. The neutrino emissivity Is determined by the generalized Coulomb logarithm which is calculated
analytically with the obtained effective potential. The results can be applied for modeling of many phenomena in neutron stars, such as thermal relaxation in young isolated cooling neutron stars and in
accreting neutron stars with overheated crust in soft X-ray transients after accretion stops and the star evolves in the quiescent state.

eZ-bremsstrahlung in the neutron star crust
For a long time a neutron star (NS) cools mostly via neutrino emission from its interior.
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Fig.1. Neutrino emission from neutron star interior
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annihilation, “brems” — eZ-bremsstrahlung. One can see that at high
densities or T < 10° K the latter process dominates.

General formalism of eZ-bremsstrahlung
The reaction

e +AZ)-e+AZ)+v+V (1)
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« The temperature T ranges from 107 to
of eZ-bremsstrahlung

o Bloch-states in crystal 10° K.

Suitable dimentionless parameters
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Here m, = electron mass, m, = atomic mass unit. Other parameters:
X =ratio of electron Fermi-momentum p, to m.c;
« I"'=Coulomb coupling parameter, melting point refers to I'=175;

* 1 =ratio of temperature T to ion plasma temperature T,, determines importance of quantum effects in ion-
lon interactions;

« & = ratio of proton core radius to the electron de Broglie wavelength; determines importance of form
factor effects.

Emissivity by Kaminker et al. (1999)
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Here G; = 1.436x104° erg cm?® = Fermi weak interaction constant, e = absolute value of electron charge,
C,?=1.675 takes into account three neutrino flavours, # = Planck constant, ¢ = speed of light,

Ry = 1 + 0.00554Z + 0.0000737Z% = non-Born corrections, L = generalized Coulomb logarithm, which can
be expressed as

Ly, T<175
L= (4)
Ly +Lg, T >175

liquid state: L;;; solid state: L, = electron-phonon scattering, L, = Bragg diffraction of electrons on the
lattice cites. The terms takes form (Kaminker et al., 1999)
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« Summation is over reciprocal lattice vectors * F(2&y) = nuclear formfactor. Different expressions

are given in Haensel, Potekhin & Yakovlev (2007).

. corresponds to electron screening: e.q. ‘ . .
Yo P J J In this work we use approach of spherical nuclei:

Kaminker et al. (1999);

* I(y) given In Kaminker et al. (1999). In high- F(u) =3 5
temperature limit it gives R(y); u
« exp(—w y?) = Debye-Waller factor;
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,  u=2%y (8)

* R(y) = thermal function, describes neutrino energy
losses in the limit of strong electron degeneracy,

Siig(y) = liquid structure factor, corresponds to ion

2y21ny screening; approximated by Young et al. (1991);

* Spn(y) = effective phonon structure factor, takes
Into account multiphonon processes.

expressions for L, with non-linearly scaled I" and 7.

The analytic approximation of the Coulomb logarithm

In Gnedin et al. (2001) present approximations of thermal and electric conductivities by A.Y. Potekhin, in
terms of effective potential of electron-nucleus scattering. The potential is the same for liquid and solid states
and allows analytical integration of Coulomb logarithm. It does not include Bragg diffraction which is not
Important for these Kinetic coefficients. Therefore, it cannot be applied for eZ-bremsstrahlung.

This work presents an effective potential that includes the static lattice input and valid for eZ brems. As
a base, we used Eq. (6) for L, with structure factor S;..
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Fig.5. Calculated L(I') versus its approximation in log-log
scale. Solid = full L, dash = approximated L. Parameters are the
same as on the left panel.

Fig.4. Relation between L(I') and L (') in log-log scale.
Solid = full L, dashes = L ..

The idea: nonlinear scaling of parameters

One can see that graphs of full L(T") given in (4) look T > Teff(Z,T,T)
similar to graphs of L () in (6). This similarity allows >
us to obtain an approximation using slightly modified I I‘eff(z' L, Tegy) f)

Sph(Z) F, T, )’) é Seff(z; Feff; Teff) f) )’)

The effective potential and an analytic view of Coulomb logarithm
The approximated Coulomb logarithm:
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* V. = effective Fourier-transformed potential of « For an analytic integration one can use simple
electron-nucleus  scattering In  the eZ-  approximations
bremsstrahlung. o of thermal function: Ry(y) =1 —y with max
* the electron screening iIs neglected as soon as S absolute error 0.066
provides a convergence of integral in L. o of nuclear form factor: |F(w)|? ~ exp{—au?},

a = 0.23 with max absolute error 0.032.

L = Ei(—p) — Ei(—q) + ln2 — Eerf(\/ﬁ) + Eerf(\/ﬁ),

The result is p \ p \ q (10)
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One can obtain Q with (3). The details are given in the text attached to this poster or can be requested via e-mail.
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Conclusions

We obtain the universal approximation for eZ-bremsstrahlung emissivity in the NS crust of any composition.
In range of parameters 108 < p < 10** g/cm?, 10’< T < 10° K (ions form Coulomb crystal or liquid, electrons
form relativistic degenerate Fermi gas), 6 < Z <50, 2Z < A < 3Z (all models of NS crust). Deviations from
exact values of Q is 0.6%. The approximation is important for modeling of thermal evolution of NSs.
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