# The maximum neutron star mass and the role of the enhanced vector meson interactions



### Monika Pieńkos

University of Silesia, Uniwersytecka 4, 40-007 Katowice Poland, mpienkos@us.edu.pl

#### Abstract

The equation of state which is crucial for the structure and composition of a star has been obtained on the basis of the relativistic field theoretical model which in the minimal form comprises baryons, leptons and  $\sigma$ ,  $\omega$  and  $\rho$  meson fields. Scalar ( $\sigma^*$ ) and vector ( $\phi$ ) mesons have been introduced to simulate hyperon – hyperon interaction. The considered model has been extended by couplings between vector mesons:  $\omega - \rho$ ,  $\omega - \phi$  and  $\rho - \phi$ . These additional nonlinear vector meson terms influence properties of neutron star matter and through this lead to the modification of the structure and properties of a hyperon star. The mixed vector meson interactions are very effective in describing asymmetric nuclear matter as they provide modification of the density dependence

### The model

The dynamics of the model considered is determined by a Lagrangian density [4] which embodies contributions from baryons, mesons and leptons:

$$\begin{aligned} \mathcal{L} &= \sum_{B} \overline{\psi}_{B} \left( \gamma^{\mu} i D_{\mu} - m_{eff,B} \right) \psi_{B} + \frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma - \frac{1}{2} m_{\sigma}^{2} \sigma^{2} - \frac{1}{3} g_{3} \sigma^{3} - \frac{1}{4} g_{4} \sigma^{4} + \frac{1}{2} \partial^{\mu} \sigma^{*} \partial_{\mu} \sigma^{*} - \frac{1}{2} m_{\sigma^{*}}^{2} \sigma^{*2} + \\ &+ \frac{1}{2} m_{\omega}^{2} (\omega^{\mu} \omega_{\mu}) + \frac{1}{2} m_{\rho}^{2} (\rho^{\mu a} \rho_{\mu}^{a}) + \frac{1}{2} m_{\phi}^{2} (\phi^{\mu} \phi_{\mu}) - \frac{1}{4} \Omega^{\mu \nu} \Omega_{\mu \nu} - \frac{1}{4} R^{\mu \nu a} R^{a}_{\mu \nu} - \frac{1}{4} \Phi^{\mu \nu} \Phi_{\mu \nu} + \frac{1}{4} c_{3} (\omega^{\mu} \omega_{\mu})^{2} + \\ &+ \Lambda_{V} (g_{N \omega} g_{N \rho})^{2} (\omega^{\mu} \omega_{\mu}) (\rho^{\mu a} \rho_{\mu}^{a}) + \frac{1}{4} c_{3} (\rho^{\mu a} \rho_{\mu}^{a})^{2} + \frac{1}{4} \left( \frac{1}{2} c_{3} + \Lambda_{V} (g_{N \omega} g_{N \rho})^{2} \right) (\phi^{\mu} \phi_{\mu})^{2} + \\ &+ \frac{1}{2} \left( \frac{3}{2} c_{3} - \Lambda_{V} (g_{N \omega} g_{N \rho})^{2} \right) (\omega^{\mu} \omega_{\mu} + \rho^{\mu a} \rho_{\mu}^{a}) (\phi^{\mu} \phi_{\mu}) + \sum_{l=e,\mu} \overline{\psi}_{l} (i \gamma^{\mu} \partial_{\mu} - m_{l}) \psi_{l}, \end{aligned}$$

of the symmetry energy. For sufficiently high density this model describes the additional repulsion in hyperon interactions. This has remarkable consequences for the stiffening of the equation of state.

### Motivation

- Observations of the binary millisecond pulsars J1614-2230 [1] and J0348+0432 [2] have led to the precise estimation of neutron star masses:  $(1.97 \pm 0.04) M_{\odot}$  and  $(2.01 \pm 0.04) M_{\odot}$ .
- This shifts the maximum neutron star mass  $M_{max}$  towards rather high values and rules out most of the EoSs with hyperons - the models which involve exotic particles predict maximum neutron star masses well below  $2M_{\odot}$ .
- There is a need to analyze whether it is possible to construct an EoS of neutron star matter which gives adequately high maximum mass despite including hyperons.

## Introduction

where the covariant derivative equals  $D_{\mu} = \partial_{\mu} + ig_{B\omega}\omega_{\mu} + ig_{B\phi}\phi_{\mu} + ig_{B\rho}\mathbf{I}_{B}\boldsymbol{\rho}_{\mu}$ ,  $\mathbf{I}_{B}$  denotes isospin of baryon B. The baryon effective mass is defined as follows  $m_{eff,B} = m_B - g_{B\sigma}\sigma - g_{B\sigma}*\sigma^*$ , while  $\Omega_{\mu\nu}$ ,  $\mathbf{R}_{\mu\nu}$ , and  $\Phi_{\mu\nu}$ are the field tensors of the  $\omega$ ,  $\rho$ , and  $\phi$  mesons. The basic parameters of the model is TM1 parameter set [5]. In the non-strange sector the model is extended by the  $\omega - \rho$  meson coupling, the strength of this coupling is given by the parameter  $\Lambda_V$ . All calculations have been done within the RMF approximation.

### Results

(MeV)

m<sub>eff,i</sub>

500



The EoS calculated for the nonlinear model for different values of the coupling constant  $\Lambda_V$ . The results have been obtained for the non-strange matter for TM1 [5], NL3 [6] and FSUGold [7] parameter sets. Black dotted line represents the case of the standard TM1 model extended by the inclusion of strange mesons which have been introduced in a minimal fashion (TM1-weak).

The mass-radius relations calculated for the extended non-

Constituents of the models

- Standard TM1 model: nucleons (n, p), leptons  $(e^-, \mu^-)$ , scalar meson  $\sigma$  and vector mesons  $\omega_{\mu}$  and  $\rho_{\mu}^{a}$
- TM1-weak model: hyperons  $(\Lambda, \Sigma, \Xi)$  and mesons (scalar  $\sigma^*$  and vector  $\phi_{\mu}$ ) included in the minimal fashion,  $\omega - \rho$  mixing
- Extended nonlinear model: additional  $\omega - \phi$  and  $\rho - \phi$  mixing

### Conclusions

- In the case when hyperons are included additional repulse in the system is indispensable
- The model with the extended vector meson sector leads to EoS that is much stiffer than the one constructed on the basis on the minimal model (TM1-weak)
- $U_{\Sigma}^{N}$  potential change does not result in a sufficiently high stiffening of the EoS, however, modifies the chemical composition of the stars

linear model for different values of parameter  $\Lambda_V$ . The results have been supplemented with the TM1 and FSUGold [7] parameterisations in the case when the matter of the neutron star comprises only nucleons.



The effective meson masses as a function of baryon number density calculated for the extended nonlinear model, for  $\Lambda_V = 0.014$  and  $\Lambda_V = 0.0165$ . In the case of  $\omega$  and  $\rho$  mesons the increase of  $\Lambda_V$  parameter results in their higher effective masses. While for the effective mass of the  $\phi$  meson there exists a range of density where its effective mass decreases.

TM1-weak ······· 160

The density dependence of symmetry energy calculated for different values of parameter  $\Lambda_V$  and compared with the results obtained for the AV14+VII, UV14+VII and UV14+TNI models [3]. The inclusion of  $\Lambda_V$  parameter softens the symmetry energy and its density dependence resembles that obtained for the realistic nuclear models.



• A characteristic feature of the model is the change of the effective baryon and meson masses with particular emphasis on the effective  $\phi$  meson mass. There is a range of density for which the effective  $\phi$  meson mass decreases.

#### References

P. Demorest et al., *Nature* **467**, 1081 (2010) J. Antoniadis et al., *Science* **340**, 6131 (2013) R. B. Wiringa et al., *PRC* **38**, 1010 (1988) 3 I. Bednarek et al., J. Phys. G 36, 095201 (2009) Y. Sugahara et al., Prog. Theor. Phys. 92, 803 (1994) G. A. Lalazissis et al., *PRC* **55**, 540 (1997) B. Todd-Rutel et al., *PRL* **95**, 122501 (2005)

The pressure vs density calculated for different values of the  $U_{\Sigma}^{N}$  potential (attractive and repulsive), the very weak  $U_{\Lambda}^{(\Lambda)}$ case has been icluded. In the case of the extended nonlinear model the higher value of the repulsive  $U_{\Sigma}^{(N)}$  potential leads to the stiffer EoS.

Relative concentrations of hyperons calculated for the extended nonlinear model for the repulsive and attractive  $U_{\Sigma}^{(N)}$ potential. In the case of the repulsive potential the first hyperon that appears is  $\Lambda$  and it is followed by  $\Xi^-$  and  $\Sigma^-$ . For attractive potential hyperons appear in the following order:  $\Sigma^{-}, \Lambda \text{ and } \Sigma^{0}$