Constraint on Pulsar Wind Properties from Induced Compton Scattering off Radio Pulses

Shuta Tanaka (ICRR, The Univ. of Tokyo, Japan) with Fumio Takahara

ABSTRUCT see also Tanaka, S. J., & Takahara, F. 2013, PTEP, 123E01

We study induced Compton scattering by a relativistically moving cold plasma to constrain pulsar wind properties (the magnetization σ , the pair multiplicity κ & the bulk Lorentz factor γ). Because of high brightness temperature T_b of radio pulses ($T_b > 10^{26}$ K for Crab), induced scattering would dominates spontaneous one. Relativistic effects cause a significant increase or decrease of the scattering coefficient depending on scattering geometry (inclination angle of the wind velocity with respect to the radio pulse $\theta_{\rm pl}$ & the size of radio emission region r_e). Applying to the Crab pulsar $(\kappa \gamma (1+\sigma)=10^{10.5})$, $\theta_{pl} \sim 1$, $r_e \sim 10^3$ cm & σ ~1 are required at the light cylinder to satisfy κ > 10^{6.6} suggested by recent studies of the Crab Nebula.

Crab Nebula (Chandra)

I. Problems of Pulsar Wind

Young Rotation Powered Pulsars lose their rotational energy by pulsar winds.

$$L_{spin} \sim \kappa \dot{N}_{GJ} \gamma m_e c^2 (1 + \sigma)$$

 $\dot{N}_{GJ} \propto (L_{spin})^{1/2}$: Goldreich-Julian current

Only one stringent constraint

$$\kappa \gamma (1 + \sigma) = 1.4 \times 10^{10} L_{\text{spin},38}^{1/2}$$

1.σ-problem:

Studies of wind properties

 $\sigma \ll 1 (\gamma \sim 10^6, \kappa \sim 10^4) @ r_{TS}$

Rees & Gunn74, Kennel & Coroniti84

σ >> 1 inside r_{LC}

Goldreich & Julian69, Ruderman & Sutherland75

2. k-problem:

κ >> 10⁶ (radio PWN emission)

ST & Takahara10, Bucciantini+11

κ ~ 10⁴⁻⁵ (cascade simulations) Hibschman & Arons01

We do not achieve a consensus.

II. Constraint

Radio pulses go through wind plasma. Scattering optical depth for induced Compton scattering ICS, see, § III) $\tau_{ICS}(10^8 \text{Hz}) < 1!$

Like the compactness problem of GRB, large 7 or small κ is required Observer for escaping from ICS.

Constraint!

Wilson & Rees 78 obtained $\gamma > 10^4$ or $\kappa < 10^6 (\sigma \sim 1)$ for a special scattering geometry.

III. Induced Compton Scattering

Qualitative description (e[±] rest frame)

IV. Application to Crab

•Wind density from spin-down power

->
$$n_{
m e^{\pm}}=rac{L_{
m spin}}{4\pi r^2\gamma m_{
m e}c^3(1+\sigma)}$$
 radial wind

•Beam opening angle

->
$$\theta_{\rm bm}(r) \approx \frac{r_{\rm e}}{r} \; {\rm for} \, r > r_{\rm e} \; {\rm r_e} \sim 10^3 \; {\rm cm}$$

or 10⁷ cm

Brightness temperature

$$\frac{k_{\rm B}T_{\rm b}(\nu)}{m_{\rm e}c^2} = 1.7 \times 10^{16} \left(\frac{F_{\nu}}{\rm Jy}\right) \left(\frac{d}{\rm kpc}\right)^2 \left(\frac{\nu}{100\,\rm MHz}\right)^{-2} \left(\frac{r_{\rm e}}{10^7\,\rm cm}\right)^{-2}$$

Scattering Geometries

Only wind velocity ($\gamma \& \theta_{pl}$) is parameter

V. Results

Approximate form of τ_{ICS} in Obs. frame

 $I_{\rm Narrow} = \gamma \theta_{\rm bm}^4$ $\tau_{\rm ind} \approx n_{\rm pl}(r) \sigma_{\rm T} r \frac{k_{\rm B} T_{\rm b}(\nu)}{m_{\rm pl} c^2} I(\theta_{\rm bm}, \theta_{\rm pl}, \gamma)$ with $I_{
m Inclined} = heta_{
m bm}^4/ heta_{
m pl}^4$ $I_{\mathrm{Wide}} \approx 1$

 τ_{ICS} on $\gamma - \theta_{pl}$ plane @ light cylinder for example

Blue region: Tics < 1

Red region: τ_{ICS} > 1

Gray region: no scattering by "lack of time" effect down when $\lambda > r$ in proper frame.

Geometry	r _e	ela el	7	K
Inclined	10 ⁷ cm	~1	$>10^{3.7}(1+\sigma)^{-0.25}$	$(10^{6.8}(1+\sigma)^{-0.75}$
Aligned	10 ⁷ cm	0	$>10^{4.2}(1+\sigma)^{-0.1}$	$(10^{6.2}(1+\sigma)^{-0.9}$
Inclined	10 ³ cm	~1	$>10^{1.7}(1+\sigma)^{-0.25}$	<10 ^{8.8} (1+σ) ^{-0.75}
Aligned	10 ³ cm	0	$>10^{3.4}(1+\sigma)^{-0.1}$	$(10^{7.1}(1+\sigma)^{-0.9}$

We conclude $\theta_{pl} \sim 1$ is required for large κ (>> 106).

• σ << 10⁴ @ r_{LC} is also required for κ > 10⁶ •Larger κ is allowed for small r_e

An example of relativistic effects (light aberration)

Photon angular distribution ($\gamma = 10^2$) Obs. frame Obs. frame $\Delta\Omega \sim 10^{-2}$ $\Delta \Omega \sim 10^{-2}$ Proper frame 1.1

 θ_{nl} : inclination angle between $k \& \beta$

Photon angular distribution in e[±] rest frame is significantly different for the scattering geometries in Obs. frame.

In addition, Doppler effect & Lorentz contraction which also depend on the scattering geometry in Obs. frame should be considered.

28, Jul. - 01, Aug., 2014, Physics of Neutron Stars 2014 @ St. Petersburg, Russia

Proper frame 10.5