

 rate we take into account only the curvature radiation of primary electrons and its absorption in magnetic field. It is assumed that part of electro-positron pairs may be created in bound state (positronium). And later such positroniums are photoionized by thermal photons from polar cap.

$\vec{B}=\frac{3 \vec{r}(\vec{r} \cdot \vec{m})-\vec{m} r^{2}}{r^{5}}+\frac{3 \vec{\rho}\left(\vec{\rho} \cdot \vec{m}_{1}\right)-\vec{m}_{1} \rho^{2}}{\rho^{5}}$ $\vec{\rho}=\vec{r}-\left(r_{n s}-\ell\right) \vec{e}_{2}, \vec{m}=m \vec{e}_{e}, \vec{m}_{1}=\nu\left(\frac{\ell}{r_{n s}}\right)^{3} m \vec{e}_{x}$ $\ell=\frac{1}{10} r_{n s} \quad \nu=\frac{B_{s s}}{B_{\text {dip }}} \lesssim 1 \quad 0 \leq \psi \leq \frac{\pi}{2}$

The reverse positron current J2043+2740

$B_{\text {dip }}=7.1 \cdot 10^{11} G, P=96 \mathrm{~ms}, \tau=1.2 \cdot 10^{6}$ years, $\chi=55^{\circ}$

The polar cap luminosity	
J2043 + 2740	
Upper limits taken from [10] are shown by green lines, by solid line if we see one cap and by dashed if we see both and by dashed if we see both caps.	
and by dashed if we see both caps.Luminosity of all star surface taken from	

The polar cap luminosity

The polar cap luminosity

The polar cap luminosity

The polar cap luminosity B0823+26

The polar cap luminosity B0525+21

The polar cap luminosity B0656+14

The polar cap luminosity B0834+06

Conclusion

For some pulsars the gradual screening model predicts the polar cap eating which is larger than the observed polar cap luminosity. Possible explanations

1. Surface magnetic field $B_{\text {surf }}>10^{14} G$
no free charge emission
vacuum gaps, sparks [22]
2. Inner gaps occupy only small part of pulsar tube [23]
3. Large redshift $r_{n s}<2 r_{g}$
4. Viscous forces at $z \sim r_{t}[24]$

Backflowing radiation $[25,26,27]$
Radiation locked inside inner gaps $[28,29,30]$
Radiation locked inside inner gaps [28, 29,31 , sound waves from neutron star interior [31]
Wesincerely thank O.A. Goglichidze, K.Yu.Kraar, I.F. Malov. V.M. Kontorovich

References
[1] Arons J. Fawley W.M., Scharlemam E.T./// App, V.231 P. 8544 (1979)

(17 A. S zary / / arXiv: 130.4203

[6] IF. Malov "Radiopuluass"
[7] I. I. Malow, E.B. Nikitina // Astronomy Reports, V. 55, p. 19 (2011)

(19 A. A. .outsos et al / / ApJ, V. 288, . $77(2011)$

(144. C.Y.Hui, W.Beceler // A\& A, V. 467 , p. 1209 (2007)

${ }^{116]}$ Z.Misanovice al al/ ApJ, V. . P85, p. 1129 (2008)

${ }^{118]}$ O. Kargaltever, G. . Paxvor, G.P. Garmire // Apd, V. 636, p. 406 (2000

[22] Gil J, Melilidide G I and Geppert U // A\&A, V. V.07, p.315 (2003)
[233 S. Shibatat/ / Ap, V. $\mathbf{. 3 7 8}$, p.239. (1991)
[24] S.Shibata e ta l/ / MNRAS, v.295, L53 (1998)
${ }^{25]}$. . . elikidede, J.Gil // Chin. J. Astron Astrophys, V. V, Suppl. 2, p.81 (200e

[29] V.M. Kontorovich, A.B. Flanchik / /JETP, V. 106, p. 869 (2008)
b0l V.M. Kontroroxich, A.B. Flanchik // Astrophysicis and Space Science, V. $345, \mathrm{p} .169$ (2013)

