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Equation of state

Oertel et al. arXiv:1610.03361 RMP (2017), Haensel et al. book (2007)

Mystery : equation of state (EoS)

◮ Neutron star matter: many-body
system of strongly-interacting
particles (e, p, n, µ, more?) at T=0.

◮ EoS: describes its composition and
properties;

◮ P(ρ) with P the pressure, ρ the
energy density.

Mass-radius plot

EoS + TOV equations

Key point

How to constrain the EoS and thus the properties of the nuclear interaction at large
densities thanks to NS observations and experiments ?
⇒ mass and radius measurements for example.
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Mystery : equation of state (EoS)

◮ Neutron star matter: many-body
system of strongly-interacting
particles (e, p, n, µ, more?) at T=0.

◮ EoS: describes its composition and
properties;

◮ P(ρ) with P the pressure, ρ the
energy density.

NS structure

Envelope

Crust

Z e

Z e n

Outer core
n p e µ

Inner core?

∼ 0.5ρ0

Mass-radius plot

EoS + TOV equations

EoS

◮ core: homogeneous mixture

◮ crust: lattice of neutron rich atomic
nuclei → non-uniform.

⇒ many more core EoS than crust EoS.
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How to glue an EoS for the core to one for the crust?
Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)
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◮ core glued to BPS+BBP EoS at
0.01 fm−3;

◮ transition at the crossing density
between the 2 EoSs;

◮ transition at the core-crust
transition density nt;

◮ transition at n0 = 0.16 fm−3;

◮ crust below 0.5n0 and core above
n0;

◮ crust below 0.1n0 and core above
nt;

◮ reference: unified EoS.

Uncertainty on R

◮ due to the treatment of the
core-crust transition: up ∼ 4%
(up to ∼ 30% on the crust
thickness),

◮ decreases if crust and core EoSs
with similar saturation properties.
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◮ core glued to BPS+BBP EoS at
0.01 fm−3;

◮ transition at the crossing density
between the 2 EoSs;

◮ transition at the core-crust
transition density nt;

◮ transition at n0 = 0.16 fm−3;

◮ crust below 0.5n0 and core above
n0;

◮ crust below 0.1n0 and core above
nt;

◮ reference: unified EoS.

Uncertainty on R

◮ due to the treatment of the
core-crust transition: up ∼ 4%

◮ with NICER, Athena or LOFT(?):
expected precision ∼ 5% . . . .

◮ how to, if not solve, at least
handle this problem?
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1. Unified equations of state
Very few unified EoSs for NSs exist
eg. Douchin & Haensel 01, BSk EoS (Chamel+), Sharma+ 15

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

33 nucleonic EoSs and 15 hyperonic EoSs
Tables with n, ρ,P as supplemental material to the paper + soon on Compose
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1. Unified equations of state
Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

Nuclear constraints

◮ neutron skin thickness of 208Pb

◮ heavy ion collisions (HIC)

◮ electric dipole polarizalibility αD

◮ giant dipole resonance of 208Pb

◮ measured nuclear masses

◮ isobaric analog states (IAS)

Low-density: nb < n0

Hebeler et al. ApJ (2013): chiral effective field
theory;

Gandolfi et al. PRC (2012): Quantum Monte

Carlo technique

Selected EoSs

R1.4 = 13.10 ± 0.65 km.
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2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

Thickness of a shell in a catalyzed crust

Assuming that in the crust m ≈ M and 4πr3P/mc2 ≪ 1 in
the TOV equation one obtains:

dP

ρ+ P/c2
= −GM

dr

r2(1 − 2GM/rc2)
.

With

dP

ρc2 + P
=

dµ

µ
one gets

√

1 − 2GM/r2c2

√

1 − 2GM/r1c2
=

µ2

µ1

valid for no jump in the chemical potential.
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2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

Thickness of a shell in a catalyzed crust

Assuming that in the crust m ≈ M and 4πr3P/mc2 ≪ 1 in
the TOV equation one obtains:

dP

ρ+ P/c2
= −GM

dr

r2(1 − 2GM/rc2)
.

With

dP

ρc2 + P
=

dµ

µ
one gets

√

1 − 2GM/r2c2

√

1 − 2GM/r1c2
=

µ2

µ1

valid for no jump in the chemical potential.
Taking r1 = R and r2 = Rcore

√

1 − 2GM/Rc2

√

1 − 2GM/Rcorec2
=

µb

µ0

with µ0 = µ(P = 0) = 930.4 MeV - minimum energy per

nucleon of a bcc lattice of 56Fe and µb at the core-crust
transition.
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2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

◮ All you need is . . . : the core EOS down to
a chosen density nb with µ(nb) = µb.

◮ Obtain the M(Rcore) relation solving the
TOV equations.

◮ Obtain M(R) with
R =

Rcore/

(

1 − (
µ

2
b

µ
2
0

− 1)(Rcorec2

2GM
− 1)

)

.

Results

◮ uncertainty in the radius: . 0.2% for
M > 1 M⊙

◮ uncertainty in the crust thickness: . 1%
for M > 1 M⊙

Solution of the TOV equation with a unified EoS
TOV solution for the core M(Rcore)

Approximate M(R) for nb = 0.077 fm−3
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2. Approximate formula for the radius and crust thickness

Zdunik, Fortin, and Haensel, A&A (2017)

◮ All you need is . . . : the core EOS down to
a chosen density nb with µ(nb) = µb.

◮ Obtain the M(Rcore) relation solving the
TOV equations.

◮ Obtain M(R) with
R =

Rcore/

(

1 − (
µ

2
b

µ
2
0

− 1)(Rcorec2

2GM
− 1)

)

.

How to choose the core-crust

transition density nb?

◮ inversely proportional to L (Horowitz &
Piekarewicz 2001)

◮ Ducoin et al. (2011): for EOSs with
30 ≤ L ≤ 120 MeV, obtain:
0.06 . nb . 0.10 fm−3

⇒ nb ≃ n0/2 = 0.08 fm−3
Solution of the TOV equation with a unified EoS
TOV solution for the core M(Rcore)
Approximate M(R) for nb = 0.16, 0.13, 0.11,

0.09, 0.077 fm−3 from left to right.
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2. Approximate formula for the radius and crust thickness
Zdunik, Fortin, and Haensel, A&A (2017)

Thickness of a shell in an accreted crust

For a catalyzed crust
√

1 − 2GM/r2c2

√

1 − 2GM/r1c2
=

µ2

µ1

For an accreted crust
√

1 − 2GM
Rc2

√

1 − 2GM
R1c2

=
µ+

1

µ0

. . .
√

1 − 2GM
Ri c

2

√

1 − 2GM
Ri+1c2

=
µ+

i+1

µi

. . .
√

1 − 2GM
Rnc2

√

1 − 2GM
Rcorec2

=
µb

µn
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2. Approximate formula for the radius and crust thickness
Zdunik, Fortin, and Haensel, A&A (2017)

Thickness of a shell in an accreted crust

For a catalyzed crust
√

1 − 2GM/r2c2

√

1 − 2GM/r1c2
=

µ2

µ1

For an accreted crust
√

1 − 2GM
Rc2

√

1 − 2GM
Rcorec2

=
µ+

1

µ1

·
µ+

2

µ2

· · ·
µ+

i

µi

· · ·
µ+

n

µn
·
µb

µ0

=
µb

µ0

·
n
∏

i=1

µ+
i

µi

Energy release at Pi : Qi = µ+
i
− µi .

√

1 − 2GM
Rc2

√

1 − 2GM
Rcorec2

≃
µb

µ0

· (1 +
Qtot

µIC

)

with Qtot =
∑n

i=1 Qi the total energy release in the crust
and the mean chemical potential in the inner-crust
µIC ≃ 941 MeV.
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3. Approximate formula for the radius and crust thickness
Zdunik, Fortin, and Haensel, A&A (2017)

Catalyzed vs. accreted crusts
√

1 − 2GM
Rc2

√

1 − 2GM
Rcorec2

≃
µb

µ0

· (1 +
Qtot

µIC

)

Radius of a star with a catalyzed crust: Rcat

with an accreted crust Racc.

Racc =
Rcat

1 − (α− 1)(Rcatc2

2GM
− 1)

with
√
α ≡

∏n
i=1

µ
+
i

µi
= (1 + Qtot

µIC
).

Difference in the radius between a NS with an accreted crust
and a catalyzed crust

∆R ≃ 144 m ·
(

Qtot

2 MeV

)(

Rcat

10 km

)2 ( M

M⊙

)(

1 −
2GM

Rcatc2

)
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Hyperonic equations of state

Hyperons (Y)

Mass (MeV)

n (uud)

p (udd)

939

Λ0 (uds)

1115

Σ+ (uus)

Σ0 (uds)

Σ− (dds)

1190

Ξ0 (uss)

Ξ− (dss)

1320

Structure

Crust

Z e

Z e n

Outer core
n p e µ

Inner core
?

∼ ρ0
2

?

ρ0 ≃ 3 × 1014 g cm−3

Equation of state
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Hyperonic equations of state
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• each EoS has a maximum mass Mmax;

• Mmax strongly reduced when Y are included;

• consistency with the observations:
Mmax ≥ Mobs

max.

Hyperon puzzle

Can hyperons be present in NSs and yet
Mmax ≥ Mobs

max with Mobs
max ≃ 2 M⊙?
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Hyperonic equations of state

Fortin, Zdunik, Haensel and Bejger,
A&A 576 (2015)

14 hyperonic EoSs consistent with
2 M⊙:

◮ large radius for hyperonic EoSs
correlated with a large pressure
at n0

◮ over-pressure at n0 for hyperonic
EoSs inconsistent with up-to-date
microscopic calculations by
Hebeler et al. (2013)

→ 2 M⊙ is reach by compensating
the decrease of the pressure at
high density due to Y by a large
pressure at low density

Fortin et al. PRC 94 (2016)

Hyperonic EoSs consistent with Hebeler et al.
constraint and with Mmax ≥ 2 M⊙.

+ eg. Oertel et al. JPG (2015)
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Experimentally calibrated hyperonic EoSs
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symmetry nuclear matter
UN
Λ (n0): usually (-30, -28) MeV

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0, n0/5): usually (-5, -1) MeV

Modeling of hypernuclei

◮ for the TM1, TM2ωρ, NL3, NL3ωρ,
DDME2 RMF models.

◮ adjust the Λ-couplings to reproduce:

1. Λ-hypernuclei:

0.00 0.05 0.10 0.15 0.20 0.25
A−2/3

0

5

10

15
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B
Λ
 (M

eV
)

Rσ =0.621

Rω =2/3

TM1-a

sΛ

pΛ

UN
Λ (n0) ∈ [−36,−30] MeV
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Experimentally calibrated hyperonic EoSs
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symmetry nuclear matter
UN
Λ (n0): usually (-30, -28) MeV

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0, n0/5): usually (-5, -1) MeV

Modeling of hypernuclei

◮ for the TM1, TM2ωρ, NL3, NL3ωρ,
DDME2 RMF models.

◮ adjust the Λ-couplings to reproduce:

1. Λ-hypernuclei:
2. ΛΛ-hypernuclei

UΛ
Λ (n0) ∈ [−14,−9] MeV

UΛ
Λ (n0/5) ∈ [−7,−5] MeV
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Experimentally calibrated hyperonic EoSs
Fortin, Providência, Vidaña, and Avancini, PRC 95 (2017)

Experimental hypernuclei data

Gal et al., RMP (2016)

◮ ∼ 40 Λ-hypernuclei
+ measurement of binding energy BΛ

◮ few Ξ-hypernuclei
but no measurement of binding energy

◮ no Σ-hypernuclei
repulsive Σ-nucleon interaction?

◮ only one unambiguous ΛΛ-hypernuclei:
measurement of the bond energy:

∆BΛΛ(
6
ΛΛHe) = 0.67 ± 0.17 MeV.

Usual approach to hyperons

Adjust the couplings for the Λ to reproduce:

◮ the Λ-potential in symmetry nuclear matter
UN
Λ (n0): usually (-30, -28) MeV

◮ the Λ-potential in pure Λ matter
UΛ
Λ (n0, n0/5): usually (-5, -1) MeV

Modeling of hypernuclei

◮ for the TM1, TM2ωρ, NL3, NL3ωρ,
DDME2 RMF models.

◮ adjust the Λ-couplings to reproduce:

1. Λ-hypernuclei:
2. ΛΛ-hypernuclei

◮ build calibrated hyperonic EoSs including
the other hyperons and the current
experimental uncertainty of their
properties

Conclusions

◮ models are consistent with 2 M⊙

◮ because lack of constraints on the nuclear
model at high density

◮ thus no solution to the hyperon puzzle at
the moment
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Nuclear parameters and radii

Fortin, Providência, Raduta, Gulminelli, Zdunik, Haensel, & Bejger, PRC 94 (2016)

◮ 33 nuclear models (RMF & Skyrme)

◮ L the slope of the symmetry energy

◮ correlated to 48Ca and 208Pb neutron skin
thickness (PREX & CREX)

also in Horowitz & Piekarewicz works.

Alam, Agrawal, Fortin, Pais, Providência, Raduta, Sulaksono, PRC 94 (2016)

◮ 44 nuclear models (RMF, Skyrme, & BHF)

◮ L the slope of the symmetry energy

◮ M the slope of the incompressibility.

◮ gray strip: experimental constraint from
giant monopole resonance (De+ PRC 92,
2015)

◮ R1.4 = 11.09 − 12.86 km
10.5 11 11.5 12 12.5 13 13.5

R1.4 (km)

1000

2000

3000
M

0 (
M
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0
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L
0
 = 60 MeV

L
0
 = 80 MeV
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Conclusions

◮ Be careful when gluing an EoS for the core to one for the crust:

◮ Use unified equations of state eg. Fortin+ PRC 94 (2016)

◮ Approximate formula for M(R) with no crust needed (Zdunik+ A&A,

2017).

◮ Experimentally calibrated hyperonic EoSs (Fortin+ PRC 95, 2017)

◮ Hyperonic equations of state are not ruled out by the existence of 2 M⊙

neutron stars.

◮ Correlations between the neutron star radius and nuclear parameters

measurable in laboratory (Fortin+ and Alam+ PRC 94, 2016)
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