Partial frequency redistribution in cyclotron lines of neutron stars

Mikhail Garasev, Evgeny Derishev, Vladimir Kocharovsky

Institute of Applied Physics, Nizhny Novgorod, Russia

Physics of Neutron Stars - 2017, June 14, Saint Petersburg

Why to study cyclotron lines?

(1) Detailed models of radiation transfer in view of new missions: XARM, ATHENA, LYNX
(2) Structure of outer layers of NS atmospheres (Wasserman et al., 1989; Garasyov et al. 2012)
(3) Radiation pressure effects in NS atmospheres and magnetospheres
(1) Modeling the outbursts in accreting X-ray binaries (Rothschild et al. 2017)

Atmospheric structure

- Wide range of temperatures and magnetic field strengths
- Scattering dominated over absorption $\gamma_{\mathrm{a}} / \gamma_{\mathrm{sc}} \lesssim 10^{-4}--10^{-6}$
- The opacity of magnetized plasma is very high near the frequencies $\omega=n \omega_{B}$, where $\omega_{B}=e B /(m c)$.

$$
\frac{\sigma_{\mathrm{cyc}}}{\sigma_{\mathrm{T}}} \sim \frac{1}{\alpha \beta_{\mathrm{T}}} \frac{\mathrm{mc}^{2}}{\hbar \omega_{\mathrm{B}}} \approx 4 \cdot 10^{5} \frac{1}{\sqrt{\mathrm{~T}_{100 \mathrm{eV}}} \mathrm{~B}_{12}}
$$

- Peculiar resonance scattering, qualitatively different from scattering in atomic lines

Frequency redistribution during scattering

Two main reasons: finite width of the resonance and Doppler broadening

- Complete frequency redistribution
- Partial redistribution
- Coherent scattering

Basic view of cyclotron scattering

Two types of photons: photons in the line's core with $\left(\omega-\omega_{B}\right) /\left(\beta_{T} \omega_{B}\right) \lesssim 3$ and photons in the wings with

$$
\left(\omega-\omega_{\mathrm{B}}\right) /\left(\beta_{\mathrm{T}} \omega_{\mathrm{B}}\right)>3 .
$$

I. Photons in the wing scatters almost coherently

$$
\omega^{\prime} \approx \omega
$$

II. Photons from the core usually follow the relation

$$
\omega^{\prime}\left(1-\beta \cos \theta^{\prime}\right)=\omega(1-\beta \cos \theta)
$$

$\beta=v / c-$ velocity of some particular electron, $\beta_{\mathrm{T}}=\sqrt{\mathrm{T} / \mathrm{mc}^{2}}$ - typical or 'thermal' velocity. θ - angle between the magnetic field and the wave vector.

Trapping of resonant photons in the line core

Resonance condition. Nonrelativistic approximation. Quasicoherent scattering (Zheleznyakov, Litvinchuk, 1987)

$$
\begin{gathered}
\omega(1-\beta \cos \theta)=\omega_{B} \\
\beta_{\star}=\left(\omega-\omega_{B}\right) /(\omega \cos \theta) \\
(\omega, \theta) \Longleftrightarrow\left(\frac{\omega-\omega_{B}}{\omega \cos \theta}, \theta\right)
\end{gathered}
$$

Mildly relativistic approximation

$$
\omega\left(1-\beta \cos \theta+\frac{\beta^{2}}{2}\right)=\omega_{B} .
$$

Two resonance velocities:

$$
\beta_{1,2}=\cos \theta \pm \sqrt{\cos ^{2} \theta-2\left(1-\frac{\omega_{\mathrm{B}}}{\omega}\right)}
$$

Importance of relativistic effects

Relative fraction of photons emitted at optical depth τ in the emergent spectra. Solid line - with redistirbution effects; dashed - without (quasicoherent scattering). Atmospheric parameters:
$\mathrm{T}=50 \mathrm{eV}, \gamma / \omega_{\mathrm{B}}=10^{-6}$,
$P_{\text {abs }} / P_{\text {sc }}(\tau=1)=10^{-6}$.

Some analytical results

Garasev et al. MNRAS 2016a, Garasyov et al. A\&A 2011

- Escape probability: $\mathrm{P}_{\mathrm{esc}} \approx \frac{\beta_{\mathrm{T}}}{\tau \sqrt{8 \ln \tau}}$
- Redistribution escape probability $>$ diffusion probability $\left(1 / \tau^{2}\right) \rightarrow$, $\tau>\beta_{\mathrm{T}} / 4=\tau *$
- $\tau *<\tau_{\mathrm{th}}$:

$$
\frac{B}{B_{c r}} \gtrsim \cdot 10^{-4} \frac{1}{\sqrt{g_{14} T_{50 \mathrm{eV}}}}
$$

- Quantum recoil important if

$$
\frac{B}{B_{c r}} \gtrsim \beta_{\mathrm{T}}=0.01 / \sqrt{T_{50 \mathrm{eV}}}
$$

Application to the radiation transfer problem

Radiation transfer equation:

$$
\begin{equation*}
\cos \theta \frac{\mathrm{dI}}{\mathrm{~d} z}=-(\mu+\kappa) \mathrm{I}+\int \mathrm{R}\left(\theta^{\prime}, \omega^{\prime} \rightarrow \theta, \omega\right) \mathrm{I}\left(\theta^{\prime}, \omega^{\prime}, z\right) \mathrm{d} \theta^{\prime} \mathrm{d} \omega^{\prime}+\epsilon . \tag{1}
\end{equation*}
$$

where μ, κ - scattering and absorption coefficients, ϵ - emission rate, $R\left(\theta^{\prime}, \omega^{\prime} \rightarrow \theta, \omega\right)$ - the frequency redistribution function. For cyclotron line R have very narrow peak. The location of this peak strongly dependent on the angles, which complicates usage of standard methods. However, it is possible to construct approximate redistribution function R^{\prime} for some fixed angle of propagation:

$$
\pm \cos \theta_{0} \frac{\mathrm{dI}}{\mathrm{~d} z}=-\left(\mu^{\prime}+\kappa^{\prime}\right) \mathrm{I}+\int \mathrm{R}^{\prime}\left(\omega^{\prime} \rightarrow \omega\right) \mathrm{I}\left(\omega^{\prime}\right) \mathrm{d} \omega^{\prime}+\epsilon^{\prime} .
$$

Approximate redistribution function

The R' must fulfill to some properties:

1. $\int R^{\prime}\left(\omega \rightarrow \omega^{\prime}\right) d \omega^{\prime}=\mu^{\prime}(\omega)-$ normalization
2. $R^{\prime}\left(\omega \rightarrow \omega^{\prime}\right)=\left(\frac{\omega^{\prime}}{\omega}\right)^{3} \exp \left(\frac{\hbar \omega-\hbar \omega^{\prime}}{k T}\right) R^{\prime}\left(\omega^{\prime} \rightarrow \omega\right)$ - the detailed balance condition.
The simplest form for that function:

$$
R^{\prime}\left(\omega \rightarrow \omega^{\prime}\right)=P_{\text {wing }}\left(\omega, \omega^{\prime}\right) \delta\left(\omega-\omega^{\prime}\right)+\left(1-P_{\text {wing }}\left(\omega, \omega^{\prime}\right)\right)\left[\left(1-P_{\text {res }}\right) \delta\left(\omega^{\prime}+\omega-2 \omega_{\text {B }}\right)+P_{\text {res }} * \mu(\omega) \mu\left(\omega^{\prime}\right) .\right]
$$

First term describes coherent scattering, the second one models the relativistic redistribution, while the third describes the total redistribution in the limit of large number of scatterings. $P_{\text {wing }}$ describes the scattering in the wings of line, it could be found in (Kneer, 1975), $\mathrm{P}_{\text {res }} \approx \beta_{\mathrm{T}}$ describes the probability of noncoherent scattering for photon from the line's core.

Exact vs. Approximate Redistribution function

Domparision of redistribution of a bunch of photons with initial frequency $\omega=\omega_{\mathrm{B}}\left(1-0.8 \beta_{\mathrm{T}}\right)$ and initial angle $\cos \theta=1$ calculated for exact RF (black curves) and approximated RF (red curves).

$$
\mathrm{T}=100 \mathrm{e} \mathrm{~V}
$$

Preliminary calculations

Summary

