. Sabancı . Üniversitesi

Glitches as Probes of Neutron Star Internal Structure and Dynamics

Erbil Gügercinoğlu Sabancı University

Physics of Neutron Stars 2017 Conference, 10-14 July 2017

Pulsar Glitches

- Glitch \rightarrow sudden increase in pulsar rotation and spindown rates. $\frac{\Delta\Omega}{\Omega} = 10^{-12} - 10^{-5}, \quad \frac{\Delta\dot{\Omega}}{\dot{\Omega}} = 10^{-4} - 10^{-1}$
- Rapid spin-up and long recovery —> bulk superfluid manifestation.

Glitches as Probes of Neutron Star Structure

In literature

- Crust-core coupling (Abney et al. 1996),
- Redistribution of excess angular momentum within different layers (Howitt et al. 2016),
- Spin-up in neutral and charged superfluids (Easson 1979),
- Constraining the bulk properties of neutron star matter (Van Eysden & Melatos 2010),
- Equation of State (Link et al. 1999).

In this work

- Internal magnetic field configuration,
- Temperature evolution.

Standard Glitch Model and Challenge

- Crustal superfluid and crust are coupled via thermally activated creep.
- At the time of a glitch (Alpar et al. 1984),
 - Large number of vortices unpin and impart angular momentum to crust
 - Spin up glitch ______coupling decreases ______superfluid decouples
- <u>Theoretical challenge</u>
- Chamel (2012) band theory calculations reveal that scattering of dripped neutrons from crystal reduces superfluid mobility.

_ Decrease in angular momentum reservoir $\sim (m_{\rm n}/m_{\rm n}^*)I_{\rm s}\delta\Omega_{\rm s}$

- Way out: Involvement of core superfluid in glitches.
- 1) Superfluid decoupling from external torque (Gügercinoğlu & Alpar 2014)
- 2) Core superfluid participation (Gügercinoğlu & Alpar 2016)

Vortex Pinning and Creep Against Flux Tubes

- Flux tubes provide pinning/creep sites for vortex lines (Sidery & Alpar 2009).
- If flux tubes have poloidal configuration, pinning and creep will depend on the angle between rotation and magnetic axes.
- Toroidal arrangement of flux tubes inevitably constrain the motion of the vortices.

Lander (2014)

Vortex Creep Across Flux Tubes Model

Gügercinoğlu & Alpar (2014, 2016)

Predictions:

- Only the toroidal field region (a rather small portion of core) participates in glitches accounts for why glitch magnitudes are tiny.
- Neutron star core response to each glitch in spin down rate $\dot{\Omega}$ is exponential recovery:

$$\Delta \dot{\Omega}_c(t) = -\frac{I_{\rm tor} \Delta \Omega}{I} e^{-t/\tau_{\rm tor}},$$

with the toroidal filed region's relaxation timescale

$$\begin{split} \tau_{\rm tor} &\simeq 60 \left(\frac{|\dot{\Omega}|}{10^{-10} \ \text{rad s}^{-2}} \right)^{-1} \left(\frac{T}{10^8 \ \text{K}} \right) \left(\frac{R}{10^6 \ \text{cm}} \right)^{-1} x_{\rm p}^{1/2} \\ &\times \left(\frac{m_{\rm p}^*}{m_{\rm p}} \right)^{-1/2} \left(\frac{\rho}{10^{14} \ \text{g cm}^{-3}} \right)^{-1/2} \left(\frac{B_{\phi}}{10^{14} \ \text{G}} \right)^{1/2} \text{days}, \end{split}$$

 As a pulsar ages relaxation timescale becomes longer —> glitches resemble step like changes —> supported by observations (Espinoza et al. 2011, Yu et al. 2013).

Observations vs Model

- $au_{\rm tor} \approx au_{\rm d}$ then $I_{\rm tor} / I \sim Q$.
- $au_{\text{tor}} \gg au_{\text{d}}$ then $I_{\text{tor}} / I \leq 1 Q$ can be said.
- So, glitch observations bring constraints into magnetic field configuration.
- 41 pulsars underwent 76 glitches with exponential decay.
- Of these, 60 glitches with one exponential decay component, 14 glitches with two exponential decay components and 2 glitches with three exponential decay components were detected.

 Model 1:Akmal et al. (1998) EOS. Cooling behavior Yakovlev et al. (2011). Torus extends to R=0.6R*.
 SF-SC coupling parameters from Chamel (2008).

 Model 2: Lattimer & Swesty (1991) EOS. Cooling behavior Yakovlev et al. (2011). Toroid region's response at R=0.9R*.
 SF-SC coupling parameters from Borumand et al. (1996).

 Model 3: Douchin & Haensel (2001) EOS. Cooling behavior Aguilera et al. (2008). Toroid region's response at R=0.8R*.
 SF-SC coupling parameters from Chamel (2008).

Magnetar Glitch Pecularities

- Magnetars display unstable spindown and burst like activities.
- Strong evidence that both magnetospheric processes and internal superfluid play an important role in their glitches.
- Anomalous *Q* values > overshooting or relaxation.
- Due to magnetic field decay magnetar spindown rates are low (Dall'Osso et al. 2012).
- As a result of magnetic field decay magnetars have higher temperatures (Beloborodov ve Li 2016).
- Magnetars behave different from radio pulsars.
- Magnetar glitches require diffrent physical explanation.

Results for Magnetar Glitches

- Toroidal field component carry over some of its magnetic energy to the poloidal field so that in magnetars $B_\phi \lesssim 0.01 B_{
 m p}$ Fujisawa & Kisaka (2014).
- If the density of the core exceeds a critical threshold direct Urca cooling takes place.
- Magnetar surface thermal emisson can be explained by a cooler core + a heater in the crust (Kaminker et al. 2009, Beznogov & Yakovlev 2015).
- Variable external torque and superfluid coupling results in extra terms in Q values (Gügercinoğlu & Alpar 2017).

Magnetar	Age (10 ⁴ yr)	$^{B_{d}}_{(10^{12} G)}$	Glitch Date (MJD)	$\frac{\Delta \nu_g / \nu}{(10^{-9})}$	$\frac{\Delta \nu_g / \nu}{(10^{-3})}$	Q	τ _d (d) (observation)	τ _{tor} (d) (Modified Urca)	τ _{tor} (d) (Direct Urca)
4U 0142+61	6.8	134	53809	1630(350)	5100(1100)	1.1(3)	17.0(1.7)	381	23
1RXS J1708-4009	0.9	468	52014.77	4210(330)	546(62)	0.97(11)	50(4)	166	12
SGR J1822-1606	44	51	55756	230(10)	-	1.0	40(6)	1079	55
$1E\ 1841{-}045$	0.46	703	5246.400448	15170(711)	848(76)	0.63(5)	43(3)	125	10
$1E\ 2259{+}586$	23	59	52443.13(9)	4240(110)	-22(3)	0.185(10)	15.9(6)	556	30

Conclusions

- Pulsar glitch observations can be used to place stringent constraints on the equation of state.
- Post-glitch exponential decay observations provide indirect measure for internal magnetic field configuration.
- Magnetar glitch observations are best explained by a core in which direct Urca cooling operates.
- Glitches with external torque variation implies a strong coupling between the internal superfluid and spinning down or up magnetospheric or accretion torques.
- Details can be found in Gügercinoğlu 2017, MNRAS, 469, 2313.

Thank You for Attention...