Luminosity of Synchrotron **Radiation** in Pulsar Magnetosphere

Shota Kisaka (Aoyama Gakuin University) Shuta J. Tanaka (Konan University)

Kisaka & Tanaka (2017) ApJ 833 76

X-ray and Optical Emission

- GeV γ-ray is considered to be emitted by accelerated particles.
- X-ray and optical emission are considered as the emission from secondary e[±].
- X-ray and optical emission, and the combination with γ-ray emission provide valuable information to understand the pair cascade process in the magnetosphere.

Data : Abdo+13, Hou+ 14, Ackermann+ 15, Kargaltsev & Pavlov 08, Kargaltsev+12, Posselt+ 12, Acero+ 13, Prinz & Becker 15, Kuiper & Hermsen 15, Szary+ 17, Hermsen+17, Zavlin & Pavlov 04, Mignani+ 08, 10, 16 L_{sd} and distance are taken from ATNF Pulsar Catalog 1.56 (Manchester+ 05)

Model

<u>Model</u>

- Primary particles emit curvature radiation (CR).
- Synchrotron radiation (SR) is emitted by secondary particles through <u>magnetic (By)</u> or <u>photon-photon (yy)</u> pair creation.

Assumptions

- Physical quantities are described
 <u>by a function of radius r.</u>
- Maximum luminosity is limited by the spin-down luminosity.
- Non-thermal X-ray and optical components are caused by synchrotron radiation.
- **Dipole structure** dominates near the light cylinder.
- Seed photons are <u>thermal X-rays from the heated polar cap</u>.

Observed values

$$\begin{array}{c}P,\dot{P},\,L_{\rm pc},E_{\rm pc},E_{\rm cur},\,\boldsymbol{\nu}_{\rm obs}\\ (L_{\rm sd},B_{\rm s})\quad (\gamma\gamma)\quad (\gamma\gamma)\end{array}$$

ts L_{cur} e^{\pm} L_{sec} e^{\pm} L_{sec} t cylinder. <u>e heated polar cap</u>.

Model parameters

 $\eta \ lpha_0, \zeta_{
m B} \,$ (only non-dipole case)

Synchrotron Luminosity $L_{syn} = P_{syn} \dot{N}_{s} \min\{t_{ad}, t_{cool,syn}\}$

Primary e[±] CR photons Secondary e[±] SR photons

Ruderman & Sutherland 75

Synchrotron Luminosity $L_{syn} = P_{syn} \dot{N}_{s} \min\{t_{ad}, t_{cool,syn}\}$

Pitch angle

$$\sim \begin{cases} \sqrt{r/R_{\rm lc}} & (\text{dipole}) \\ \alpha_0 (\leq 1) & (\text{non-dipole}) \end{cases}$$

Curvature radius

$$R_{\rm cur} \sim \begin{cases} \sqrt{rR_{\rm lc}} & ({\rm dipole}) \\ r & ({\rm non-dipole}) \end{cases}$$

Magnetic field strength

 $B(r) \equiv \zeta_{\rm B} B_{\rm dip}(r), \ (\zeta_{\rm B} \ge 1)$

Constraints

Energy of secondary e[±]

$$\gamma_{\mathrm{s,pair}} > \gamma_{\mathrm{s,syn}}$$

$$\gamma_{\rm s,syn} = \gamma_{\rm s}(\nu_{\rm obs})$$

$$\gamma_{\rm s,pair} = \gamma_{\rm s}(E_{\rm cur})$$

• SR condition O'Dell & Sartori 70, Rudak & Dyks 99

$$\gamma_{\rm s,syn} \alpha > 1$$

• Pair production threshold

$$(1 - \cos heta_{
m col}) E_{
m pc} E_{
m cur} > 2 (m_{
m e} c^2)^2$$
 (VY)

$$\frac{E_{\rm cur}}{2m_{\rm e}c^2}\frac{B_{\perp}}{B_{\rm q}} > \chi_{\rm min}\left(=\frac{1}{15}\right) \tag{By}$$

In $\gamma\gamma$ scenario, the X-ray luminosity of pulsars with $L_{sd} < 10^{35}$ erg s⁻¹ is higher than the SR luminosity even if $\eta = 1$.

Even if By scenario with dipole field, the X-ray luminosity of pulsars with $L_{sd} < 10^{33}$ erg s⁻¹ is higher than the SR luminosity.

γ-ray detected radio-loud pulsars
 γ-ray detected radio-quiet pulsars
 Other pulsars

L_{syn} – L_{sd} Plots

In $\gamma\gamma$ scenario, the optical luminosity of pulsars with $L_{sd} < 10^{35}$ erg s⁻¹ is also higher than the SR luminosity.

For pulsars with $L_{sd} < 10^{32}$ erg s⁻¹, By process cannot work at the region $\hbar \omega_{gyro} < 1eV$ even in the non-dipole B-field.

- γ-ray detected radio-loud pulsars
 γ-ray detected radio-quiet pulsars
- Cher pulsars
- ▼: Observed upper limit

Flux Ratio (F_v/F_{opt})

Discussion

Multiple accelerators ?

e.g., Yuki & Shibata 12 Petrova 13 Marelli+ 14 Philippov+ 15

•Another energy source ?

e.g., Dissipation of magnetic field ?

• Resonant Compton scattering ?

e.g., Zhang & Harding 00

•Another mechanism to give the pitch angle ?

e.g., Machabeli & Usov 79

Small pitch angle SR ?

e.g., Epstein 73, SK & Tanaka 14

Emission from inwardly moving e[±] ?

e.g., Wang+ 13, but see also SK & Tanaka 15

X-ray, optical

Summary

- We analytically calculate the luminosity of synchrotron radiation from secondary e[±] in the pulsar magnetosphere.
- Since the energy conversion efficiency η should be close to unity, significant fraction of electromagnetic energy should convert to the particle energy in the magnetosphere.
- In $\gamma\gamma$ scenario, the observed non-thermal X-ray luminosity exceed the upper limit for γ -ray pulsars with $L_{sd} < 10^{35}$ erg s⁻¹. In addition, the flux ratio F_{γ}/F_{χ} significantly lower than the synchrotron emission model. Other emission mechanisms or multiple accelerators are required for low- L_{sd} pulsars.

Synchrotron Luminosity ($\gamma\gamma$) $L_{\rm syn} = P_{\rm syn} \dot{N}_{\rm s} \min\{t_{\rm ad}, t_{\rm cool, syn}\}$

<u>The most optimistic case</u> (cooling time << advection time)

Radiation efficiency

$$\epsilon_{\rm syn} \equiv \frac{L_{\rm syn}}{L_{\rm sd}} \sim \eta \tau_{\gamma\gamma} \frac{\gamma_{\rm s,syn} \alpha}{\gamma_{\rm s,pair}}$$

Energy conversion efficiency

$$\eta \equiv \frac{\dot{N}_{\rm p} \gamma_{\rm p} m_{\rm e} c^2}{L_{\rm sd}} \qquad \qquad \gamma_{\rm s,syn} = \gamma_{\rm s}(\nu_{\rm obs})$$
$$\gamma_{\rm s,pair} = \gamma_{\rm s}(E_{\rm cur}) = \frac{E_{\rm cur}}{2m_{\rm e}c^2}$$

Synchrotron Luminosity (By) $L_{\rm syn} = P_{\rm syn} \dot{N}_{\rm s} \min\{t_{\rm ad}, t_{\rm cool, syn}\}$

<u>The most optimistic case</u> (cooling time << advection time)

Radiation efficiency

$$\epsilon_{\rm syn} \equiv \frac{L_{\rm syn}}{L_{\rm sd}} \sim \eta \frac{\gamma_{\rm s,syn} \alpha m_{\rm e} c^2}{E_{\rm esc}}$$

Energy conversion efficiency

$$\eta \equiv \frac{\dot{N}_{\rm p} \gamma_{\rm p} m_{\rm e} c^2}{L_{\rm sd}}$$

$$\gamma_{\rm s,syn} = \gamma_{\rm s}(\nu_{\rm obs})$$

$$E_{\rm esc} = 2m_{\rm e}c^2\chi_{\rm min}\frac{B_{\rm q}}{B_{\perp}}$$

 $\eta = 1$

Light cylinder

Upper boundary

$$R_{\rm lc} = Pc/2\pi$$

Secondary e[±] energy

$$\gamma_{
m s,pair} > \gamma_{
m s,syn}$$

Lower boundary

Pair creation threshold

$$(1 - \cos\theta_{\rm col})E_{\rm pc}E_{\rm cur} > 2(m_{\rm e}c^2)^2$$

The maximum SR luminosity is given at $r = R_{lc}$ (even the model extends to $r > R_{lc}$).

Synchrotron Radiation from Pulsars

We derive the luminosity of the synchrotron radiation and compare its with the observed non-thermal luminosity to investigate the pair cascade process in the magnetosphere.

Luminosity of Synchrotron **Radiation** in Pulsar Magnetosphere

Shota Kisaka (Aoyama Gakuin University) Shuta J. Tanaka (Konan University)

Kisaka & Tanaka (2017) ApJ 833 76

X-ray and Optical Emission

 GeV γ-ray is considered to be emitted by accelerated particles.

- X-ray and optical emission are considered as the emission from secondary e[±].
- X-ray and optical emission, and the combination with γ-ray emission provide valuable information to understand the pair cascade process in the magnetosphere.

Data : Abdo+13, Hou+ 14, Ackermann+ 15, Kargaltsev & Pavlov 08, Kargaltsev+12, Posselt+ 12, Acero+ 13, Prinz & Becker 15, Kuiper & Hermsen 15, Szary+ 17, Hermsen+17, Zavlin & Pavlov 04, Mignani+ 08, 10, 16 L_{sd} and distance are taken from ATNF Pulsar Catalog 1.56 (Manchester+ 05)

Model

<u>Model</u>

- Primary particles emit curvature radiation (CR).
- Synchrotron radiation (SR) is emitted by secondary particles through magnetic (By) or photon-photon (yy) pair creation.

Assumptions

- Physical quantities are described
 <u>by a function of radius r.</u>
- Maximum luminosity is limited by the spin-down luminosity.
- Non-thermal X-ray and optical components are caused by synchrotron radiation.
- Dipole structure dominates near the light cylinder.
- Seed photons are <u>thermal X-rays from the heated polar cap</u>.

Observed values

 $P, \dot{P}, L_{
m pc}, E_{
m pc}, E_{
m cur}, rac{
u_{
m obs}}{(L_{
m sd}, B_{
m s})} (\gamma \gamma) (\gamma \gamma)$

Model parameters

 $\eta \ lpha_0, \zeta_{
m B}$ (only non-dipole case)

Synchrotron Luminosity $L_{syn} = P_{syn} \dot{N}_{s} \min\{t_{ad}, t_{cool,syn}\}$

Primary e[±] CR photons Secondary e[±] SR photons

Ruderman & Sutherland 75

Synchrotron Luminosity $L_{syn} = P_{syn} \dot{N}_{s} \min\{t_{ad}, t_{cool,syn}\}$

Pitch angle

$$\sim \begin{cases} \sqrt{r/R_{\rm lc}} & ({\rm dipole}) \\ & \\ & \alpha_0 (\leq 1) & ({\rm non-dipole}) \end{cases}$$

Curvature radius

$$R_{\rm cur} \sim \begin{cases} \sqrt{rR_{\rm lc}} & ({\rm dipole}) \\ r & ({\rm non-dipole}) \end{cases}$$

Magnetic field strength

 $B(r) \equiv \zeta_{\rm B} B_{\rm dip}(r), \ (\zeta_{\rm B} \ge 1)$

Constraints

Energy of secondary e[±]

$$\gamma_{\rm s,pair} > \gamma_{\rm s,syn}$$

$$\gamma_{\rm s,syn} = \gamma_{\rm s}(\nu_{\rm obs})$$

$$\gamma_{\rm s,pair} = \gamma_{\rm s}(E_{\rm cur})$$

• SR condition O'Dell & Sartori 70, Rudak & Dyks 99

$$\gamma_{\rm s,syn} \alpha > 1$$

Pair production threshold

$$(1 - \cos heta_{
m col}) E_{
m pc} E_{
m cur} > 2 (m_{
m e} c^2)^2$$
 (VY)

$$\frac{E_{\rm cur}}{2m_{\rm e}c^2}\frac{B_{\perp}}{B_{\rm q}} > \chi_{\rm min}\left(=\frac{1}{15}\right) \tag{By}$$

In $\gamma\gamma$ scenario, the X-ray luminosity of pulsars with $L_{sd} < 10^{35}$ erg s⁻¹ is higher than the SR luminosity even if $\eta = 1$.

Even if By scenario with dipole field, the X-ray luminosity of pulsars with $L_{sd} < 10^{33}$ erg s⁻¹ is higher than the SR luminosity.

γ-ray detected radio-loud pulsars
 γ-ray detected radio-quiet pulsars
 Other pulsars

L_{syn} – L_{sd} Plots

In $\gamma\gamma$ scenario, the optical luminosity of pulsars with $L_{sd} < 10^{35}$ erg s⁻¹ is also higher than the SR luminosity.

For pulsars with $L_{sd} < 10^{32}$ erg s⁻¹, By process cannot work at the region $\hbar \omega_{gyro} < 1eV$ even in the non-dipole B-field.

- γ-ray detected radio-loud pulsars
 γ-ray detected radio-quiet pulsars
- Other pulsars
- ▼: Observed upper limit

Flux Ratio (F_v/F_{opt})

Luminosity of CR

 $L_{\rm cur} = \eta L_{\rm sd}$ $(t_{\rm cool, cur} < t_{\rm ad})$

Flux ratio dose not depend on η.

Low-L_{sd} pulsars require additional emission mechanisms in X-ray and optical.

Discussion

Multiple accelerators ?

e.g., Yuki & Shibata 12 Petrova 13 Marelli+ 14 Philippov+ 15

•Another energy source ?

e.g., Dissipation of magnetic field ?

•Resonant Compton scattering ?

e.g., Zhang & Harding 00

•Another mechanism to give the pitch angle ?

e.g., Machabeli & Usov 79

Small pitch angle SR ?

e.g., Epstein 73, SK & Tanaka 14

• Emission from inwardly moving e^{\pm} ?

e.g., Wang+13, but see also SK & Tanaka 15

X-ray, optical

Summary

- We analytically calculate the luminosity of synchrotron radiation from secondary e[±] in the pulsar magnetosphere.
- Since the energy conversion efficiency η should be close to unity, significant fraction of electromagnetic energy should convert to the particle energy in the magnetosphere.
- In $\gamma\gamma$ scenario, the observed non-thermal X-ray luminosity exceed the upper limit for γ -ray pulsars with $L_{sd} < 10^{35}$ erg s⁻¹. In addition, the flux ratio F_{γ}/F_{χ} significantly lower than the synchrotron emission model. Other emission mechanisms or multiple accelerators are required for low- L_{sd} pulsars.

Synchrotron Luminosity ($\gamma\gamma$) $L_{\rm syn} = P_{\rm syn} \dot{N}_{\rm s} \min\{t_{\rm ad}, t_{\rm cool, syn}\}$

<u>The most optimistic case</u> (cooling time << advection time)

Radiation efficiency

$$\epsilon_{\rm syn} \equiv \frac{L_{\rm syn}}{L_{\rm sd}} \sim \eta \tau_{\gamma\gamma} \frac{\gamma_{\rm s,syn} \alpha}{\gamma_{\rm s,pair}}$$

Energy conversion efficiency

$$\eta \equiv \frac{\dot{N}_{\rm p} \gamma_{\rm p} m_{\rm e} c^2}{L_{\rm sd}} \qquad \qquad \gamma_{\rm s,syn} = \gamma_{\rm s}(\nu_{\rm obs})$$
$$\gamma_{\rm s,pair} = \gamma_{\rm s}(E_{\rm cur}) = \frac{E_{\rm cur}}{2m_{\rm e}c^2}$$

Synchrotron Luminosity (By) $L_{\rm syn} = P_{\rm syn} \dot{N}_{\rm s} \min\{t_{\rm ad}, t_{\rm cool, syn}\}$

<u>The most optimistic case</u> (cooling time << advection time)

Radiation efficiency

$$\epsilon_{\rm syn} \equiv \frac{L_{\rm syn}}{L_{\rm sd}} \sim \eta \frac{\gamma_{\rm s,syn} \alpha m_{\rm e} c^2}{E_{\rm esc}}$$

Energy conversion efficiency

$$\eta \equiv \frac{\dot{N}_{\rm p} \gamma_{\rm p} m_{\rm e} c^2}{L_{\rm sd}}$$

$$\gamma_{\rm s,syn} = \gamma_{\rm s}(\nu_{\rm obs})$$

$$E_{\rm esc} = 2m_{\rm e}c^2\chi_{\rm min}\frac{B_{\rm q}}{B_{\perp}}$$

Light cylinder

 $R_{\rm lc} = Pc/2\pi$

Secondary e^{\pm} energy

 $\gamma_{\rm s,pair} > \gamma_{\rm s,syn}$

Pair creation threshold

 $(1 - \cos \theta_{\rm col}) E_{\rm pc} E_{\rm cur} > 2(m_{\rm e}c^2)^2$

Synchrotron Radiation from Pulsars

We derive the luminosity of the synchrotron radiation and compare its with the observed non-thermal luminosity to investigate the pair cascade process in the magnetosphere.