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Introduction

• Physics of pulsars : need to study electromagnetic field
• Basic assumptions : standard centred dipolar field

• Multipolar : Recent efforts include higher multipolar components
[Pétri(2015)]

• Off-centred : More general picture where magnetic dipole moment is shifted
off from the geometrical centre

• But why would we do that?
• Light curves, spectra, polarization features don’t fit well with present models
• Possible for stars and planets [Stift(1974)], [Komesaroff(1976)]
• Offset idea applied by [Harding & Muslimov(2011)], High braking index

observations [Archibald et al (2016)], Offset dipole magnetic field by
[Barnard et al(2016)]

• Exact analytic solutions for an offset rotating dipole electromagnetic field in
vacuum [Pétri(2016)]

• We study the consequences of this field topology (first order correction) on
radiation properties [Kundu(2017)]
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Off-centred geometry

• Magnetic moment:
~µ = m(sinα cosβ, sinα sinβ, cosα)

• Located at ~d = D(sin δ, 0, cos δ)

• Condition : ε = D/R � 1

• α, β, δ shuffled to change
orientations

• 2 ms period pulsar

• ε = 0.2 for off-centred calculations

Figure : Geometry of an off-centred pulsar
([Pétri(2017)])
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PC : Why and How?

• PC - locus of the feet of the last
closed field lines

• Central to the pulsed emission

• Radio emission : polar cap model
[Sturrock(1971)]

• High energy emission : slot gap
model [Arons(1983)]

• θ calculated corresponding to field
lines grazing the light cylinder

Figure : A schematic representation of the
different geometric pulsar models
([Harding (2004)])
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PC geometry
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Emission : Why and How?

• Light curves give insight into magnetic topology

• Two-pole caustic model explained by [Dyks & Rudak(2003)], revised by
[Bai & Spitkovsky(2010)].

• Aberration formula to transform photon propagation direction from the
corotating frame βc to the lab frame β0

β0 = f B + βc

where f is a coefficient determined by |β0| → 1.

• Considering photon travel delays, phase φ is

φ = −φem − r · β0/RL

where φem is the azimuth for the direction β0 and RL is the radius of the
light cylinder.
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High energy emission

High energy emission for off-centred cases with ε = 0.2
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High energy emission

High energy emission for an off-centred (ε = 0.2) case of (α, β, δ) = (90°, 90°, 90°)
for one pole.
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Radio emission
Radio emission for sections of heights from surface within range [Hl ,Hu ] = [R, 5R]

for (α, β, δ) = (90°, 90°, 90°) for off-centred case (ε = 0.2).
Blue boundary depicts the outer rim of the emission region.
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Radio emission

Radio emission for off-centred cases with ε = 0.2
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Light curves for α = 30°
Phase zero light curves for (α, β, δ) = (30°, 0°, 0°) for ζ = 20° , 30° , 40° , 50°

Centred case (ε = 0) and Off-centred case (ε = 0.2)
High energy emission : Solid; Radio emission : Dashed
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Light curves for α = 30°
Phase zero light curves for (α, β, δ) = (30°, 0°, 0°) for ζ = 130° , 140° , 150° , 160°]

Centred case (ε = 0) and Off-centred case (ε = 0.2)
High energy emission : Solid; Radio emission : Dashed
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Conclusions

• The off-centred topology is a reliable approach trying to better explain the
polar caps and fit the light curves.

• Polar cap comparison shows shift highlighting difference in size and phase
difference, could justify the pulse widths away from the power law fit.

• Phase diagrams gives insight into site of production of pulsed radiation for
better understanding of the emission mechanism.

• Comparison of the emission light curves shows phase contrasts between the
radio and high-energy profiles, could explain observational signatures of time
lags between the two.

• Future works:
Work in progress to create the broadband spectrum of pulsar radiation.
All this work will then be extended to pulsar force-free magnetospheres.
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Thank You!
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