

Why after 50 years is there no consensus on the pulsar radio emission mechanism?

or

What is the most plausible (= least implausible) amongst suggested emission mechanisms?

Don Melrose

School of Physics University of Sydney

July 10, 2017

Summary of Talk

- Coherent emission in astrophysics
- Why no consensus? Observations
- Why no consensus? Theory
- Specific emission mechanisms: overview
- Properties of pulsar plasma
- Coherence mechanisms
- Coherent curvature emission (CCE)
- Relativistic plasma emission (RPE)
- Anomalous Doppler emission (ADE)
- Wave dispersion: cold pulsar plasma model
- Effect of relativistic spread in energy ($\langle \gamma
 angle \gg 1$)
- Wave dispersion: conventional pulsar plasma
- Beam-driven RPE revisited
- Rotation-driven RPE
- Summary and conclusions

Coherent emission in astrophysics

Identification of coherent emission

- \blacktriangleright Early 1950s: most sources due to synchrotron emission incoherent gyromagnetic emission with $\gamma \gg 1$
- ► => brightness limited by synchrotron (self-) absorption => $T_B \lesssim \gamma m_e c^2$ (1 MeV $\approx 10^{10}$ K)
- ▶ exception: solar radio burst with $T_B \gg 10^{10}$ K => not due to incoherent emission
- Called "coherent emission" = "non-incoherent emission"

Two well-estabilished coherent emission mechanisms

- ▶ Plasma emission: emission at $\omega_p, 2\omega_p$ in solar radio bursts
- Electron cyclotron maser emission (ECME): emission at Ω_e from planetary magnetospheres & solar and stellar flares

Pulsar radio emission has extreme $T_B \gtrsim 10^{30} \, { m K}$

=> must involve some form of coherent emission

Why no consensus? Observations Observations of pulsar radio emission

=> many "rules" but exceptions to most rules What rules are to be regarded as essential? Do we emphasize the rules or the exceptions?

Uncertainties

Is there a single emission mechanism?

- Yes: similarity of emission from three classes of pulsars No: difference between core and conal emission
- Location of radio source not known:

Near the last closed field line? At what height?

- Is the emission mechanism broadband or narrowband? Either compatible with radius-to-frequency mapping
- Polarization: rotating vector model => sweep of PA jumps between orthogonal modes circular polarization; large pulse-to-pulse variation
- Polarization strongly modified by propagation effects

Why no consensus? Theory

Pulsar electrodynamics inadequately understood

- Plasma parameters depend on details of pair creation
- Where are pairs created?
- How is radio emission related to pair creation?
- How inhomogeneous is resulting pulsar plasma? Structured along B in bunches? Structured across B implying ducting?

Identification of emission mechanism obscured by:

- Emission by highly relativistic particles
 => beaming of emission along field lines applies to every emission mechanism
- No agreement on coherence mechanism
- Uncertainties concerning wave dispersion in pulsar plasma
- Modifications of emission through propagation effects

Specific emission mechanisms: overview

Classifications of pulsar radio emission mechanisms

- Plasma-emission-like (depend intrinsically on wave dispersion): relativistic plasma emission (RPE) anomalous Doppler emission (ADE)
- ECME-like (exist in vacuo):

coherent curvature emission (CCE) linear acceleration emission (LAE)

free-electron maser emission (FEM) (included in LAE)

 Other: emission by oscillating charge sheets, possible analogy with emission by EASs in air, ...

Coherence mechanisms (Ginzburg & Zhelezynakov 1975)

 Antenna: pre-existing bunches ("Deo ex machina") self-bunching (= reactive or hydrodynamic) instability either requires nearly mono-energetic distribution

► Maser: due to negative absorption

"beam-driven" requires $\partial f(\gamma)/\partial \gamma > 0$ exception ADE driven by anisotropy $p_{\perp} = 0$

Properties of pulsar plasma

Pulsar plasma in polar-cap region

- Strong B => 1D, $p_{\perp} = 0$, no gyration
- Uncertainty: Is stellar surface important source of charge?
- Yes: => "primary" particles: γ ≈ 10⁶−10⁷ "secondary" pair plasma (Hibschman & Arons 2001; Arendt & Eilek 2002)
- ► No: => pair cascade produced without primaries (Timokhin 2010)
- Relativistic pairs streaming outward: $\gamma_s \approx 10^3$?
- Relativistic spread: $\Delta \gamma \approx 10 10^2$?
- Pair multiplicity: $\kappa = n_{\pm}/(
 ho_{
 m cor}/e) pprox 10^5?$

"Conventional" parameters as functions of r/r_L :

$$\frac{\Omega_e}{2\pi} = 3 \times 10^7 \,\mathrm{Hz} \left(\frac{\dot{P}/P^5}{10^{-15}}\right)^{1/2} \left(\frac{r}{r_L}\right)^{-3}, \qquad \frac{\omega_P}{2\pi} = 7 \times 10^3 \,\mathrm{Hz} \left(\frac{\kappa}{10^5}\right)^{1/2} \left(\frac{\dot{P}/P^7}{10^{-15}}\right)^{1/4} \left(\frac{r}{r_L}\right)^{-3/2}$$

$$\beta_A^2 = \frac{\Omega_e^2}{\omega_p^2 \langle \gamma \rangle} = 30 \left(\frac{10}{\langle \gamma \rangle}\right) \left(\frac{10^5}{\kappa}\right) \left(\frac{\dot{P}/P^3}{10^{-15}}\right)^{1/2} \left(\frac{r}{r_L}\right)^{-3}$$

 $P = 1 \text{ s}, \ \dot{P} = 10^{-15}, \ r = 0.1 r_L \quad = > \quad \Omega_e / 2\pi = 30 \text{ GHz}, \quad \omega_p / 2\pi = 20 \text{ kHz}, \quad \beta_A^2 = 3 \times 10^4$

Coherent curvature emission (CCE)

Arguments for & against CCE:

Observational features consistent with CE (e.g., Mitra et al. 2009)

Theoretical arguments suggest CCE untenable (Melrose 1980, 1995)

Coherence due to bunches

- Frequency: incoherent CE peaks at $\omega pprox (c/R_c)\gamma^3$
- Problems with assumed emission by bunches:
 - requires mechanism to produce bunching
 - bunch disperses quickly unless nearly mono-energetic
 - \blacktriangleright inconsistent with expected relativistic spread in γ

Maser curvature emission

- Maser impossible in simplest case (Blandford 1975; Melrose 1978)
- Maser possible when additional effects included (Zheleznyakov & Shaposhnikov 1979; Chugunov & Shaposhnikov 1988; Luo & Melrose 1992, 1995)
- Driven by $\partial f(\gamma)/\partial \gamma > 0 =>$ small γ
- No realistic model based on maser curvature emission

My opinion of CCE: untenable

Relativistic plasma emission (RPE)

Ongoing arguments in favor of RPE notably to explain Crab nanoshot (Eilek & Hankins 2016)

Beam-driven Langmuir-like waves

• Beam along **B** at speed $\beta_b c$

► Resonance condition
$$\beta_{\phi} = \omega/k_{\parallel}c = \beta_b => \gamma_{\phi} = \gamma_b$$

 $\gamma_{\phi} = (1 - \beta_{\phi}^2)^{-1/2}$, $\gamma_b = (1 - \beta_b^2)^{-1/2}$

• Early literature: waves assumed to be Langmuir-like, $\omega \approx \omega_p$

- Estimated growth rates too small to be effective
- Inhomogeneous model (Usov 1987; Ursov & Usov 1988) faster particles in following beam overtake slower particles in preceding beam
- ► Conversion process a "bottle-neck" (Usov 2000)

Realistic model for dispersion in pulsar plasma => no "Langmuir-like waves" with $\beta_{\phi} < 1$

Beam-driven Alfvén waves

Dispersion relations in the rest frame of cold pulsar plasma (Lyutikov 1999). Beam-driven waves generated where dispersion curve crosses line $\omega/k_{\parallel}c = \beta_b$ at an angle $1/\gamma_b$ to the (dotted) light line.

- RPE due to beam driven Alfvén waves (Kaplan & Tsytovich 1972; Lominadze et al. 1982; Lyutikov 1999)
- Large growth rate estimated
 - => most favorable form of RPE?
- Realistic model for wave dispersion suggests otherwise

Anomalous Doppler emission (ADE)

Instability driven by extreme anisotropy, $p_\perp=0$

(Machabeli & Usov 1979; Kazbegi et al. 1991; Lyutikov et al. 1999)

- ► Resonance condition: $\omega s\Omega_e/\gamma k_{\parallel}v_{\parallel} = 0$, s = -1
- Requires $\beta > \beta_{\phi} = \omega / k_{\parallel} c$ or $\gamma > \gamma_{\phi}$
- Frequency: $\omega = 2\gamma_{\phi}^2 \Omega_e \gamma / (\gamma^2 \gamma_{\phi}^2) \approx 2\gamma_{\phi}^2 \Omega_e / \gamma$
- Example: X or O mode

•
$$\gamma_{\phi} = \beta_A$$
 with $\beta_A \gg 1$

► above numbers =>
$$\frac{\omega}{2\pi} = \frac{10^{15} \text{ Hz}}{\gamma} \left(\frac{\dot{P}/P^4}{10^{-15}}\right) \left(\frac{r}{r_L}\right)^{-6}$$

- Observed frequencies require $\gamma = 10^{6} 10^{7}$, $\dot{r} \approx r_{L}$
- \blacktriangleright => higher frequencies for shorter P

My opinion of ADE: Untenable for "conventional" parameters

Wave dispersion: cold pulsar plasma model

Waves in rest frame of cold pulsar plasma

- Cyclotron frequency \gg radio frequencies ($\Omega_e \gg \omega$)
- Cold plasma model in plasma rest frame
 - => two wave modes, labeled O and X $_{\rm (Arons\,\&\,Barnard\,1986)}$
- ▶ X-mode dispersion relation $\omega = kc\beta_0$, $\beta_0 \approx 1 + 1/2\beta_A^2$
- L mode θ = 0 crosses Alfvén mode reconnection => O-mode and Alfvén for θ ≠ 0

Dispersion curves in rest frame of cold pulsar plasma (Lyutikov 1999). Relativistic dispersion modifies O and Alfvén mode X mode unchanged. Cold-plasma model misleading: resonance in Alfvén mode artefact

Effect of relativistic spread in energy ($\langle \gamma \rangle \gg 1$) Dispersion in pulsar plasma

- Dispersive properties in 1D pair plasma studied since 1970s implications still not widely recognized
- \blacktriangleright Relativistic streaming: $\gamma_{\rm s}\gg 1$ in pulsar frame removed by Lorentz transform to plasma rest frame
- Two essential parameters: $\langle \gamma
 angle \sim$ 10–100, $eta_{A} \gg$ 1
- Dispersion not sensitive to choice of $f(\gamma)$ (Melrose & Gedalin 1999)

Plots of dispersion relations

- ▶ 1D Jüttner: $f(\gamma) \propto e^{-\rho\gamma}$, $\rho = mc^2/T$ nonrelativistic $\rho = c^2/V^2 \gg 1$ → relativistic $\rho = 1/\langle \gamma \rangle \ll 1$
- Plots ω vs k_{||}c, diagonal β_φ = ω/k_{||}c = 1
 => resonance β = β_φ possible only below diagonal
- ► X mode insensitive to ρ : $n_X = 1/\beta_0 \approx 1 + 1/2\beta_A^2$ not included in plots shown here

Dispersion curves: $\rho = 20, \ \beta_A \gg 1$ LO mode (upper) Alfvén mode (lower) curves: $\theta = 0$ (solid) & $\theta = n \times 0.25, \ n = 1-5$ Landau damping strong below turnover.

Dispersion curves: $\rho = 1, \ \beta_A \gg 1$ Alfvén mode: maximum $\omega \downarrow$ as $\theta \uparrow$ maximum along line $\omega/k_{\parallel}c \approx 1 - \delta$, maybe $\delta \approx 1/\langle \gamma \rangle^2$?

Wave dispersion: conventional pulsar plasma

X mode vacuum-like for all $\langle \gamma \rangle$: $\omega = kc\beta_0$, $\beta_0 \approx 1 + 1/2\beta_A^2$ Only LO mode & Alfvén mode need comment

Parallel propagation

- Distinct L & A modes
- L mode cutoff ($k_{\parallel}=0$): $\omega_{c}=\omega_{p}\langle\gamma^{-3}\rangle^{1/2}$

• Crosses
$$\omega = k_{\parallel}c$$
 at $\omega_1 \approx \omega_p \langle \gamma \rangle^{1/2}$
 $\omega > k_{\parallel}c$ in range $\omega_c < \omega < \omega_1$
 $\omega < k_{\parallel}c$ in tiny range $\omega_1 < \omega < \omega_{\max}$

A and X mode degenerate with opposite transverse polns

Oblique propagation

- L & A modes reconnect => LO mode & oblique Alfvén mode
- ► $\theta \uparrow =>$ LO mode moves to left $=> \beta_{\phi} > 1$ => no resonance possible

▶
$$\theta \uparrow =>$$
 Alfvén mode to $\omega \downarrow$ (at $\beta_{\phi} \approx 1 - 1/\langle \gamma \rangle^{2}$?)
=> beam resonance requires $\gamma_{b} \gg \langle \gamma \rangle$

Beam-driven RPE revisited

RPE in LO mode

- ► Resonance possible for LO mode for $\gamma_b > \beta_A$ but only for tiny range of $\theta \approx 0$
- LO mode waves can escape freely (no "bottle-neck") but small growth rate + short growth time => not a realistic emission mechanism

RPE in Alfvén mode

- Resonance possible for $\gamma_b \gg \langle \gamma \rangle$ in rest frame
- Existing models have not treated dispersion accurately
- Problem with inadequate growth rate remains
- Problem with conversion "bottle-neck" remains

My opinion: "least unlikely" suggested emission mechanisms but: no beam-driven RPE seems plausible

Rotation-driven RPE

A non-beam-driven version of RPE seems most favorable

Rotation-driven RPE

- ► Oblique rotator => E_{\parallel} , screening by charges unstable => large-amplitude oscillations (LAOs) in E_{\parallel} (Levinson et al. 2005; Belobodorov & Thompson 2007)
- ▶ Interpretation: rotational energy drives LAOs through E_{\parallel}
- ► LAOs have $1 < \beta_{\phi} < \infty$ (not beam-driven) $\omega_{p} / \langle \gamma \rangle^{1/2} < \omega < \omega_{p} \langle \gamma \rangle^{1/2}$
- Alternative source of LAOs: rotational pumping
 - => parametric instability (Machabeli & Rogava 1994; Machabeli et al. 2005)
- ► Consistent with abrupt slowing down (Kramer et al. 2006; Lyne et al. 2010)

Conversion into escaping radiation

- Acceleration by E_{\parallel} to $\gamma \gg 1$ in LAO => LAE
- Maser LAE produces escaping radiation (Melrose 1978; Melrose et al. 2009; Reville & Kirk 2010)
- ▶ Maser driven by $\partial f(\gamma)/\partial \gamma > 0 => \gamma \lesssim \langle \gamma \rangle$, e.g. $\gamma \lesssim 10$?

My opinion: A detailed model needs to be developed

Summary and conclusions

- Observations: many rules with many exceptions
 => ambiguous constraints on emission mechanism
- Theory: Pulsar electrodynamics inadequately understood no specific emission mechanism favored
- Coherent curvature emission (CCE): dubious coherence mechanism
- Relativistic plasma emission (RPE): no beam-driven "Langmuir-like" waves beam-driven Alfvén waves problematic
- Anomalous Doppler emission (ADE): implausible with conventional parameters
- More realistic alternative needed: Rotation-driven LAOs implied by electrodynamics Maser LAE => escaping radiation no detailed model exists

Another alternative approach: analogy with coherent emission in extensive air showers?