Why after 50 years is there no consensus on the pulsar radio emission mechanism?

or

What is the most plausible (= least implausible) amongst suggested emission mechanisms?

Don Melrose

School of Physics
University of Sydney

July 10, 2017
Summary of Talk

- Coherent emission in astrophysics
- Why no consensus? Observations
- Why no consensus? Theory
- Specific emission mechanisms: overview
- Properties of pulsar plasma
- Coherence mechanisms
- Coherent curvature emission (CCE)
- Relativistic plasma emission (RPE)
- Anomalous Doppler emission (ADE)
- Wave dispersion: cold pulsar plasma model
- Effect of relativistic spread in energy ($\langle \gamma \rangle \gg 1$)
- Wave dispersion: conventional pulsar plasma
- Beam-driven RPE revisited
- Rotation-driven RPE
- Summary and conclusions
Coherent emission in astrophysics

Identification of coherent emission

- Early 1950s: most sources due to synchrotron emission
 incoherent gyromagnetic emission with $\gamma \gg 1$

- \Rightarrow brightness limited by synchrotron (self-) absorption
 $\Rightarrow T_B \lesssim \gamma m_e c^2$ (1 MeV $\approx 10^{10}$ K)

- exception: solar radio burst with $T_B \gg 10^{10}$ K
 \Rightarrow not due to incoherent emission

- Called “coherent emission” = “non-incoherent emission”

Two well-established coherent emission mechanisms

- Plasma emission: emission at $\omega_p, 2\omega_p$ in solar radio bursts

- Electron cyclotron maser emission (ECME): emission at Ω_e
 from planetary magnetospheres & solar and stellar flares

Pulsar radio emission has extreme $T_B \gtrsim 10^{30}$ K

\Rightarrow must involve some form of coherent emission
Why no consensus? Observations

Observations of pulsar radio emission

- => many “rules” but exceptions to most rules
 - What rules are to be regarded as essential?
 - Do we emphasize the rules or the exceptions?

Uncertainties

- Is there a single emission mechanism?
 - Yes: similarity of emission from three classes of pulsars
 - No: difference between core and conal emission
- Location of radio source not known:
 - Near the last closed field line? At what height?
- Is the emission mechanism broadband or narrowband?
 - Either compatible with radius-to-frequency mapping
- Polarization: rotating vector model => sweep of PA
 - jumps between orthogonal modes
 - circular polarization; large pulse-to-pulse variation
- Polarization strongly modified by propagation effects
Why no consensus? Theory

Pulsar electrodynamics inadequately understood

- Plasma parameters depend on details of pair creation
- Where are pairs created?
- How is radio emission related to pair creation?
- How inhomogeneous is resulting pulsar plasma?
 Structured along \mathbf{B} in bunches?
 Structured across \mathbf{B} implying ducting?

Identification of emission mechanism obscured by:

- Emission by highly relativistic particles
 \[\Rightarrow\] beaming of emission along field lines
 applies to every emission mechanism
- No agreement on coherence mechanism
- Uncertainties concerning wave dispersion in pulsar plasma
- Modifications of emission through propagation effects
Specific emission mechanisms: overview

Classifications of pulsar radio emission mechanisms

▶ Plasma-emission-like (depend intrinsically on wave dispersion):
 relativistic plasma emission (RPE)
 anomalous Doppler emission (ADE)
▶ ECME-like (exist in vacuo):
 coherent curvature emission (CCE)
 linear acceleration emission (LAE)
 free-electron maser emission (FEM) (included in LAE)
▶ Other: emission by oscillating charge sheets,
 possible analogy with emission by EASs in air, . . .

Coherence mechanisms (Ginzburg & Zhelezynakov 1975)

▶ Antenna: pre-existing bunches (“Deo ex machina”) self-bunching (= reactive or hydrodynamic) instability
 either requires nearly mono-energetic distribution
▶ Maser: due to negative absorption
 “beam-driven” requires $\partial f(\gamma)/\partial \gamma > 0$
 exception ADE driven by anisotropy $p_\perp = 0$
Properties of pulsar plasma

Pulsar plasma in polar-cap region

- Strong $B \Rightarrow 1D$, $p_\perp = 0$, no gyration
- Uncertainty: Is stellar surface important source of charge?
- Yes: \Rightarrow “primary” particles: $\gamma \approx 10^6–10^7$
 “secondary” pair plasma (Hibschman & Arons 2001; Arendt & Eilek 2002)
- No: \Rightarrow pair cascade produced without primaries (Timokhin 2010)
- Relativistic pairs streaming outward: $\gamma_s \approx 10^3$?
- Relativistic spread: $\Delta \gamma \approx 10–10^2$?
- Pair multiplicity: $\kappa = n_\pm/(\rho_{\text{cor}}/e) \approx 10^5$?

“Conventional” parameters as functions of r/r_L:

\[
\frac{\Omega_e}{2\pi} = 3 \times 10^7 \text{ Hz} \left(\frac{\dot{P}/P^5}{10^{-15}}\right)^{1/2} \left(\frac{r}{r_L}\right)^{-3}, \quad \frac{\omega_p}{2\pi} = 7 \times 10^3 \text{ Hz} \left(\frac{\kappa}{10^5}\right)^{1/2} \left(\frac{\dot{P}/P^7}{10^{-15}}\right)^{1/4} \left(\frac{r}{r_L}\right)^{-3/2},
\]

\[
\beta_A^2 = \frac{\Omega_e^2}{\omega_p^2 \langle \gamma \rangle} = 30 \left(\frac{10}{\langle \gamma \rangle}\right) \left(\frac{10^5}{\kappa}\right) \left(\frac{\dot{P}/P^3}{10^{-15}}\right)^{1/2} \left(\frac{r}{r_L}\right)^{-3}
\]

$P = 1 \text{ s}, \dot{P} = 10^{-15}$, $r = 0.1r_L \Rightarrow \Omega_e/2\pi = 30 \text{ GHz}, \quad \omega_p/2\pi = 20 \text{ kHz}, \quad \beta_A^2 = 3 \times 10^4$
Coherent curvature emission (CCE)

Arguments for & against CCE:
Observational features consistent with CE (e.g., Mitra et al. 2009)
Theoretical arguments suggest CCE untenable (Melrose 1980, 1995)

Coherence due to bunches

- Frequency: incoherent CE peaks at $\omega \approx (c/R_c)\gamma^3$
- Problems with assumed emission by bunches:
 - requires mechanism to produce bunching
 - bunch disperses quickly unless nearly mono-energetic
 - inconsistent with expected relativistic spread in γ

Maser curvature emission

- Maser impossible in simplest case (Blandford 1975; Melrose 1978)
- Maser possible when additional effects included
 - Driven by $\partial f(\gamma)/\partial \gamma > 0 \Rightarrow$ small γ
 - No realistic model based on maser curvature emission

My opinion of CCE: untenable
Relativistic plasma emission (RPE)

Ongoing arguments in favor of RPE notably to explain Crab nanoshot (Eilek & Hankins 2016)

Beam-driven Langmuir-like waves

- Beam along \mathbf{B} at speed $\beta_b c$
- Resonance condition $\beta_\phi = \omega / k_\parallel c = \beta_b \Rightarrow \gamma_\phi = \gamma_b$
 \[
 \gamma_\phi = (1 - \beta_\phi^2)^{-1/2}, \quad \gamma_b = (1 - \beta_b^2)^{-1/2}
 \]
- Early literature: waves assumed to be Langmuir-like, $\omega \approx \omega_p$
- Estimated growth rates too small to be effective
- Inhomogeneous model (Usov 1987; Ursov & Usov 1988)
 faster particles in following beam overtake slower particles in preceding beam
- Conversion process a “bottle-neck” (Usov 2000)

Realistic model for dispersion in pulsar plasma
 \Rightarrow no “Langmuir-like waves” with $\beta_\phi < 1$
Beam-driven Alfvén waves

Dispersion relations in the rest frame of cold pulsar plasma (Lyutikov 1999). Beam-driven waves generated where dispersion curve crosses line $\omega / k \parallel c = \beta_b$ at an angle $1 / \gamma_b$ to the (dotted) light line.

- **RPE due to beam driven Alfvén waves**
 (Kaplan & Tsytovich 1972; Lominadze et al. 1982; Lyutikov 1999)

- **Large growth rate estimated**
 \Rightarrow most favorable form of RPE?

- **Realistic model for wave dispersion suggests otherwise**
Anomalous Doppler emission (ADE)

Instability driven by extreme anisotropy, \(p_\perp = 0 \)

(Machabeli & Usov 1979; Kazbegi et al. 1991; Lyutikov et al. 1999)

- Resonance condition: \(\omega - s\Omega_e/\gamma - k_\| v_\| = 0, \quad s = -1 \)
- Requires \(\beta > \beta_\phi = \omega/k_\| c \) or \(\gamma > \gamma_\phi \)
- Frequency: \(\omega = 2\gamma_\phi^2\Omega_e\gamma/(\gamma^2 - \gamma_\phi^2) \approx 2\gamma_\phi^2\Omega_e/\gamma \)
- Example: X or O mode
 - \(\gamma_\phi = \beta_A \) with \(\beta_A \gg 1 \)
 - above numbers \(\Rightarrow \frac{\omega}{2\pi} = \frac{10^{15}}{\gamma} \left(\frac{\dot{P}/P^4}{10^{-15}} \right) \left(\frac{r}{r_L} \right)^{-6} \)
 - Observed frequencies require \(\gamma = 10^6-10^7, \quad r \approx r_L \)
 - \(\Rightarrow \) higher frequencies for shorter \(P \)

My opinion of ADE: Untenable for “conventional” parameters
Wave dispersion: cold pulsar plasma model

Waves in rest frame of cold pulsar plasma

- Cyclotron frequency \gg radio frequencies ($\Omega_e \gg \omega$)
- Cold plasma model in plasma rest frame
 \Rightarrow two wave modes, labeled O and X (Arons & Barnard 1986)
- X-mode dispersion relation $\omega = kc\beta_0$, $\beta_0 \approx 1 + 1/2\beta_A^2$
- L mode $\theta = 0$ crosses Alfvén mode
 reconnection \Rightarrow O-mode and Alfvén for $\theta \neq 0$

Dispersion curves in rest frame of cold pulsar plasma (Lyutikov 1999).
Relativistic dispersion modifies O and Alfvén mode
X mode unchanged.

Cold-plasma model misleading:
resonance in Alfvén mode artefact
Effect of relativistic spread in energy ($\langle \gamma \rangle \gg 1$)

Dispersion in pulsar plasma

- Dispersive properties in 1D pair plasma studied since 1970s
 implications still not widely recognized
- Relativistic streaming: $\gamma_s \gg 1$ in pulsar frame
 removed by Lorentz transform to plasma rest frame
- Two essential parameters: $\langle \gamma \rangle \sim 10$–100, $\beta_A \gg 1$
- Dispersion not sensitive to choice of $f(\gamma)$ (Melrose & Gedalin 1999)

Plots of dispersion relations

- 1D Jüttner: $f(\gamma) \propto e^{-\rho \gamma}, \rho = mc^2/T$
 nonrelativistic $\rho = c^2/V^2 \gg 1 \rightarrow$ relativistic $\rho = 1/\langle \gamma \rangle \ll 1$
- Plots ω vs $k_\parallel c$, diagonal $\beta_\phi = \omega / k_\parallel c = 1$
 \Rightarrow resonance $\beta = \beta_\phi$ possible only below diagonal
- X mode insensitive to ρ: $n_X = 1/\beta_0 \approx 1 + 1/2\beta_A^2$
 not included in plots shown here
Examples: $\rho = 20$ and $\rho = 1$

Dispersion curves:
$\rho = 20$, $\beta_A \gg 1$
LO mode (upper)
Alfvén mode (lower)
curves: $\theta = 0$ (solid) & $\theta = n \times 0.25$, $n = 1–5$
Landau damping strong below turnover.

Dispersion curves:
$\rho = 1$, $\beta_A \gg 1$
Alfvén mode:
maximum $\omega \downarrow$ as $\theta \uparrow$
maximum along line
$\omega / k_\parallel c \approx 1 - \delta$,
maybe $\delta \approx 1 / \langle \gamma \rangle^2$?
Wave dispersion: conventional pulsar plasma

X mode vacuum-like for all $\langle \gamma \rangle$: $\omega = kc\beta_0$, $\beta_0 \approx 1 + 1/2\beta^2_A$

Only LO mode & Alfvén mode need comment

Parallel propagation

- Distinct L & A modes
- L mode cutoff ($k_\parallel = 0$): $\omega_c = \omega_p\langle \gamma^{-3}\rangle^{1/2}$
- Crosses $\omega = k_\parallel c$ at $\omega_1 \approx \omega_p\langle \gamma \rangle^{1/2}$
 - $\omega > k_\parallel c$ in range $\omega_c < \omega < \omega_1$
 - $\omega < k_\parallel c$ in tiny range $\omega_1 < \omega < \omega_{\text{max}}$
- A and X mode degenerate with opposite transverse polns

Oblique propagation

- L & A modes reconnect \Rightarrow LO mode & oblique Alfvén mode
- $\theta \uparrow \Rightarrow$ LO mode moves to left $\Rightarrow \beta_\phi > 1$
 \Rightarrow no resonance possible
- $\theta \uparrow \Rightarrow$ Alfvén mode to $\omega \downarrow$ (at $\beta_\phi \approx 1 - 1/\langle \gamma \rangle^2$?)
 \Rightarrow beam resonance requires $\gamma_b \gg \langle \gamma \rangle$
Beam-driven RPE revisited

RPE in LO mode

- Resonance possible for LO mode for $\gamma_b > \beta_A$
 but only for tiny range of $\theta \approx 0$
- LO mode waves can escape freely (no “bottle-neck”)
 but small growth rate + short growth time
 \Rightarrow not a realistic emission mechanism

RPE in Alfvén mode

- Resonance possible for $\gamma_b \gg \langle \gamma \rangle$ in rest frame
- Existing models have not treated dispersion accurately
- Problem with inadequate growth rate remains
- Problem with conversion “bottle-neck” remains

My opinion: “least unlikely” suggested emission mechanisms but: no beam-driven RPE seems plausible
Rotation-driven RPE

A non-beam-driven version of RPE seems most favorable

Rotation-driven RPE

- Oblique rotator $\Rightarrow E_\parallel$, screening by charges unstable
 \Rightarrow large-amplitude oscillations (LAOs) in E_\parallel
 (Levinson et al. 2005; Belobodorov & Thompson 2007)
- Interpretation: rotational energy drives LAOs through E_\parallel
- LAOs have $1 < \beta_\phi < \infty$ (not beam-driven)
 $\omega_p/\langle \gamma \rangle^{1/2} < \omega < \omega_p\langle \gamma \rangle^{1/2}$
- Alternative source of LAOs: rotational pumping
 \Rightarrow parametric instability (Machabeli & Rogava 1994; Machabeli et al. 2005)
- Consistent with abrupt slowing down (Kramer et al. 2006; Lyne et al. 2010)

Conversion into escaping radiation

- Acceleration by E_\parallel to $\gamma \gg 1$ in LAO \Rightarrow LAE
- Maser LAE produces escaping radiation
 (Melrose 1978; Melrose et al. 2009; Reville & Kirk 2010)
- Maser driven by $\partial f(\gamma)/\partial \gamma > 0 \Rightarrow \gamma \lesssim \langle \gamma \rangle$, e.g. $\gamma \lesssim 10$

My opinion: A detailed model needs to be developed
Summary and conclusions

- Observations: many rules with many exceptions
 => ambiguous constraints on emission mechanism
- Theory: Pulsar electrodynamics inadequately understood
 no specific emission mechanism favored
- Coherent curvature emission (CCE):
 dubious coherence mechanism
- Relativistic plasma emission (RPE):
 no beam-driven “Langmuir-like” waves
 beam-driven Alfvén waves problematic
- Anomalous Doppler emission (ADE):
 implausible with conventional parameters
- More realistic alternative needed:
 Rotation-driven LAOs implied by electrodynamics
 Maser LAE => escaping radiation
 no detailed model exists
- Another alternative approach:
 analogy with coherent emission in extensive air showers?