Radio Frequency Studies of the Pulsar Binary PSR J1614-2318

Klim Mikhailov

(U. Amsterdam + ASTRON)

K. Mikhailov, M. Roberts, S. Ransom, J. Hessels, J. van Leeuwen, G. Janssen, R. Breton (in prep.)

Physics of Neutron Stars, 50 years after – 10-07-17

ASTRON

Introduction

- Normal pulsars → born in supernovae, spin down
- Millisecond pulsars → can spin up, coupled with companions in binary systems
- RRATs → sporadic radio emission
- Magnetars → magnetic field decay powers radiation

ATNF Pulsar Catalogue v. 1.56

Introduction

- Millisecond pulsars in globular clusters → intense binary interaction
- J1614–2318 discovery: Parkes survey of 56 midlatitude EGRET error boxes for radio pulsars
 - 140 sq. degrees of the sky
 - 5° < |b| < 73°

Crawford et al., 2006

Radio Observations and Analysis

Telescope (Backend)	Central Freq. (MHz)	MJD Range	NTOAs
Parkes (AFB/DFB)	680, 1374, 1390, 1518	52469 - 53104	67
GBT (BCPM)	350, 820, 1400, 1420, 1450, 1850	52734 - 53232	93
GBT (SPIGOT)	350, 820, 1220, 1620, 1820	53119 - 53982	44
GBT (GUPPI)	350, 820	55504 - 56947	16
WSRT (PuMa II)	345, 1380	54154 - 57166	16
LOFAR (COBALT)	150	57403 - 57411	_

- Telescopes: Parkes, GBT, WSRT, LOFAR
- Frequency range: 150 MHz 2 GHz

Pulse profiles

Pulse profiles

WSRT observations

Preq: 345.630 MHz BW: -80.000 Length: 6286.627 S/V: 68.721

1614-2318 klim.J1814-2318-385.23Feb2014.FTp

(a) WSRT L-band (1380 MHz)

 $\Delta v = 160 \text{ MHz}, T_{int} = 0.4 \text{ h}, \text{ S/N} = 20\sigma$

(b) WSRT B-band (345 MHz)

 $\Delta v = 80 \text{ MHz}, T_{int} = 1.75 \text{ h}, \text{ S/N} = 70\sigma$

Polarization studies

- Parkes / GBT → no decisive polarization measurements
- WSRT → pulsar must be very weakly polarized

WSRT (345 MHz, 15 h + 90σ S/N)

LOFAR non-detection

- most pulsar fluxes peak at 150 MHz (Stappers et al., 2011)
- 23 LOFAR HBA
 - 3 x 2 h observations
 - Δν ~ 80 MHz
 - *t_{samp}* ~ 150 μsec
 - S_{min} ~ 0.1 mJy

Beam components

PSR J1614–2318 is consistent with empirical Low Boundary Line (LBL) relation for both core and conal components

Optical follow-up

- SOAR: r' band
 - **15** × 60 s exposures
 - 0.8" seeing
- No counterpart was seen
 - m_{r'} > 25 (5σ)
 - insignificant extinction
 - old, cold He WD

Timing solution

1614-2318 (Wrms = $128.322 \ \mu s$) post-fit

timing parameters are in consistence with the discovery paper (Hessels et al. 2005)

P – Pdot position

- Spin period: P_{spin} ≈ 33.5 ms
- *Spin-down: Pdot* ≈ 5.4 × 10⁻²⁰ s/s
- Characteristic age: $t \approx 10$ Gyr
- Orbital period: $P_{orb} \approx 3.2$ days
- DM ≈ 52.4 pc/cc → d ≈ 1.8 kpcs (NE2001); d ≈ 3 kpcs (YMW16)

Mikhailov et al., 2017

Magnetic field

- Magnetic field: $B \approx 1.4 \times 10^9$ G
- Spin-down energy: Edot ≈ 6.3 × 10³¹ erg/s

Mikhailov et al., 2017

Timing solution

- Spin period: P_{spin} ≈ 33.5 ms
- Companion mass: $M_c \approx 0.08 M_{solar}$

Mikhailov et al., 2017

Comparison to J1502–6752

- Spin period: P_{spin} ≈ 26.7 ms
- Spin-down: Pdot ≈ 3.2 x 10⁻¹⁹ s/s
- Orbital period: P_{orb} ≈ 2.5 days
- Characteristic age: t ≈ 1.5 Gyr
- Companion mass: M_c ≈ 0.022 M_{solar}
- Magnetic field: B ≈ 2.8 x 10¹⁰ G
- Spin-down energy: Edot ≈ 5.9 × 10³² erg/s
- $DM \approx 151.7 \text{ pc/cc} \rightarrow d \approx 4.2 \text{ kpcs}$

Parameter	J1502-6752
RA, α (J2000) Dec., δ (J2000) l (°) b (°) Pulse frequency, ν (s ⁻¹) Frequency derivative, $\dot{\nu}$ (s ⁻²) Epoch of model (MJD) Dispersion measure, DM (cm ⁻³ pc)	$\begin{array}{c} 15:02:18.610(4)\\ -67:52:16.78(2)\\ 314.80\\ -8.07\\ 37.3909719910(4)\\ -4.0(3)\times10^{-16}\\ 55421.2\\ 151.75\end{array}$
Binary model	ELL1
Orbital period, P_b (d)	2.4844570(5)
Projected semi-major axis, $a\sin i$ (light-second)	0.31756(3)
Epoch of ascending node, T_{asc} (MJD)	55421.21202(4)
$e\cos \omega$	$-5.3(125) \times 10^{-5}$
$e\sin \omega$	$-3.9(144) \times 10^{-5}$
Inferred eccentricity, e	$<2 \times 10^{-4}$
Minimum companion mass, $m_{c,min}$ (M _{\odot})	0.022
Fit time-span (MJD)	55360.4–55757.5
rms of residuals (μs)	67.9
Reduced χ ²	0.7
Mean flux density, S_{1400} (mJy)	0.68
Pulse width at 50 per cent of peak, W_{50} (°)	40
Pulse width at 10 per cent of peak, W_{10} (°)	-
Spin-down energy loss rate, \dot{E} (erg s ⁻¹)	5.9×10^{32}
Characteristic age, t_c (yr)	1.5×10^{9}
Dipole magnetic field strength, B_{surf} (G)	2.8×10^{9}
DM-derived distance, d (kpc)*	4.2
$\dot{E}^{1/2}/d^2(\times 10^{10} \text{ erg}^{1/2} \text{ pc}^{-2} \text{ s}^{-1/2})$	0.2

Keith et al. 2012

Binary evolution scenarios

Binary evolution scenarios

 $M_c > 0.22 M_{solar} \rightarrow i < 23^\circ \rightarrow 8\%$ probability for a randomly oriented orbit

Binary evolution scenarios

• Why slow spinning?

- Inefficient accretion onto the pulsar
 - Initially weak field still ends up at 10^9G
 Insufficient spin up due to relatively weak accretion channel

 Accretion induced collapse of ONeMg WD 10 d ≤ P_{orb} ≤ 60 d

• He WD \rightarrow HeCO WD

Conclusion

 Relatively low spin-down → no association with unidentified EGRET y-ray sources

- Pulse profile: additional wings → different emission components?
- Interesting evolution → magnetic field suppression, aligned rotation?

