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 Magnetars - Basics 

• Magnetars are isolated Neutron Stars powered by their own 
magnetic energy, observationally 
identified with SGRs and AXPs 
 

– 𝐿𝐿X ~ 1033 − 1036 erg/s > 𝐸̇𝐸 
 

– 𝐵𝐵 ≳ 𝐵𝐵QED (at least inside the star) 
 

𝐵𝐵 = 3.2 × 1019 𝑃𝑃𝑃̇𝑃 G 
 

𝐵𝐵~1014 G 

Introduction                Theoretical model              Implementation & Results              Conclusions 

 Spectrum and polarization of magnetar flares – 4 
 Physics of Neutron Stars Conference – July 10, 2017 



 Magnetars - Basics 

• Magnetars are isolated Neutron Stars powered by their own 
magnetic energy, observationally 
identified with SGRs and AXPs 
 

– 𝐿𝐿X ~ 1033 − 1036 erg/s > 𝐸̇𝐸 
 

– 𝐵𝐵 ≳ 𝐵𝐵QED (at least inside the star) 
 

• Persistent emission 
 

– Soft X-ray spectrum (0.5 − 10 keV)  
BB + PL (or BB + BB) 
 

– Additional PL for 𝐸𝐸 ≳ 20 keV 
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 Magnetars - Basics 

• Bursting activity 
 

– Giant flares  
 

∆𝑡𝑡spike ~ 0.1 − 1 s  

∆𝑡𝑡tail ~ 102  − 103 s  
𝐸𝐸 = 1044 − 1047 erg  
 

– Intermediate flares 
∆𝑡𝑡 ~ 1 − 102 s  
𝐸𝐸 ~ 1041  −  1043 erg  
 

– Short bursts 
 

∆𝑡𝑡 ~ 0.01 − 1 s  
𝐸𝐸 ~ 1036  −  1041 erg  
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      Mereghetti S. 2008, A&A, REV 15, 225 

      Israel et al., 2008, ApJ, 685, 1114 



 Theoretical magnetar model 

Twist of the external magnetic field 
• Twist angle: 

 

∆𝜙𝜙N−S= 2 lim
𝜃𝜃→0

�
𝐵𝐵𝜑𝜑

sin𝜃𝜃𝐵𝐵𝜃𝜃
d

𝜋𝜋/2

𝜃𝜃
𝜃𝜃 

Thomspson, Lyutikov & Kulkarni, 2002 ApJ, 574, 332 

• Giant flares and short 
bursts are related to the 
plastic deformation of the 
crust (or to magnetic 
reconnection) 
 

• Occurrence of RCS 
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 Photon polarization 

• In the presence of strong magnetic fields photons are 
polarized in two normal modes 

X-mode (photon electric field 
oscillates perpendicular to 
both 𝒌𝒌 and 𝑩𝑩) 

O-mode (photon electric field 
oscillates in the 𝒌𝒌𝑩𝑩 plane) 
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 Photon polarization 

• In the presence of strong magnetic fields photons are 
polarized in two normal modes 
 

• A convenient way to describe polarized radiation is through 
the Stokes parameters (that are additive) 

 
        ℐ = 𝐴𝐴𝑥𝑥𝐴𝐴𝑥𝑥∗ + 𝐴𝐴𝑦𝑦𝐴𝐴𝑦𝑦∗ = 𝑎𝑎𝑥𝑥2 + 𝑎𝑎𝑦𝑦2  
       𝒬𝒬 = 𝐴𝐴𝑥𝑥𝐴𝐴𝑥𝑥∗ − 𝐴𝐴𝑦𝑦𝐴𝐴𝑦𝑦∗ = 𝑎𝑎𝑥𝑥2 − 𝑎𝑎𝑦𝑦2  
 

      𝒰𝒰 = 𝐴𝐴𝑥𝑥𝐴𝐴𝑦𝑦∗ + 𝐴𝐴𝑦𝑦𝐴𝐴𝑥𝑥∗ = 2𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦 cos(𝜑𝜑𝑥𝑥 − 𝜑𝜑𝑦𝑦)  
 

      𝒱𝒱 = 𝑖𝑖 𝐴𝐴𝑥𝑥𝐴𝐴𝑦𝑦∗ − 𝐴𝐴𝑦𝑦𝐴𝐴𝑥𝑥∗ = 2𝑎𝑎𝑥𝑥𝑎𝑎𝑦𝑦 sin(𝜑𝜑𝑥𝑥 − 𝜑𝜑𝑦𝑦) 
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Theoretical model 
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 Trapped fireball model 

• Alfvén pulses injected by crustal displacements dissipate into 
a magnetically confined electron-positron plasma 
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 Trapped fireball model 

• Alfvén pulses injected by crustal displacements dissipate into 
a magnetically confined electron-positron plasma 
 

• We assumed the fireball plasma as a pure-scattering 
medium, restricting our calculations to the Thomson limit 
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d2𝜎𝜎
d𝜀𝜀𝜀dΩ′ OO

=
3

8𝜋𝜋
𝜎𝜎T(1 − 𝜇𝜇Bk2 )(1− 𝜇𝜇′Bk

2 )𝛿𝛿(𝜀𝜀′ − 𝜀𝜀) 

d2𝜎𝜎
d𝜀𝜀𝜀dΩ′ OX

=
3

8𝜋𝜋
𝜎𝜎T

𝜀𝜀
𝜀𝜀B

2

𝜇𝜇Bk2 cos2(𝜙𝜙𝐵𝐵𝐵𝐵 − 𝜙𝜙Bk′ )𝛿𝛿(𝜀𝜀′ − 𝜀𝜀) 
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d𝜀𝜀𝜀dΩ′ XO

=
3

8𝜋𝜋
𝜎𝜎T

𝜀𝜀
𝜀𝜀B

2

𝜇𝜇′Bk
2 cos2(𝜙𝜙𝐵𝐵𝐵𝐵 − 𝜙𝜙Bk′ )𝛿𝛿(𝜀𝜀′ − 𝜀𝜀) 

d2𝜎𝜎
d𝜀𝜀𝜀dΩ′ XX

=
3

8𝜋𝜋
𝜎𝜎T

𝜀𝜀
𝜀𝜀B

2

sin2(𝜙𝜙𝐵𝐵𝐵𝐵 − 𝜙𝜙Bk′ )𝛿𝛿(𝜀𝜀′ − 𝜀𝜀) 

𝜀𝜀B = 𝑚𝑚e𝑐𝑐2
𝐵𝐵

𝐵𝐵QED
 

 Spectrum and polarization of magnetar flares – 9 
 Physics of Neutron Stars Conference – July 10, 2017 

We assumed 
𝜀𝜀 ≪ 𝜀𝜀B 



 Second order processes 

• Thermal bremsstrahlung 
– 𝑒𝑒− − 𝑒𝑒− (𝑒𝑒+ − 𝑒𝑒+) bremsstrahlung strongly suppressed for particle 

energies < 300 keV (∼ 0.01 𝜎𝜎T, Haug, 1975) 
– 𝑒𝑒− − 𝑒𝑒+ bremsstrahlung (slightly enhanced with respect to 𝑒𝑒− − 𝑝𝑝+) 

becomes negligible above 𝜀𝜀 = 1 keV and 𝑘𝑘𝑘𝑘 = 10 keV (< 0.5 𝜎𝜎T, 
Svenson, 1982) 
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 Second order processes 

• Thermal bremsstrahlung 
 

• Photon splitting 
– Assuming weak dispersive effects (Stoneham, 1979) the only allowed 

channel is that of X  OO, for which, in the non-relativistic regime 
(𝜀𝜀 ≪ 𝑚𝑚e𝑐𝑐2) and for 𝐵𝐵 ≲ 𝐵𝐵QED  

 

𝜎𝜎sp X → OO ∝
𝐵𝐵

𝐵𝐵QED
sin𝜃𝜃Bk

6 𝜀𝜀
𝑚𝑚e𝑐𝑐2

5

≪ 𝜎𝜎T 
 

– In the strong field limit (𝐵𝐵 > 𝐵𝐵QED) the splitting amplitude decreases 
exponentially (as exp(−𝐵𝐵 𝐵𝐵QED⁄ )) 
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 Second order processes 

• Thermal bremsstrahlung 
 

• Photon splitting 
 

• Double Compton scattering 
– At energies ε ≪ 𝑘𝑘𝑘𝑘 and far from the cyclotron resonance photons are 

injected in the fireball at a rate (Lightman, 1981) 
 

𝑄𝑄 ≈
4𝛼𝛼F
3𝜋𝜋

𝜎𝜎T
𝑚𝑚e
2𝑐𝑐4

exp 𝜀𝜀 𝑘𝑘𝑘𝑘⁄ − 1
 𝜀𝜀3

𝑓𝑓Pl 𝜀𝜀,𝑇𝑇 − 𝑓𝑓 𝜀𝜀 𝐼𝐼 
 

– At higher energies scattering establishes a Bose-Einstein distribution 
𝑓𝑓𝐵𝐵𝐵𝐵 𝜀𝜀,𝑇𝑇 , but with small chemical potential (see Lyubarsky, 2002) 
 

ln
𝜇𝜇 + 𝜀𝜀0
𝜀𝜀0

≪ 0.5
10𝐵𝐵QED

𝐵𝐵

2

 

Introduction                Theoretical model              Implementation & Results              Conclusions 

 Spectrum and polarization of magnetar flares – 10 
 Physics of Neutron Stars Conference – July 10, 2017 



 Radiative transfer 
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 Radiative transfer 

• We solved the radiative transfer 
equation in the geometrically thin 
surface layer of the fireball (see 
Yang & Zhang, 2015), divided into  
a number of patches  
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 Radiative transfer 

• We solved the radiative transfer  
equation in the geometrically thin  
surface layer of the fireball (see  
Yang & Zhang, 2015), divided into  
a number of patches  
 

• Assuming the patch dimension  
small enough the problem can be 
solved in the plane-parallel 
approximation 
 

𝜇𝜇𝑧𝑧 = 𝜇𝜇Bk𝜇𝜇B − 1 − 𝜇𝜇Bk2 1 − 𝜇𝜇B2 cos𝜙𝜙Bk 
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𝑧̂𝑧 

𝐵𝐵�  

𝑘𝑘�  

𝜃𝜃𝑧𝑧 
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 Radiative transfer equation (RTE) 

• Under these assumptions the RTE for the photons polarized 
in the two modes assumes a simple form 
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d𝜏𝜏 = 𝑛𝑛e𝜎𝜎Td𝑠𝑠 
𝜇𝜇𝑧𝑧

d𝑛𝑛O
d𝜏𝜏 = − 1 − 𝜇𝜇Bk2 +

3𝜇𝜇Bk2

4
𝜀𝜀
𝜀𝜀B

2

𝑛𝑛O 𝛼𝛼  

+
3
8𝜋𝜋 � 1 − 𝜇𝜇Bk2 1 − 𝜇𝜇′Bk

2 𝑛𝑛O 𝛼𝛼′ +
𝜀𝜀
𝜀𝜀B

2

𝜇𝜇Bk2 cos2 𝜙𝜙Bk − 𝜙𝜙Bk′ 𝑛𝑛X 𝛼𝛼′ dΩ′

4𝜋𝜋

 

 

𝜇𝜇𝑧𝑧
d𝑛𝑛X
d𝜏𝜏 = −

𝜀𝜀
𝜀𝜀B

2

𝑛𝑛X 𝛼𝛼 +
3
8𝜋𝜋

𝜀𝜀
𝜀𝜀B

2

� [sin2 𝜙𝜙Bk − 𝜙𝜙Bk′

4𝜋𝜋

𝑛𝑛X 𝛼𝛼′                           

                                                                          +𝜇𝜇′Bk
2 cos2 𝜙𝜙Bk − 𝜙𝜙Bk′ 𝑛𝑛O 𝛼𝛼 ] dΩ′ 
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 Radiative transfer equation (RTE) 

• Under these assumptions the RTE for the photons polarized 
in the two modes assumes a simple form 
 

• Owing to the suppression factor of the X-mode photon cross 
sections, the propagation in the fireball medium is quite 
different according to the polarization mode 
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𝜏𝜏O ~ 𝑛𝑛e𝜎𝜎O𝐻𝐻 ≈ 𝜏𝜏 𝜏𝜏X ~ 𝑛𝑛𝑒𝑒𝜎𝜎𝑋𝑋𝐻𝐻 ≈
𝜀𝜀
𝜀𝜀B

2

𝜏𝜏 

𝜎𝜎𝑖𝑖 = 𝜎𝜎𝑖𝑖O + 𝜎𝜎𝑖𝑖X 
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 Radiative transfer equation (RTE) 

• Under these assumptions the RTE for the photons polarized 
in the two modes assumes a simple form 
 

• Owing to the suppression factor of the X-mode photon cross 
sections, the propagation in the fireball medium is quite 
different according to the polarization mode 
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𝜏𝜏O ~ 𝑛𝑛e𝜎𝜎O𝐻𝐻 ≈ 𝜏𝜏 𝜏𝜏X ~ 𝑛𝑛𝑒𝑒𝜎𝜎𝑋𝑋𝐻𝐻 ≈
𝜀𝜀
𝜀𝜀B

2

𝜏𝜏 

𝜎𝜎𝑖𝑖 = 𝜎𝜎𝑖𝑖O + 𝜎𝜎𝑖𝑖X 
𝜏𝜏X ~ 1 
  

𝜀𝜀 = 10 keV 

𝜏𝜏X ~ 1 
  

𝜀𝜀 = 50 keV 

𝜏𝜏X ~ 1 
  

𝜀𝜀 = 100 keV 

𝜏𝜏O ~ 1 
 

𝐻𝐻 



 Radiative transfer equation (RTE) 

• Under these assumptions the RTE for the photons polarized 
in the two modes assumes a simple form 
 

• Owing to the suppression factor of the X-mode photon cross 
sections, the propagation in the fireball medium is quite 
different according to the polarization mode 
 

• Hence we solved the photon transport in terms of the 
Rosseland mean optical depth 𝜏𝜏R for the X-mode photons 
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𝜎𝜎X R =
4𝜋𝜋2

5 𝜎𝜎𝑇𝑇
𝑘𝑘𝑘𝑘𝐵𝐵QED
𝑚𝑚e𝑐𝑐2𝐵𝐵

2

 

Temperature distribution  
(see Lyubarsky, 2002) 

𝑇𝑇 = 𝑇𝑇b 1 +
3
4 𝜏𝜏R 

 Spectrum and polarization of magnetar flares – 12 
 Physics of Neutron Stars Conference – July 10, 2017 



 Radiative transfer equation (RTE) 

• Under these assumptions the RTE for the photons polarized 
in the two modes assumes a simple form 
 

• Owing to the suppression factor of the X-mode photon cross 
sections, the propagation in the fireball medium is quite 
different according to the polarization mode 
 

• Hence we solved the photon transport in terms of the 
Rosseland mean optical depth 𝜏𝜏R for the X-mode photons 
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𝜏𝜏R =
4𝜋𝜋2

5
𝑘𝑘𝑇𝑇b𝐵𝐵QED
𝑚𝑚e𝑐𝑐2𝐵𝐵

2

𝜎𝜎𝑇𝑇 �𝑛𝑛ed𝑠𝑠 = 𝑅𝑅 𝐵𝐵 𝜏𝜏 
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𝜏𝜏O =
1

𝑅𝑅 𝐵𝐵 𝜏𝜏R 𝜏𝜏X =
5

4𝜋𝜋2
𝜀𝜀
𝑘𝑘𝑇𝑇b

2
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Numerical implementation and results 
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 Assumptions 
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• Optical depth in the fireball atmosphere: 
𝜏𝜏𝑅𝑅 = 1000 (at the base) − 0 (at the top) 
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𝜏𝜏X = 10 

𝜏𝜏O = 10 

𝑛𝑛O = 𝑛𝑛X = BB 

Solving for 𝑛𝑛X 
          𝑛𝑛O = BB 

Solving for both 
𝑛𝑛O and 𝑛𝑛X 

 



 Assumptions 
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• Optical depth in the fireball atmosphere: 
𝜏𝜏𝑅𝑅 = 1000 (at the base) − 0 (at the top) 
 

• Photon energy 𝜀𝜀 = 1 − 100 keV 
 

• Temperature distribution 𝑇𝑇 = 𝑇𝑇b 1 + 0.75𝜏𝜏R (𝑇𝑇b = 10 keV) 
 

• Dipolar 𝐵𝐵-field with 𝐵𝐵p = 2 × 1014 G 
 

• 𝑅𝑅max = 2𝑅𝑅NS  (𝑅𝑅NS = 10 km) 
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 Integration of the RTE 
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• Λ-iteration method (Runge-Kutta 4th order integration routine) 
 

 

• Output quantities 
 

𝑛𝑛O 𝜏𝜏R, 𝜀𝜀, 𝜇𝜇Bk,𝜙𝜙Bk                   𝑛𝑛X 𝜏𝜏R, 𝜀𝜀, 𝜇𝜇Bk,𝜙𝜙Bk  
  

or 
 

𝑛𝑛O 𝜏𝜏R, 𝜀𝜀, 𝜇𝜇𝑧𝑧,𝜙𝜙𝑧𝑧                   𝑛𝑛X 𝜏𝜏R, 𝜀𝜀, 𝜇𝜇𝑧𝑧,𝜙𝜙𝑧𝑧  
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• Λ-iteration method (Runge-Kutta 4th order integration routine) 
 

 

• Output quantities 
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𝑛𝑛O 

𝑛𝑛X 

𝜃𝜃B = 45° 𝜃𝜃B = 90° 
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• Λ-iteration method (Runge-Kutta 4th order integration routine) 
 

 

• Output quantities 
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or 
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𝜃𝜃B = 90° 

𝑛𝑛O 

𝑛𝑛X 

𝜃𝜃B = 45° 𝜃𝜃B = 90° 𝐵𝐵 = 1013 G 

𝐵𝐵 = 1014 G 



 Ray-tracing code 
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• The contributions from all the patches in view are summed 
together in a ray tracing code 
 

– 𝜒𝜒 angle between ℓ and 𝛀𝛀 
 

– 𝜉𝜉 angle between 𝒃𝒃dip and 𝛀𝛀 
 

– 𝜓𝜓 angle between 𝒖𝒖 and 𝑿𝑿 
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• The contributions from all the patches in view are summed 
together in a ray tracing code 
 

• Fireball visibility 

Introduction                Theoretical model              Implementation & Results              Conclusions 

 Spectrum and polarization of magnetar flares – 16 
 Physics of Neutron Stars Conference – July 10, 2017 

Terminator equation: 
𝑧̂𝑧 ∙ ℓ� = 0 
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• The contributions from all the patches in view are summed 
together in a ray tracing code 
 

• Fireball visibility 
 

• Different emission geometries 
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Full torus (model a) Torus cut (model b) 

Planar slice 
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• The contributions from all the patches in view are summed 
together in a ray tracing code 
 

• Fireball visibility 
 

• Different emission geometries 
 

• QED and geometrical effects on the polarization observables 
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Adiabatic 
propagation 

Mode 
decoupling 

Stokes parameter 
rotation 
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• The contributions from all the patches in view are summed 
together in a ray tracing code 
 

• Fireball visibility 
 

• Different emission geometries 
 

• QED and geometrical effects on the polarization observables 
 

• Plasma contributions to the dielectric tensor are assumed to 
be negligible wrt the vacuum terms (vacuum resonance 
effects are relevant at 𝜀𝜀 ≲ 1 keV only, Lyubarsky, 2002) 
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 Spectral analysis 
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• Phase-averaged spectrum 
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Total 

X-mode 

O-mode 

- The total spectrum is nearly 
superimposed to the X-mode 
component 
 

- O-mode photon flux strongly 
suppressed 
 

- High intrinsic polarization degree 
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• Phase-averaged spectrum 
 

• Spectral fit 
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Emerging spectrum 

Fitting function 

BB1 BB2 

 Spectral analysis 

𝑓𝑓 𝜀𝜀 = 𝐴𝐴1𝜀𝜀3
1

exp 𝜀𝜀 𝑘𝑘𝑇𝑇1⁄ − 1 +
𝐴𝐴2 𝐴𝐴1⁄

exp 𝜀𝜀 𝑘𝑘𝑇𝑇2⁄ − 1  
 

𝜒𝜒 𝜉𝜉 𝑇𝑇1 keV  𝑇𝑇2 keV  𝑅𝑅2/𝑅𝑅1 
Model a 60° 30° 1.67 9.11 0.177 
Model b 60° 30° 1.67 9.12 0.177 
Model a 90° 0° 1.67 9.18 0.178 
Model b 90° 0° 1.67 9.14 0.177 

Observations of SGR 1900+14 (Israel et al., 
2008) 
 

𝑇𝑇s = 4.8 ± 0.3 keV     𝑇𝑇h = 9.0 ± 0.3 keV 
 
 

𝑅𝑅h 𝑅𝑅s⁄ = 0.19 ± 0.03 
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• Phase-averaged spectrum 
 

• Spectral fit 
 

• Pulse profile 
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 Spectral analysis 

Model a Model b 
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• Phase-resolved polarization fraction 
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Model a 

Model b 

• The PF drops at higher 
photon energies (where the 
O-mode contribution 
becomes more important 
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• Phase-resolved polarization fraction 
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• The PF drops at higher 
photon energies (where the 
O-mode contribution 
becomes more important 

• Photons coming from the 
constant-𝜙𝜙 cuts are generally 
more polarized than those 
coming from the torus 
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• Phase-resolved polarization fraction 
 

• Phase-resolved polarization angle 
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Model a 

Model b 

• No substantial differences between 
model a and model b 
 

• The polarization angle behavior is 
related to the viewing geometry and 
the magnetic field topology 
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• Phase-resolved polarization fraction 
 

• Phase-resolved polarization angle 
 

• Phase-averaged polarization observables 
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Model b Model a 



 
 
 

Conclusions and Future prospects 
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 Conclusions 
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• Method for modelling the spectral and polarization properties 
of radiation emitted during magnetar flares from a steady 
trapped-fireball 
 

• Magnetic (Thomson) scattering is the dominant source of 
opacity 
 

• Simulated spectra are well fitted by two BB as suggested by 
observations (but the hypothesis by Israel et al., 2008 of the 
two different O- and X-mode photospheres is not supported) 
 

• The model can reproduce the pulse profiles observed in 
intermediate/giant flare decay tails (tuning both viewing and 
emission geometries) 
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 Conclusions 
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• Radiation is expected to be highly polarized (in the 
extraordinary mode) 
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XIPE 
IXPE 
eXTP 

model 
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