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Magnetars - Basics

 Magnetars are isolated Neutron Stars powered by thelr own

magnetic energy, observationally T
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Magnetars - Basics

 Magnetars are isolated Neutron Stars powered by thelr own

magnetic energy, observationally SR RS

identified with SGRs and AXPs " ﬁ‘?;.i‘j’fﬁfs

— Ly ~1033 —103%erg/s > E ",:'
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— B = Bggp (at least inside the star) S

e Persistent emission -

— Soft X-ray spectrum (0.5 — 10 keV)  »~
BB + PL (or BB + BB)

— Additional PL for E = 20 keV e ong
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Magnetars - Basics

1.05x

* Bursting activity
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— Giant flares ‘qm
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— Intermediate flares
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Theoretical magnetar model

Twist of the external magnetic field
« Twist angle:

/2 B

Adn_c= 2 li Ly
¢N S HILI(I) 0 SinHBg

e Giant flares and short

s TN py bursts are related to the
%% plastic deformation of the
,%i”( L ove o) crust (or to magnetic
E= H.GM%% reconnection)
s A « Occurrence of RCS

CURRENT

Thomspson, Lyutikov & Kulkarni, 2002 ApJ, 574, 332
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Photon polarization

* In the presence of strong magnetic fields photons are

polarized in two normal modes
4 2=k

X-mode (photon electric field
oscillates perpendicular to
both k and B)

\ O-mode (photon electric field

L__H\‘Oscillates in the kB plane)
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Photon polarization

* In the presence of strong magnetic fields photons are
polarized in two normal modes

« A convenient way to describe polarized radiation is through
the Stokes parameters (that are additive)

E = A(Z)ei(koz—wt)
J = A, Ay + A A = af + a;

Q = A AL —AyAy = a2 —a2 | A= (A dy) = (axeT0% aye ™)

U = A A + A Ay = 2a,ay cos(@, — @y)
V = i(A A — AyAL) = 2aa, sin(@y — @)
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Theoretical model
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Trapped fireball model

» Alfven pulses injected by crustal displacements dissipate into
a magnetically confined electron-positron plasma
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Trapped fireball model

» Alfven pulses injected by crustal displacements dissipate into
a magnetically confined electron-positron plasma

 We assumed the fireball plasma as a pure-scattering
medium, restricting our calculations to the Thomson limit

d’c | 3 2 N1y \8(e!
R = Aol - kB~ WIS~ ) .

100

£g = MyC?
Bqep

v
We assumed
& KL gB

d%o 3 e\ ., , ,
_dSIdQ,_ - = %0-1‘ g Sin (¢Bk - ¢Bk) 6(8 - 8)

Physics of Neutron Stars Conference - July 10, 2017

Spectrum and polarization of magnetar flares — 9



Introduction Theoretical model Implementation & Results Conclusions

Second order processes

e Thermal bremsstrahlung

— e~ —e~ (et — e™) bremsstrahlung strongly suppressed for particle
energies < 300 keV (~ 0.01 or, Haug, 1975)

— e~ — e™ bremsstrahlung (slightly enhanced with respectto e™ — p™*)
becomes negligible above € = 1 keV and kT = 10 keV (< 0.5 o7,
Svenson, 1982)
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Second order processes

e Thermal bremsstrahlung

* Photon splitting

— Assuming weak dispersive effects (Stoneham, 1979) the only allowed
channel is that of X = OO, for which, in the non-relativistic regime
(e < mec?) and for B < Bqgp

B 6/ o \S
Tsp (X - 00) (BQED sin 93k> (mecz> K or

— In the strong field limit (B > Bqgp) the splitting amplitude decreases
exponentially (as exp(—B/Bqgp))
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Second order processes

e Thermal bremsstrahlung
* Photon splitting

e Double Compton scattering

— At energies € < kT and far from the cyclotron resonance photons are
Injected in the fireball at a rate (Lightman, 1981)

4ag op exp(e/kT) -1

3T mict g3

[fer(e,T) = f(&)]I

— At higher energies scattering establishes a Bose-Einstein distribution
fge (g, T), but with small chemical potential (see Lyubarsky, 2002)

2
+ & 10B
InE % 0.5( QED)

o B
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Radiative transfer
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Radiative transfer

 \We solved the radiative transfer
equation in the geometrically thin
surface layer of the fireball (see
Yang & Zhang, 2015), divided into
a number of patches
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Radiative transfer

 \We solved the radiative transfer
equation in the geometrically thin
surface layer of the fireball (see
Yang & Zhang, 2015), divided into
a number of patches

* Assuming the patch dimension
small enough the problem can be
solved in the plane-parallel
approximation

Uz = UBKMUB — \/(1 — .U]%k)(l — .Ulzg) COS Pk
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Radiative transfer equation (RTE)

« Under these assumptions the RTE for the photons polarized
In the two modes assumes a simple form

dt = n.opds

2
[(1 — 12 (1 - @i )nela) + (i) HEy s (i — D) nx(a’) | A

3 [ ¢ 2 " , ,
nyx(a) + Py <g> j [sin“(¢pKk — Ppx) nx(a’)
41T

+4t' 5y €052 (dpk — Ppi) o (@)] A

Physics of Neutron Stars Conference - July 10, 2017

Spectrum and polarization of magnetar flares — 12



Introduction Theoretical model Implementation & Results Conclusions

Radiative transfer equation (RTE)

« Under these assumptions the RTE for the photons polarized
In the two modes assumes a simple form

e Owing to the suppression factor of the X-mode photon cross
sections, the propagation in the fireball medium is quite
different according to the polarization mode

2

. : €
To ~NuOpgil = T Iy ~N,oxll = |— ] T
€B
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Radiative transfer equation (RTE)

« Under these assumptions the RTE for the photons polarized
In the two modes assumes a simple form

e Owing to the suppression factor of the X-mode photon cross
sections, the propagation in the fireball medium is quite

different according to the polarizat] Temperature distribution
(see Lyubarsky, 2002)
* Hence we solved the photonArans| 3
Rosseland mean optical dépth x| F=Ty [1+77R
412 (kTBggp\’
(ox)r = 5 T (meczB >
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Radiative transfer equation (RTE)

« Under these assumptions the RTE for the photons polarized
In the two modes assumes a simple form

e Owing to the suppression factor of the X-mode photon cross
sections, the propagation in the fireball medium is quite
different according to the polarization mode

e Hence we solved the photon transport in terms of the
Rosseland mean optical depth i for the X-mode photons

_ 47'[2 kaBQED
5 \ mJc?B

2
> JTfneds = R(B)t

1 B 5 £ \*
'0OTRB) ™R X =4z \kr, ) R
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Numerical implementation and results
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Assumptions

e Optical depth in the fireball atmosphere:
7 = 1000 (at the base) — 0 (at the top)

TX:10
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Assumptions

e Optical depth in the fireball atmosphere:
7 = 1000 (at the base) — 0 (at the top)

 Photon energy e =1 — 100 keV

e Temperature distribution T = T,\/1 + 0.757g (T}, = 10 keV)
« Dipolar B-field with B, = 2 x 10** G

Rpmax = 2Rys (RNS =10 km)
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Integration of the RTE

« A-iteration method (Runge-Kutta 4th order integration routine)

e QOutput quantities
no(Tr, & UBk PBK) nx(Tr, & Upk PBK)

or

No (TR' € Uz, ¢Z) nx (TR; €, Uz, ¢Z)
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Ray-tracing code

« The contributions from all the patches in view are summed
together in a ray tracing code ,

— y angle between £ and Q

— ¢ angle between bg;, and Q

— 1 angle between u and X
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Ray-tracing code

« The contributions from all the patches in view are summed
together in a ray tracing code

* Fireball visibility

e
m

[ATTTTTTTT
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Ray-tracing code

« The contributions from all the patches in view are summed
together in a ray tracing code

* Fireball visibility

» Different emission geometries

Planar slice

Full torus (model a) Torus cut (model b)
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Ray-tracing code

« The contributions from all the patches in view are summed
together in a ray tracing code

* Fireball visibility
» Different emission geometries

 QED and geometrical effects on the polarization observables

Adiabatic
propagation

Stokes parameter

rotation
\ Mode

\\ decoupling
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Ray-tracing code

« The contributions from all the patches in view are summed
together in a ray tracing code

* Fireball visibility
» Different emission geometries
 QED and geometrical effects on the polarization observables

« Plasma contributions to the dielectric tensor are assumed to
be negligible wrt the vacuum terms (vacuum resonance
effects are relevant at € < 1 keV only, Lyubarsky, 2002)
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Spectral analysis

 Phase-averaged spectrum

- Totae total spectrum is nearly

- msed to the X-mode
\ V7 ode
/ I—Q-nmﬂé-pl:loton flux strongly

A : suppressed

log ¢F (arbitrary units)

- High intrinsic polarization degree

I
-

T
\

0.0 0.5 1.0 1.5 2.0
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Spectral analysis

 Phase-averaged spectrum

« Spectral fit o 1 A, /A,
e ﬂgégi{tiﬁgﬂfhgnct\(els{p(e//’ch)—1+exp(e/kTZ)—1>

/ Emerging spectrum
E X 3 T; (keV) T, (keV) R,/R4

Modela 60° 30° 1.67 9.11 0.177
Modelb 60° 30° 1.67 9.12 0.177

Q
H‘I\IIIII\
\

log F (arbitrary units)

— / BMpdelda 90° 0° 167 918 0.178
" Modelb 90° 0° 167 914 0177
— — Observations of SGR 1900+14 (Israel et al.,
O.D‘ | | ‘U.‘ﬁl I I IlICII I I I-l.‘f)‘ I | ‘Z.U 2008)

log ¢ (keV)

T, =48+ 03keV T, =9.0+0.3keV
Ry /R, = 0.19 4 0.03
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Spectral analysis

 Phase-averaged spectrum
o Spectral fit

e Pulse profile

'

0.5 1.0 15 2.0 0.5 1.0 15 2.0
logle) [keV] logie) [keV]

Model a Model b
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Polarization signal

 Phase-resolved polarization fraction

1000

 The PF drops at higher
photon energies (where the
q{;mode contribution

comesMieged amportarft

Model b

1.0 1.5 . . 1.0 1.5
logie) [keV] logie) [keV]
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Polarization signal

 Phase-resolved polarization fraction

1000

 The PF drops at higher
photon energies (where the
O-mode contribution
becomes more important

7 [rad]

* Photons coming from the
constant-¢ cuts are generally
more polarized than those
coming from the torus

7 [rad]

1.0
logie) [keV]
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Polarization signal

 Phase-resolved polarization fraction

 Phase-resolved polarization angle

Model a

L '/,'-‘-h -
120 o _
r
T 1T Model b
[ F-’ |
Lo _
y
I -
T, 5
I o

* No substantial differences between
model a and model b

e The polarization angle behavior is
| related to the viewing geometry and
the magnetic field topology

Physics of Neutron Stars Conference - July 10, 2017 m I
Spectrum and polarization of magnetar flares — 18



Introduction Theoretical model Implementation & Results Conclusions

Polarization signal

 Phase-resolved polarization fraction
 Phase-resolved polarization angle

 Phase-averaged polarization observables

—
BO
BO
a0
20
T T — e =
BO

Model a — — Model b
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Conclusions and Future prospects
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Conclusions

 Method for modelling the spectral and polarization properties
of radiation emitted during magnetar flares from a steady
trapped-fireball

« Magnetic (Thomson) scattering is the dominant source of
opacity

o Simulated spectra are well fitted by two BB as suggested by
observations (but the hypothesis by Israel et al., 2008 of the
two different O- and X-mode photospheres is not supported)

 The model can reproduce the pulse profiles observed in
Intermediate/giant flare decay tails (tuning both viewing and
emission geometries)
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Conclusions

e Radiation is expected to be highly polarized (in the
extraordinary mode)

=143 :— ; * % —:
1.0 % I I = ]
BO —
08— { — E i 3
x
Yo —
FGEJ‘B : }
= 0.6 — R = ]
} * % o B0 = =
04— | B0 :_ _:
} 0 —
O 2 | x x _
| | \ | 30k | | | |
v=30, =60 y=45, £=40 =60, £=30 ¥=80, £=0 =30, £=60 y=45, £=40 y=60, £=30 ¥=90, £=0
A XIPE

% model
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