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High mass 
companions

High B-fields

Mass capture
from wind/disk

Disruption of 
disk by B-field

Rotating Neutron Star in binary systems

Matter channeled
 onto star

Neutron star 
parameters: 

MNS~1.5-2 Мsun   
RNS ~10-15 km (106 sm)
Pspin ~1 – 103 s
BNS ~1012 G 

X-ray pulsar



X-ray pulsar

Keplerian and stellar-rotation 
frequencies are equal

Alfven radius: magnetic pressure 
equals to the ram pressure of gas
in spherical free-fall from infinity

Romanova et al. 2009



Propeller effect
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   - accretion is prohibited due 

      to centrifugal barrier

Illarionov & Sunyaev, 1975

“Propeller effect”

Keplerian and stellar-rotation 
frequencies are equal

Alfven radius: magnetic pressure 
equals to the ram pressure of gas
in spherical free-fall from infinity

Patterson, 1994



Propeller effect

Corbet, 1996



Observational manifestation



V 0332+53

Stella et al., 1986

Llim = 2.6 x 1036 
erg/s

GRO J1744-28

Cui, 1997

Llim = 3 x 1037 
erg/s

SAX J1808.4-3658
Llim = 5 x 1035 erg/s

Patruno et al., 2016

Campana et al., 2008



What is needed:

- wide range of the mass accretion rate;

- independently measured magnetic field (desired);

- sensitive and flexible X-ray telescope.

Observations of the propeller effect



4U 0115+63, V 0332+53 and SMC X-2 in 2015

Pspin = 3.6 s

Ecyc ~ 12 keV

d = 7 kpc

Pspin = 4.3 s

Ecyc ~ 30 keV

d = 7 kpc

Pspin = 2.37 s

Ecyc ~ 27 keV

d = 63 kpcS
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4U 0115+63, V 0332+53 and SMC X-2 in 2015

Tsygankov et al., 2016a
Lutovinov et al., 2017

Black body with
kT = 0.5 keV

Absorbed power-law
Gamma = 0.4 – 0.7



Tsygankov et al., 2016a
Lutovinov et al., 2017

Propeller in action



L~100 L
Edd

  for 1.4 M
sun

 mass object!

In M82 Galaxy

P
spin

=1.37 s



M82 as seen by Chandra 

Tsygankov et al., 2016b



M82 X-2 intensity distribution 

Distribution is bimodal
Tsygankov et al., 2016b



Propeller in action

     = 0.5

L
lim

=2.0 x 1040 erg s-1

B~1.1 x 1014 G

P=1.37 s

Tsygankov et al., 2016b



GRO J1008-57 in 2016

Pspin = 94 s,      Ecyc ~ 80 keV,      d = 5.8 kpc



Tsygankov et al., 2017

GRO J1008-57 in 2016

Pspin = 94 s

Ecyc ~ 80 keV

d = 5.8 kpc



Thermal-viscous instability

Lasota, 1997

Partial ionization of hydrogen at ~6500 K cause an abrupt change 
in opacity and viscosity making the disc locally unstable.
Critical accretion rate, above which the disc is stable:

E.g.:



Thermal-viscous instability

Or below:

Lasota, 1997

Substituting the magnetospheric radius instead of r:

Partial ionization of hydrogen at ~6500 K cause an abrupt change 
in opacity and viscosity making the disc locally unstable.
Critical accretion rate, above which the disc is stable:



Tsygankov et al., 2017

GRO J1008-57 in 2016

Pspin = 94 s

Ecyc ~ 80 keV

d = 5.8 kpc



The final state of the source after an outburst is 
determined by two fundamental parameters of the 
neutron star: magnetic field and spin period. Equating 
the expressions for luminosities Lcold and Lprop one can 
derive the critical value of the spin period as a function 
of the neutron star magnetic field:

Propeller effect vs cold disc

Tsygankov et al., 2017



Propeller effect vs cold disc



Conclusion (I)

M82 X-2: B ~ 1014 G



Conclusion (II)

Stable accretion 
from the cold disc
vs
propeller effect
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