Polarization of Neutron Star Emission and Future X-ray Missions

Roberto Turolla
Dept. of Physics and Astronomy – University of Padova, Italy
MSSL, University College London, UK

Roberto Taverna, Silvia Zane, Denis Gonzalez Caniulef, Roberto Mignani, Fabio Muleri, Paolo Soffitta, Vincenzo Testa, Kinwah Wu, Sergio Fabiani
The intrinsic polarization

The observed polarization signal: QED (vacuum birefringence) and geometrical effects

Predictions for magnetars and isolated neutron stars

Upcoming X-ray polarimetry missions

What we will measure (and what we have already measured)
Intrinsic polarization

Observed polarization

Predictions

X-ray missions

Measures

Polarization of Neutron Star Emission and Future X-ray Missions
Roberto Turolla – PNS-17, St. Petersburg, July 10-14 2017
Photon polarization modes

• Radiation emitted by the star surface layers is expected to be polarized because the strong magnetic field
 – Changes the cross-sections and hence the way photons interact with matter
 – Alters the dielectric and (inverse) magnetic permeability tensors and hence affects the way photons propagate

\[\nabla \times (\tilde{\mu} \cdot \nabla \times E) = \frac{\omega^2}{c^2} \varepsilon \cdot E \]

• In general radiation in a magnetized cold plasma+vacuum is elliptically polarized
• However, for \(\varepsilon \ll E_{ce} \) the two normal modes are almost linearly polarized: the extraordinary (X) and ordinary (O) modes
Photon polarization modes

- O-mode opacity almost unaffected by the magnetic field
- X-mode opacity strongly reduced by a factor $\approx \omega^2/\omega_{ce}^2$
- Intrinsic polarization depends on the surface emission model (and on the possible reprocessing in the magnetosphere)
- Either an atmosphere or a condensed surface (bare NS), maybe covered by a thin H layer (e.g. Potekhin 2014)
Intrinsic polarization of surface emission

Emission properties depend on local B and T

Intrinsic polarization

$$\Pi_{EM}^L = \frac{F_X - F_O}{F_X + F_O}$$

Divide the surface into patches and add up those which are in view at a certain phase

Phase-averaged intrinsic polarization (soft X-rays; Gonzalez Canjulef et al. 2016)
<table>
<thead>
<tr>
<th>Intrinsic polarization</th>
<th>Observed polarization</th>
<th>Predictions</th>
<th>X-ray missions</th>
<th>Measures</th>
</tr>
</thead>
</table>

Observed polarization
Stokes parameters

- Wave electric field

\[E_x = A_x e^{-i(kx-\omega t)} = a_x e^{-i\varphi_x} e^{-i(kx-\omega t)} \]
\[E_y = A_y e^{-i(ky-\omega t)} = a_y e^{-i\varphi_y} e^{-i(ky-\omega t)} \]

- Polarized radiation conventionally described through the Stokes parameters (that are additive):

\[I = S_x + S_y = S = a_x^2 + a_y^2 \]
\[Q = S_x - S_y = A_x A_x^* - A_y A_y^* = S \cos 2\beta \cos 2\chi = a_x^2 - a_y^2 \]
\[U = A_x A_y^* + A_y A_x^* = 2\Re(A_x A_y^*) = S \cos 2\beta \sin 2\chi = 2a_x a_y \cos(\varphi_x - \varphi_y) \]
\[V = i(A_x A_y^* - A_y A_x^*) = 2\Im(A_x A_y^*) = S \sin 2\beta = 2a_x a_y \sin(\varphi_x - \varphi_y) \]

- Normalized Stokes vector for linearly polarized radiation: \((1, 0, 0)_x, (-1, 0, 0)_o\)
Each photon is polarized either in the X or O mode with respect to the frame (x, y, z) defined by the propagation vector \mathbf{k} and the local direction of \mathbf{B}.

The local frame (x, y, z) changes if \mathbf{B} varies.

Before the Stokes parameters for the entire radiation are computed, they must be referred to the same frame, the polarimeter frame $(u, v, w = z)$.
Stokes parameters rotation

Intrisici polarization Observed polarization Predictions X-ray missions Measures

Polarization of Neutron Star Emission and Future X-ray Missions
Roberto Turolla – PNS-17, St. Petersburg, July 10-14 2017
Each photon is polarized either in the X or O mode wrt the frame \((x, y, z)\) defined by the propagation vector \(\mathbf{k}\) and the local direction of \(\mathbf{B}\).

The local frame \((x, y, z)\) changes if \(\mathbf{B}\) varies.

Before the Stokes parameters for the entire radiation are computed they must be referred to the same frame, the polarimeter frame \((u, v, w = z)\).
Stokes parameters rotation

- Under a rotation by an angle α_i the Stokes parameters transform as:

$$I_i = \bar{I}_i \quad Q_i = \bar{Q}_i \cos(2\alpha_i) + \bar{U}_i \sin(2\alpha_i)$$

$$V_i = \bar{V}_i \quad U_i = \bar{U}_i \cos(2\alpha_i) - \bar{Q}_i \sin(2\alpha_i)$$

- The Stokes parameters associated to the whole radiation are given by:

$$Q = \sum_{i}^{N_X} \cos(2\alpha_i) - \sum_{i}^{N_O} \cos(2\alpha_i) \quad U = \sum_{i}^{N_O} \sin(2\alpha_i) - \sum_{i}^{N_X} \sin(2\alpha_i)$$
The polarization properties of NS emission are described by the polarization fraction and polarization angle

\[
\Pi_L = \frac{\sqrt{Q^2 + U^2}}{I}
\]

\[
\chi_p = \frac{1}{2} \arctan \left(\frac{U}{Q} \right)
\]

Only in the case \(\alpha_i = \text{const}\) the observed \(\Pi_L\) and \(\chi_p\) coincide with the intrinsic ones.
Vacuum polarization

- According to QED, a (strong) magnetic field polarizes the vacuum (virtual e^\pm pairs)

- This modifies the ε and μ tensors of the vacuum which behaves like a birefringent medium

- By linearizing the wave equation (geometric optics approximation), one obtains a set of ODEs governing the evolution of the complex amplitude of \mathbf{E}, $\mathbf{A} = (A_x, A_y, A_z)$
 Vacuum polarization

- Evolution of the Stokes parameters for photons propagating in vacuo (Heyl & Shaviv, 2002; Fernández & Davis, 2011; Taverna et al. 2014))

\[
\frac{d\bar{Q}}{dz} = -\frac{k_0\delta}{2} (2P\bar{V})
\]

\[
\frac{d\bar{U}}{dz} = -\frac{k_0\delta}{2} (N - M)\bar{V}
\]

\[
\frac{d\bar{V}}{dz} = \frac{k_0\delta}{2} [2P\bar{Q} + (N - M)\bar{V}]
\]

\[
k_0 = \frac{\omega}{c}
\]

\[
\ell_A = \frac{2}{\delta k_0 \delta^2} \sim B^{-2} E^{-1}
\]

\[
\ell_B = \frac{B}{|k \cdot VB|}
\]

\[
\ell_A = \ell_B \Rightarrow r_a \approx 4.8 \left(\frac{B_p}{10^{11} \text{ G}} \right)^{2/5} \left(\frac{E}{1 \text{ keV}} \right)^{1/5} R_{NS}
\]

- Two lengthscales
- z coordinate along the ray
- Polarization limiting radius
Evolution of the Stokes parameters for photons propagating in vacuo (Heyl & Shaviv, 2002; Fernández & Davis, 2011; Taverna et al. 2014)

\[
\begin{align*}
\frac{d\mathcal{Q}}{dz} &= -k_0 \delta^2 \nu \mathcal{P}\mathcal{V}
\end{align*}
\]

\[
\begin{align*}
\frac{d\mathcal{U}}{dz} &= -k_0 \delta^2 \mathcal{V} \nu
\end{align*}
\]

\[
\begin{align*}
\frac{d\mathcal{V}}{dz} &= k_0 \delta^2 \mathcal{P}\mathcal{Q} + \mathcal{V} \nu
\end{align*}
\]

Intrinsic polarization

Observed polarization

Predictions

X-ray missions

Measures

Vacuum polarization

\[
\begin{align*}
\ell_A &= 2 k_0 \delta^2
\end{align*}
\]

\[
\begin{align*}
\ell_B &= \frac{B}{k} \cdot \nabla \sim B^{-2} E^{-1}
\end{align*}
\]

Two lengthscales

\[
\ell_A \ll \ell_B
\]

Adiabatic region

Polarization of Neutron Star Emission and Future X-ray Missions

Roberto Turolla – PNS-17, St. Petersburg, July 10-14 2017
Evolution of the Stokes parameters for photons propagating in vacuo (Heyl & Shaviv, 2002; Fernández & Davis, 2011; Taverna et al. 2014)

Vacuum polarization

\[\frac{dQ}{dz} = -k_0 \delta^2 P_{VV} \]

\[\frac{dU}{dz} = -k_0 \delta^2 N - M \]

\[\frac{dV}{dz} = k_0 \delta^2 P_{QQ} + N - M \]

Intrinsic polarization

Observed polarization

Predictions

X-ray missions

Measures

Intermediate region

\[\ell_A \approx \ell_B \]

Two lengthscales

\[\ell_A = \ell_B \Rightarrow r_{\text{aa}} \approx 4.8 B_{10}^{11} G^{2/5} E_{1 \text{ keV}}^{1/5} R_{N_{17}} \]
Vacuum polarization

\[\frac{\partial \mathbf{d}_\mathbf{Q}}{\partial z} = -k_0 \delta^2 \frac{\partial P_{\mathbf{Q}}}{} \]

\[\frac{\partial \mathbf{d}_\mathbf{U}}{\partial z} = -k_0 \delta^2 \mathcal{N} - \mathcal{M} \mathbf{V} \]

\[\frac{\partial \mathbf{d}_\mathbf{V}}{\partial z} = k_0 \delta^2 \frac{\partial P_{\mathbf{Q}}}{} + \mathcal{N} - \mathcal{M} \mathbf{V} \]

Intrinsic polarization

Observed polarization

Predictions

X-ray missions

Measures
Predictions for magnetars and isolated neutron star
Magnetars: persistent

- Magnetar persistent emission: reprocessing of surface thermal radiation by resonant compton scattering onto charges flowing into the twisted magnetosphere
- Scattering changes photon polarization state: \(\sigma_{0-0} = \frac{1}{3} \sigma_{0-x}, \sigma_{x-x} = 3 \sigma_{x-0} \)
- PD and PA depend on twist angle, charge speed and geometrical angles (Fernandez & Davis 2011; Taverna et al. 2014)

Adapted from Taverna et al. (2014)
Magnetars: bursts & flares

- Magnetar bursts/flares originate in a hot, magnetically-confined pair fireball (Thompson & Duncan 1995)
- Solve the radiative transfer for the two modes in the surface fireball layers (Lyubarsky 2002; Taverna & Turolla 2017)
- Because the scattering depth for the O-mode is >> than that for the E-mode, radiation is highly polarized. Spectrum ‘BB+BB’-like (Israel et al. 2007)

More in Roberto Taverna’s talk!
Thermally emitting isolated NSs

- The XDINSs: seven close-by sources with soft thermal spectrum, $kT \approx 50-100$ eV, and period $P \approx 3-12$ s (e.g. Turolla 2009)
- Emission from the entire star surface with an inhomogeneous temperature distribution ($T \sim |\cos \theta|^{1/2}$ for a core-centred dipole)
- Radiation mechanism still uncertain: an atmosphere, a condensed surface?

Phase-averaged polarization fraction (Gonzalez Canjulef et al. 2016)

- H atmosphere
- Condensed surface (fixed ions)
<table>
<thead>
<tr>
<th>Intrinsic polarization</th>
<th>Observed polarization</th>
<th>Predictions</th>
<th>X-ray missions</th>
<th>Measures</th>
</tr>
</thead>
</table>

X-ray missions
X-ray polarimetric missions

- IXPE (Imaging X-ray Polarimetry Explorer), selected as NASA SMEX mission (launch expected late 2020)
- XIPE (X-ray Imaging Polarimeter Explorer), competing for ESA M4 (if selected launch expected late 2020)
- eXTP (enhanced X-ray Timing and Polarimetry mission), Strategic Priority Space Science Program of the Chinese Academy of Sciences (launch expected within 2025)
X-ray polarimetric missions

<table>
<thead>
<tr>
<th>Mission</th>
<th>Effective area (cm²)</th>
<th>Energy range (keV)</th>
<th>Angular resolution (arcsec)</th>
<th>Polarimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>IXPE</td>
<td>690@2.3keV 3 units</td>
<td>2-8</td>
<td>< 25</td>
<td>GPD</td>
</tr>
<tr>
<td>XIPE</td>
<td>> 1100@3keV 3 units</td>
<td>2-8</td>
<td>< 30</td>
<td>GPD</td>
</tr>
<tr>
<td>eXTP</td>
<td>900@2keV 4 units</td>
<td>2-10</td>
<td>< 30</td>
<td>GPD</td>
</tr>
</tbody>
</table>

The three missions use the same Gas Pixel Detector polarimeter developed by INAF-IAPS (GPD; Costa et al. 2001; Bellazzini et al. 2005; Fabiani et al. 2014)
Gas pixel detector

- Detection uses photoelectric effect
- X-rays absorbed in detector fill gas
- Photoelectron emission aligned with X-ray polarization vector
- Electron multiplier with pixelated detector
- Analysis of the distribution of the initial directions of the tracks gives the degree of polarization and the position angle for the incident X-ray
What we will measure (and what we have already measured)
Magnetsars: persistent

XIPE and IXPE simulations for a bright magnetar source (AXP 1RXS J1708)

- Phase-resolved polarimetry can probe the RCS model and pinpoint the source geometry and physical parameters (spectroscopy alone cannot)
- X-ray polarimetry can univocally detect vacuum polarization, an effect still to be experimentally observed

<table>
<thead>
<tr>
<th>Input value</th>
<th>Fit value</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.34 ± 0.007</td>
</tr>
<tr>
<td>$\Delta \phi_{N-S}$ (rad)</td>
<td>0.47 ± 0.013</td>
</tr>
<tr>
<td>χ (deg)</td>
<td>91.68 ± 2.56</td>
</tr>
<tr>
<td>ξ (deg)</td>
<td>59.64 ± 1.08</td>
</tr>
<tr>
<td>X^2_{rad}</td>
<td>11.40</td>
</tr>
</tbody>
</table>
Magnetars: bursts & flares

- Polarimetry will get insight on the physical processes at work in bursts
- Simulations for the intermediate flare IF1 from SRG 1900+14 (Israel et al. 2007; Taverna & Turolla 2017)
Thermally emitting INSs

- Thermal emission from the XDINSs too soft for the GPD. Need to wait for future soft X-ray polarimeters (e.g. Marshall et al. 2015)
- Phase-averaged polarization fraction (Taverna et al. 2015)
Observations of the XDINS RX J1856 in the B band with the VLT revealed a relatively high polarization degree, $16.43 \pm 5.26\%$ (Mignani et al. 2017).
Vacuum polarization detected in the optical?

- Current surface emission models hardly compatible with such a high polarization degree **if no QED effects are accounted for** when constraints from the X-ray pulsed fraction are included.

![Diagram](image)

- Magnetic H atmosphere
- Condensed surface (fixed ions)
Vacuum polarization detected in the optical?

- On the other hand they work quite well when vacuum polarization is there!
Conclusions
Conclusions

• X-ray polarimeters will target several magnetar sources, allowing a firm detection of vacuum birefringence

• Polarization measurements will provide crucial tests for current models for magnetar persistent and bursting emission

• Future missions will extend polarimetry to the soft X-ray band and target thermally emitting INSs, probing their emission mechanism and providing further checks of vacuum birefringence