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The inner crust of neutron stars

~10 km

1−2 km
outer crust: Coulomb lattice of neutron rich nuclei

in a degenerate electron gas

inner crust: superfluid gas of unbound neutrons
between the nuclei (“clusters”)

outer core: homogeneous matter: n, p, e−, (µ−)

inner core: hyperons? quark matter?

I Crystalline and “pasta” phases to minimize surface + Coulomb energy
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Superfluid hydrodynamics at large scales

I Typical temperature: T ∼ 108 − 109 K ∼ 10− 100 keV

I Critical temperature of the neutron gas: Tc ∼ 1 MeV
→ neutrons are superfluid

I Order parameter (gap) ∆ = |∆|e iϕ 6= 0

I Consider scales large compared to the unit cell (10− 100 fm)
but small compared to the distance between vortices (10− 100 µm)

I Introduce coarse-grained order parameter ∆̄ and its phase ϕ̄

I Superfluid velocity ~un =
1

2m
~∇ϕ̄

I Effective low-energy theory using ϕ̄(~r) and cluster displacements ~d(~r) as
degrees of freedom [Cirigliano, Sharma, and Reddy, PRC (2011)]

I Density of superfluid neutrons?
→ effective theory needs input from a more microscopic approach



Entrainment in the inner crust

I Consider relative motion between the clusters and
the neutron gas on a microscopic scale

I Gas has to flow around (or through?) the clusters
→ a certain fraction of neutrons are “entrained”
by the protons

Cluster

Neutron gas
up

I Entrainment can be expressed in terms of effectively “bound” and
“superfluid” neutrons or in terms of a cluster effective mass

N = Nb +Ns Aeff = Z +Nb Ekin

V
=

m

2

(
(n̄p + n̄bn)~u 2

p + n̄sn~u
2
n

)
where:
~up = velocity of protons (clusters)
~un = velocity of superfluid neutrons



Microscopic approaches: (a) band-structure theory

[N. Chamel]

I Analogous to band structure theory in solids

I Neutrons in a periodic mean field
→ energy bands α with complicated dispersion relations εα(~k)

[Figures from Chamel and Haensel, Living Rev. Relativity 11 (2008)]

I Neutron “mobility” obtained from
dεα
dk

at the Fermi surface

I Strong entrainment → Aeff strongly increased, n̄sn strongly reduced



Microscopic approaches: (b) superfluid hydrodynamics

[A. Sedrakian; P. Magierski and A. Bulgac]

I Assumption: coherence length (Cooper pair size) ξ sufficiently small
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L = size of unit cell

R = cluster radius

ξ = coherence length in the neutron gas

[Matsuo, PRC 73 (2006); Sun et al., PLB 683 (2010)]

→ neutron velocity on a microscopic scale given by ~vn(~r) =
1

2m
~∇ϕ(~r)

I Analytical results for the case of a single cluster in an infinite gas

I This work: extension to a periodic lattice of clusters



Hydrostatic equilibrium: phase coexistence

I Hydrodynamic approach → equilibrium state must satisfy

P(~r) = const. , µa(~r) = const. (a = n, p)

I Clusters with diffuse surface are approximated by coexisting phases with
sharp interface
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I Cluster and gas densities
obtained in the ETF
approach satisfy phase
coexistence conditions very
well
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Stationary flow of the clusters through the gas

I Protons bound in clusters → velocity of clusters = velocity of protons ~up

I No compression → velocity potential φ = ϕ/2m satisfies: 4φ = 0

I Boundary conditions at the cluster-gas interface:

I Continuity of the phase: φ(1) = φ(2)

I Conservation of the neutron current:

n
(1)
n (~∇φ(1) − ~up) · ~S = n

(2)
n (~∇φ(2) − ~up) · ~S

n
(1)up(1)

n
(2)

v

(2)

v

S

I Coarse-grained velocity potential reads φ̄ = ~un · ~r
→ microscopic velocity potential can be written as

φ(~r ; ~up, ~un) = ~un · ~r + φ(~r ; ~up − ~un,~0)

I In the rest frame of the superfluid neutrons, φ(~r ; ~up − ~un,~0) is periodic



Uniform flow in the BCC lattice (3D)

I Example: nB = 0.049 fm−3

velocity potential φ stream lines and speed |~vn|

I Flow in the cluster is slower than motion of the cluster itself (|~v (2)
n | < |~up|)

→ gaz neutrons flow through the cluster

→ Aeff < A → impact on phonon velocities, heat capacity, cooling. . .



Superfluid density

I Distinguish densities of energetically free (n̄fn) and superfluid (n̄sn) neutrons

I free neutron density in good
agreement with band structure
theory [N. Chamel, PRC (2012)]

I superfluid fraction obtained from
hydrodynamics is much larger than
the result of band structure theory

I Possible reasons for this discrepancy?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07

n
s
,f

n
 /
 n–

n

nB (fm
-3

)

super. hydro. n
s
n

e-cluster n
f
n

Chamel n
f
n

Chamel n
s
n

I Validity of hydrodynamics questionable: ξ of the same order as R

I Band structure theory does not account for the strong pairing
[cf. also Watanabe & Pethick (2017)]

in superconductors: spacing between bands � pairing gap ∆

in the inner crust: spacing between bands . pairing gap ∆



Estimate of the deviation from hydrodynamics

I Problem: coherence length ξ ∼ cluster size R

→ deviations from ~vn = 1
2m
~∇ϕ [Migdal (1959)]

I Same situation as in atomic nuclei

I Nuclear moments of inertia lie in between the
irrotational-flow and the rigid-body values

I Assume that only a fraction δ ≤ 1 of the
neutrons in the cluster are superfluid

I in the equations, replace

n(2)
n → δn(2)

n , n(2)
p → n(2)

p + (1− δ)n(2)
n

I Even with δ = 0, the superfluid neutrons in the
gas are enough to produce a large superfluid
fraction

[figure: Rowe book (1970)]
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Consequences for glitches

I Strong glitch activity of Vela pulsar
→ superfluid must contribute & 1.6 %
→ to the total moment of inertia I
→ of the star

I With the superfluid fraction of
band theory (Is/Icrust = 0.17),
Vela mass would have to be . 0.7Msun

[Andersson, PRL 109; Chamel PRL 110] 8 10 12 14 16
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I Suggestions to solve this “Vela glitch puzzle”:

I Superfluidity in the core? [Andersson PRL 109]

I New equation of state that gives a thicker crust? [Piekarewicz, PRC 90]

I Take the superfluid fraction of the present model
→ observed glitches can be conciliated with Vela mass of up to
→ 1.7Msun if δ = 1 (Is/Icrust = 0.94) or still 1.5Msun if δ = 0 (Is/Icrust = 0.64)



Summary

I Entrainment of neutrons by the clusters in the inner crust
→ cluster effective mass, superfluid fraction

I Superfluid hydrodynamics on a microscopic scale
→ entrainment much weaker than in band structure theory
→ deviations expected because of small cluster size

I Possible solution to the Vela glitch puzzle

Outlook

I Extension to oscillations (long-wavelength effective theory)
→ coupling between superfluid phonons and lattice vibrations

I Consequences for transport properties (cooling)

I Check hydrodynamics by comparing it with QRPA calculations

I Temperature effects? Zero-point motion of the clusters?


