Abrupt Changes in Pulsar Pulse Profile Through Multiple Magnetospheric State Switching

Physics of Neutron Stars – 2017, St Petersburg, Russia, 10–14 July 2017

OUTLINES

- Phenomena showing changes in emission properties.
- Sketch a model for multiple-state magnetosphere.
- Illustrations for changes as result of switching between different magnetospheric states.

WHAT IS CHANGING?

The phenomena:

- 'ON' and 'OFF' emission (Kramer et al. 2006); correlation between pulse shape and the spin-down rate (Lyne et al 2010); nulling of 3 discrete timescales (Kerr et al. 2014)...
- changes in emission mode \rightarrow changes in subpulse drift rates \rightarrow changes in profile properties (e.g., B0031-07, Smits et al. 2005)

THE NEED FOR MORE STATES

- Discrete variations in these emission properties imply:
 - multiple emission 'states' in the magnetospheres;
 - different pulsars have different sets of allowed states;
 - a pulsar behaves as if a 'normal' pulsar in each state.
- Let's give it more 'states':
 - multiple magnetospheric emission states
 (y) to switch into (Melrose & Yuen 2014);
 - each defined by unique E = E(y);
 - switches between different states can occur abruptly or steadily.

THE NEED FOR MORE STATES

- Discrete variations in these emission properties imply:
 - multiple emission 'states' in the magnetospheres;
 - different pulsars have different sets of allowed states;
 - a pulsar behaves as if a 'normal' pulsar in each state.
- Let's give it more 'states':
 - multiple magnetospheric emission states
 (y) to switch into (Melrose & Yuen 2014);
 - each defined by unique E = E(y);
 - switches between different states can occur abruptly or steadily.

OBSERVING EFFECTS

- Magnetospheric states (y := [0,1]) $E = (1 ybb) \cdot E_{ind} (1 y)grad \Phi_{cor}$ $v_{dr} = yv_{ind} + (1 - y)(\omega_* \times x)_{\perp}$
- Apparent 'relative' subpulse drift:
- For $\omega_{\rm V} \neq 0$ or $\omega_{\rm V} = 0$:

 $\omega_{\rm R}(y) = m\omega_{\rm dr}(y) - \omega_{\rm V}$

- path through the polar region and duration of stay in the region are different.
- profile displacement and broadening.

ILLUSTRATION: SIMPLE CASE

• A sudden switch in the magnetosphere, as reflected by a change in the subpulse drift rate, causes the profile characteristics to change.

Emission spot	Peaks at $\psi =$	0º (blue)
State	$\omega_{\rm V} = 0$	$\omega_{\rm V} \neq 0$
Pulse-width	27°	35°
Peak phase	0 ^o	0°
Emission spot	Peaks at $\psi = -$	–23º (brown)
Emission spot State	Peaks at $\psi = -$ drift =0°	–23° (brown) drift =50°
Emission spot State Pulse-width	Peaks at $\psi = -\frac{1}{35^{\circ}}$	-23° (brown) drift =50° 39°

y

- Profile shape is unique to the magnetospheric state.
 - the components shift within the fixed pulse window.
- Simulation using $\zeta = 58.1^{\circ}$, $\alpha = 53^{\circ}$.
- Magnetospheric state: *y*=0

- Profile shape is unique to the magnetospheric state.
 - the components shift within the fixed pulse window.
- Simulation using $\zeta = 58.1^{\circ}$, $\alpha = 53^{\circ}$.
- Magnetospheric state: *y*=0.1

- Profile shape is unique to the magnetospheric state.
 - the components shift within the fixed pulse window.
- Simulation using $\zeta = 58.1^{\circ}$, $\alpha = 53^{\circ}$.
- Magnetospheric state: *y*=0.2

- Profile shape is unique to the magnetospheric state.
 - the components shift within the fixed pulse window.
- Simulation using $\zeta = 58.1^{\circ}$, $\alpha = 53^{\circ}$.
- Magnetospheric state: *y*=0.3

- Profile shape is unique to the magnetospheric state.
 - the components shift within the fixed pulse window.
- Simulation using $\zeta = 58.1^{\circ}$, $\alpha = 53^{\circ}$.
- Magnetospheric state: *y*=0.42

- Profile shape is unique to the magnetospheric state.
 - the components shift within the fixed pulse window.
- Simulation using $\zeta = 58.1^{\circ}$, $\alpha = 53^{\circ}$.
- Magnetospheric state: *y*=0.48

A CASE STUDY: B0919+06

- Switching in *y* from 0 to 0.42 results in (i) a shift in the profile peak by ~4°; and (ii) changes in the profile shape.
- Limitations of the model:
 - shifted profile shape indicate other mechanisms involved;
 - assume dipolar field structures.

THINGS WE DON'T KNOW...YET

- Cyclical switching:
 - observations show recurring switching, or, in our language:

$$y_1 \rightarrow y_3 \rightarrow y_5 \rightarrow y_1 \dots$$

- can do it (simulationally), but don't know why it should (physically).
- Pulsars that switch:
 - traditional models make no distinction between pulsars with single and multiple states.
 - two groups of pulsars differ only in the switch rate: 'stable' corresponds to switching occurring too infrequently to have been observed.
- Local vs global switching:
 - implies whole magnetosphere switches simultaneously (through E).
 - e,g., synchronized changes in radio and γ -ray emission properties?

THINGS WE DON'T KNOW...YET

- Cyclical switching:
 - observations show recurring switching, or, in our language:

$$y_1 \rightarrow y_3 \rightarrow y_5 \rightarrow y_1 \dots$$

- can do it (simulationally), but don't know why it should (physically).

• Pulsars that switch:

- traditional models make no distinction between pulsars with single and multiple states.
- two groups of pulsars differ only in the switch rate: 'stable' corresponds to switching occurring too infrequently to have been observed.
- Local vs global switching:
 - implies whole magnetosphere switches simultaneously (through E).
 - e,g., synchronized changes in radio and γ -ray emission properties?

THINGS WE DON'T KNOW...YET

- Cyclical switching:
 - observations show recurring switching, or, in our language:

$$y_1 \rightarrow y_3 \rightarrow y_5 \rightarrow y_1 \dots$$

- can do it (simulationally), but don't know why it should (physically).

• Pulsars that switch:

- traditional models make no distinction between pulsars with single and multiple states.
- two groups of pulsars differ only in the switch rate: 'stable' corresponds to switching occurring too infrequently to have been observed.
- Local vs global switching:
 - implies whole magnetosphere switches simultaneously (through E).
 - e,g., synchronized changes in radio and γ -ray emission properties?

CONCLUSIONS

REFERENCES

- Clemens & Rosen, 2004, *ApJ*, **609**, 340
- Demorest, et al., 2013 *ApJ* **762**, 94
- Goldreich & Julian, 1969 *ApJ* **157**, 869
- Kramer, et al., 2006 *Science* **312**, 549
- Lyne, et al., 2010 *Science* **329**, 408
- Melrose & Yuen, 2014 *MNRAS* **437**, 262
- Rankin, et al., 2006 MNRAS **370**, 673
- Smits, et al., 2005, *A&A*, **440**, 683
- Yuen & Melrose, 2017, *MNRAS*, **469**, 2049

Thank you.

THE MODEL

• Magnetospheric plasma flow (y := [0,1])

$$\boldsymbol{E} = (1 - y\boldsymbol{b}\,\boldsymbol{b}) \cdot \boldsymbol{E}_{ind} - (1 - y)grad\,\Phi_{cor}$$

$$\boldsymbol{v}_{\mathrm{dr}} = y \, \boldsymbol{v}_{\mathrm{ind}} + (1 - y) \, (\boldsymbol{\omega}_* \times \boldsymbol{x})_{\perp}$$

OBSERVING EFFECTS

- For $\omega_{\rm V} \neq 0$ or $\omega_{\rm V} = 0$:
 - path through the polar region and duration of stay in the region are different.
 - profile displacement and broadening.

VISIBLE EMISSION

- Emission structure:
 - a wave at a specific spherical harmonic grows preferentially giving an emission pattern corresponds to *m* anti-nodes.
 - observer sees the anti-nodes flow past at $m\omega_{dr}$
 - anti-nodes arrange evenly around **B** axis.
- The 'visible' paths:
 - shape, size and location unique to ζ, α .
 - non-concentric and may not revolve around or concentric to the *B* axis.
- Anti-nodes visible **only if** on the visible path:
 - # of intersected anti-nodes is uneven along the path.
 - highest around the centre of pulse, $\psi=0$.

CONCLUSIONS

- Pulsar emission state switching is here to stay:
 - need to understand its properties;
 - more importantly, its influential parameters;
 - broader and deeper pulsar astrophysics.
- For other detection purposes:
 - e.g., GWs. Can't be very confidence of a detection unless pulsar intrinsic properties are identified.
 - should be lots out there.
 - search for more candidates.
 - but before we can do that...

WHAT IS INVOLVED?

- Study finds strong correlation between profile shape and spindown rate – suggests discrete switching between 2 magnetospheric states.
- An intermittent pulsar
 - **ON** for 5–10 days
 - **OFF** for 25–35 days
- Switching between 2 states: vacuum (off) and plasma (on).

$$\frac{\dot{\nu}_{\rm ON}}{\dot{\nu}_{\rm OFF}} = 1.5$$

$$\Psi_P = \Psi_P(S_E)$$

$$S_E = S_E(\dot{\nu}) \rho E$$

(Lyne et al. 2010)

WHAT ARE WE MISSING?

• Variations in:

- drifting subpulses of multiple drift modes (Smits et al. 2005);
- emission properties between 'on' and 'off' (Kramer et al. 2006);
- profile shape + spin down rate (Lyne et al. 2010);
- glitches (Keith et al. 2013);
- nulling of three discrete timescales (Kerr et al. 2014);
- you name it...

• Common features:

- time-dependent; shows up as timing irregularities.
- almost all accompanied with changes in spin-down rates.