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• Phenomena showing changes in emission properties. 
• Sketch a model for multiple-state magnetosphere. 
• Illustrations for changes as result of switching between 

different magnetospheric states. 
 
 
 

Outlines 



 The phenomena: 
– ‘ON’ and ‘OFF’ emission (Kramer et al. 2006); correlation between 

pulse shape and the spin-down rate (Lyne et al 2010); nulling of 3 
discrete timescales (Kerr et al. 2014)… 

– changes in emission mode → changes in subpulse drift rates → 
changes in profile properties (e.g., B0031-07, Smits et al. 2005) 

 
 

What is changing? 



The need for more states 

• Discrete variations in these emission properties imply: 
– multiple emission ‘states’ in the magnetospheres; 
– different pulsars have different sets of allowed states; 
– a pulsar behaves as if a ‘normal’ pulsar in each state. 

 
 • Let’s give it more ‘states’: 

– multiple magnetospheric emission states        
(y) to switch into (Melrose & Yuen 2014); 

– each defined by unique E = E(y); 
– switches between different states               

can occur abruptly or steadily. 
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Observing effects 

• For ωV ≠ 0 or ωV = 0 : 
– path through the polar region and duration of stay in the region are 

different. 
– profile displacement and broadening. 

 

• Apparent ‘relative’ subpulse drift:                                                      

• Magnetospheric states (y := [0,1]) 
 

                                                                       



Emission 
spot 

Peaks at ψ = −23o (brown) 

State drift =0o drift =50o 
Pulse-width 35o 39o 
Peak phase -23o -26o 

Emission 
spot 

Peaks at ψ  = 0o (blue) 

State ωV = 0 ωV ≠ 0 
Pulse-width 27o 35o 
Peak phase 0o 0o 

Illustration: simple case 

• A sudden switch in the magnetosphere, as reflected by a change in 
the subpulse drift rate, causes the profile characteristics to change. 



• Profile shape is unique to the magnetospheric state. 
– the components shift within the fixed pulse window. 

• Simulation using ζ=58.1o, α= 53o. 

• Magnetospheric state: y=0 

Changes in profile 



Changes in profile 

• Profile shape is unique to the magnetospheric state. 
– the components shift within the fixed pulse window. 

• Simulation using ζ=58.1o, α= 53o. 

• Magnetospheric state: y=0.1 
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• Simulation using ζ=58.1o, α= 53o. 

• Magnetospheric state: y=0.3 



Changes in profile 

• Profile shape is unique to the magnetospheric state. 
– the components shift within the fixed pulse window. 

• Simulation using ζ=58.1o, α= 53o. 

• Magnetospheric state: y=0.42 



Changes in profile 

• Profile shape is unique to the magnetospheric state. 
– the components shift within the fixed pulse window. 

• Simulation using ζ=58.1o, α= 53o. 

• Magnetospheric state: y=0.48 



• Switching in y from 0 to 0.42 results in (i) a shift in the profile peak  
by ~4o; and (ii) changes in the profile shape. 

• Limitations of the model: 
– shifted profile shape indicate other mechanisms involved; 
– assume dipolar field structures. 

(Rankin et al. 2006) 

A case study: B0919+06 



•  Cyclical switching:  
– observations show recurring switching, or, in our language:               

      y1 → y3 → y5 → y1 … 

– can do it (simulationally), but don’t know why it should (physically). 
 

•  Pulsars that switch:  
– traditional models make no distinction between pulsars with single and 

multiple states.  
– two groups of pulsars differ only in the switch rate: ‘stable’ corresponds 

to switching occurring too infrequently to have been observed.  
 

•  Local vs global switching:  
– implies whole magnetosphere switches simultaneously (through E).  
– e,g., synchronized changes in radio and γ–ray emission properties?  
 

Things we don’t know…yet 
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Profiles are unique to each pulsars.  

y = 0 
y = 0.3 
y = 0.6 
y = 0.9 

Simulation with α = 20o ; ζ = 10o 
 

 Profiles are unique to each 
magnetospheric  states of a pulsar. 
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Conclusions 
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• Apparent ‘relative’ subpulse drift                                                      

• Magnetospheric plasma flow (y := [0,1]) 
 

                                                                       

The model 



Observing effects 

 

• For ωV ≠ 0 or ωV = 0 : 
– path through the polar region and duration of stay in the region are 

different. 
– profile displacement and broadening. 



• The ‘visible’ paths: 
– shape, size and location unique to ζ,α.  
– non-concentric and may not revolve 

around or concentric to the B axis. 

Visible emission 

• Emission structure: 
– a wave at a specific spherical harmonic grows preferentially giving 

an emission pattern corresponds to m anti-nodes. 
– observer sees the anti-nodes flow past at mωdr  

– anti-nodes arrange evenly around B axis. 

• Anti-nodes visible only if on the   
visible path: 
– # of intersected anti-nodes is uneven 

along the path. 
– highest around the centre of pulse, ψ=0. 



 

• Pulsar emission state switching is 
here to stay: 
– need to understand its properties; 
– more importantly, its influential 

parameters; 
– broader and deeper pulsar 

astrophysics. 
• For other detection purposes:  

– e.g., GWs. Can’t be very confidence 
of a detection unless pulsar intrinsic 
properties are identified. 

– should  be lots out there. 
– search for more candidates. 
– but before we can do that… 

Conclusions 



• Study finds strong correlation 
between profile shape and spin-
down rate – suggests discrete 
switching between 2 
magnetospheric states. 

(Lyne et al. 2010) 

    What is involved? 

• An intermittent pulsar 
– ON    for 5–10 days 
– OFF  for 25–35 days 

• Switching between 2 states: 
vacuum (off) and plasma (on). 

 
–   
–   



• Variations in: 
– drifting subpulses of multiple drift modes (Smits et al. 2005); 
– emission properties between ‘on’ and ‘off’ (Kramer et al. 2006); 
– profile shape 
– glitches (Keith et al. 2013); 
– nulling of three discrete timescales (Kerr et al. 2014); 
– you name it… 

• Common features: 
– time-dependent; shows up as timing irregularities. 
– almost all accompanied with changes in spin-down rates.  

What are we missing? 

 
+ spin down rate (Lyne et al. 2010); 
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