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ABSTRACT

Context. An equation of state (EoS) of dense nuclear matter is a puésieg for studies of the structure and evolution of compact
stars. A unified EoS should describe the crust and the corenefiron star using the same physical model. The Brussetsighd
group has recently derived a family of such EoSs based onublear energy-density functional theory with generali&grme
effective forces that have been fitted with great precision serisally all the available mass data. At the same timegtf@ses were
constrained to reproduce microscopic calculations of hggneous neutron matter based on realistic two- and threlegforces.
Aims. We represent basic physical characteristics of the latastd®ls-Montreal EoS models by analytical expressionaditithte
their inclusion in astrophysical simulations.

Methods. We consider three EoS models, which significantlffediby stifness: BSk19, BSk20, and BSk21. For each of them we
constructed two versions of the EoS parametrization. Infitlsé version, pressur® and gravitational mass densityare given as
functions of the baryon number density. In the second versior®, p, andn, are given as functions of pseudo-enthalpy, which
is useful for two-dimensional calculations of stationaoyating configurations of neutron stars. In addition to tleSEwe derived
analytical expressions for several related quantities dharequired in neutron-star simulations: number fraxgiof electrons and
muons in the stellar core, nucleon numbers per nucleus imttex crust, and equivalent radii and shape parameterseaiublei in
the inner crust.

Results. We obtain analytical representations for the basic chartics of the models of cold dense matter, which are most im
portant for studies of neutron stars. We demonstrate thbilitgaof our results by applying them to calculations of treu-star
mass-radius relations, maximum and minimum masses, tidsslof direct Urca processes, and the electron condugctimithe
neutron-star crust.
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1. Introduction can manifest themselves by the occurrence of spurious-insta
] ) ) bilities in neutron-star dynamical simulations. Even i¢ ttian-

The equation of state (EoS) ofglense matter is crucial ag fopu gjtions are treated using a unified approach, instabilitkght
neutron-star structure calculations. Usually, neutram-siatter il arise due to numerical errors. In addition, realisaSs are
is strongly degenerate, and therefore the EoS is barot(opic generally calculated only for specific densities amgressures.
the pressure is temperature-independent), except foruter-0 These limitations can be circumvented by using analytisaie-
most envelopes (a few meters thick). sentations of the EoSs. In this paper we construct analyépa

A unified EoSis based on a singleffective nuclear resentations of three recent unified EoSs for cold catalyzed
Hamiltonian and is valid in all regions of the neutron-st#et clear matter developed by the Brussels-Montreal group:1BSk
rior. For unified EoSs, the transitions between the outestand BSk20, and BSk21 (Goriely et al. 2010; Pearson et al. 2011,
the inner crust, and between the inner and the core are trea?@12).
consistently using the same physical model (e.g., Douchin &

Haensel 2000; Pearson et al. 2012). Other (nonunified) Eoéac\;\f fOIrI]OW thetapp;rczjach ?(at\_/eIcI)ped by Hta(;:_nselfgc Pot(_akhin
consist of crust and core segments obtained usifigréint mod- ):fyvdoEcosrls ru(;: Ie FaFTg yF:cadrﬁpr_eserclj aSILOIQS mr:ml/ll-1989
els. The crust-core interface there has no physical meaairdy ©YS UNMed 0> MOdEIS (Pandharipande & Ravenha )

both segments are joined using an ad hoc matching proced SLy4 (Douchin & Haensel 2001). In addition, we present

This generally leads to thermodynamic inconsistencieschvh analytical parametrizations of the composition of the tarl
number fractions of leptons and nucleons in the core of araput
star. We adopt the “minimal model” (e.g., Haensel et al. 2007

* Our analytical fitting expressions have been implementé®itran  \yhich means we assume the nucleon-lepton matter without ex-
subroutines that are publicly available at the CDS via anmnys ftp to otic particles.

cdsarc.u-strasbg.fr (130.79.128.5) or via htgutsweb.u-strasbg/frgi-
bin/gqcat?JA+A/, or at http//www.ioffe.ryastrgNSGBSK The composition of the neutron-star crust can depend on its
** e-mail:palex@astro.ioffe.ru formation history. For example, if the star experiencedracc
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tion, then the crust could be formed by the nuclear transéermTable 1. Properties of the Skyrme forces BSk19, BSk20, and BSk21
tions that accompany gradual density increase under thghivei(Goriely et al. 2010). See text for details.
of the newly accreted matter (Haensel & Zdunik 1990). It dif-

fers from t.he matter in beta-equilibrium (cqld catalyzedtte BSK19 BSk20 BSK21
that constitutes the crust soon after the birth of a neuttan s
Moreover, the nonequilibrium composition of an accretagstr o(Maory) [MeV] | 0.583 0.583 0.577
can also depend on the composition of the ashes of accretion- o(Rep) [fm] | 0.0283  0.0274  0.0270
induced thermonuclear burning (Haensel & Zdunik 2003) eHer 3 [MeV] | -16078 -16080 -16.053
however, we do not consider these complications, but focus o Mo fm=] | 0.1596  0.1596  0.1582
Ky [MeV] 237.3 241.4 245.8
the cold catalyzed matter.
. . J[MeV] 30.0 30.0 30.0
In Sec. 2 we briefly review the nuclear models used to con- L [MeV] 31.9 374 46.6
struct the Brussels-MontreaI EoSs, .|nclud|ng_ a discussibn K,[MeV] | -3428 -3171 -2646
constraints coming from nuclear physics experiments antyma m;/m 0.80 0.80 0.80
body calculations. In Sect. 3 we present a set of fully anayt m;,/m 0.61 0.65 0.71
approximations to the EoSs in the crust and the core of aoeutr Neaus [fM %] 1.45 0.98 0.99
star. This set includes pressiPeand baryon number density NeuM FP APR LS®

as functions of gravitational mass dengifithe inverse function
p(ny), and a fit ofp as a function of the pseudo-enthalpy, which ieferences. (a) Friedman & Pandharipande (1981); (b) Akmal et al.
a particularly convenient independent variable for sirtiates of  (1998); (¢) Li & Schulze (2008).
rapidly rotating neutron stars (Bonazzola et al. 1993).¢ntS4
we give analytical approximations to number fractions @fcel
trons and muons in the core and the inner crust of a neutr#il8 + sv + UIX”, and the BSk21 EDF was adjusted to thefisti
star as functions ofi,. Based on the one-dimensional approxEoS labeled “V18”in Li & Schulze (2008).
imation of the nuclear shapes suggested by Onsi et al. (2008) These NeuM constraints make the EDFs BSk19-21 suit-
we describe the shapes of the nuclei in the inner crust ag fullble for application to the neutron-rich environments emzo
analytical functions of two arguments, the radial coorténia tered in many dierent astrophysical situations, and our making
a Wigner-Seitz celt and the mean baryon density. We also three diferent such EDFs available reflects the current lack of
present &ective proton and neutron sizes of the nuclei in the ikknowledge of the high-density behavior of dense matterdn a
ner crust as analytical functions of. In Sect. 5 we consider andition, these three EDFs were also constrained to reproskeice
application of the results to the calculation of electronauac- eral other properties of homogeneous nuclear matter agelblta
tivity in the stellar crust. The impact of the analytical repen- from many-body calculations using realistic two- and three
tation of the EoSs on neutron-star structure is studied o1.8e nucleon interactions; among those, the ratio of the isascd}
Concluding remarks are given in Sect. 7. fective masar; to bare nucleon mass in symmetric nuclear
matter at saturation was set to the realistic value of 0.8, an
all three EDFs predict a neutrorfective mass that is higher
2 The unified Brussels-Montreal EoSs than the proton fective mass in neutron-rich matter, as found
both experimentally and from microscopic calculationgi®as
The unified Brussels-Montreal EoSs that we consider here g@moperties of the BSk19, BSk20, and BSk21 EDFs are summa-
based on the nuclear energy-density functionals (EDFsgléal rized in Table 1 (Goriely et al. 2010), namely: the rms dewiz
BSk19, BSk20, and BSk21, respectively. These EDFs wdthe 2149 measured atomic massgBu,m) and to the 782
derived from generalized Skyrme interactions, suppleegntmeasured charge radii(Rch), the energy per nucleon of sym-
with microscopic contact pairing interactions, a phenoaleg- metric nuclear matter at saturation density the baryon num-
ical Wigner term and correction terms for the collective erber density at saturatiam,g, the incompressibility of symmetric
ergy (Goriely et al. 2010; Chamel 2010). Calculating the nunuclear matter at saturatidf, (which was required to fall in
clear energy with the Hartree-Fock-Bogoliubov (HFB) metho the experimental range 24010 MeV, according to Colo et al.
the EDFs were fitted to the 2149 measured masses of atomic #004), the symmetry energy déieient J and its slopelL, the
clei with proton numbeZ > 8 and neutron numbe > 8 from isospin compressibilitK,, the isoscalar and isovectoffective
the 2003 Atomic Mass Evaluation (Audi et al. 2003) with amassesr; andn, relative to the bare nucleon mass and the
root mean square (rms) deviation as low as 0.58 MeV. In makitigniting baryonic densityncaysafter which the EoSs of neutron-
these fits the Skyrme part of the EDFs were simultaneously catar matter violate causality. The last line indicates treaM
strained to fit the zero-temperature EoS of homogeneousareutEoS to which each EDF was fitted.
matter (NeuM), as determined by many-body calculationh wit The Brussels-Montreal EDFs BSk19, BSk20, and BSk21
realistic two- and three-nucleon forces. Actually, selezalis- were used to compute the EoS of all regions of a neutron star.
tic calculations of the EoS of NeuM have been made, and whitellowing the BPS model (Baym et al. 1971), the outer crug wa
they all agree fairly closely at nuclear and subnuclear itiess assumed to consist of fully ionized atoms arranged in a body-
at the much higher densities that can be encountered towatdsatered cubic lattice at zero temperature. The EoSs ofiiter o
the center of neutron stars theyffdr greatly in their stiness, crust were calculated using either experimental atomicsess
and there are very few data, either observational or exparim when available or theoretical masses obtained from the HFB
tal, to distinguish between theftbrent possibilities. It is in this mass models constructed with the BSk19, BSk20, and BSk21
way that the three flierent functionals were constructed, as folEDFs, as appropriate (see Pearson et al. 2011, for defads).
lows. The BSk19 EDF was constrained to the soft Friedmante inner crust, where neutron-proton clusters coexigh fite
Pandharipande (1981) EoS obtained from the realistic Wrbameutrons, the kinetic-energy part of the appropriate ED& oed-
v14 nucleon-nucleon force with the three-body force TNE thculated using the semi-classical extended Thomas-Ferthiode
BSk20 EDF was fitted to the Akmal et al. (1998) EoS labeladgith proton quantum shell corrections added via the Stgkin
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integral theorem; neutron shelffects, which are known to be body calculations. For example, the valuesLobbtained with
much smaller, were neglected (see Pearson et al. 2012, for B8k19-21 EDFs are all compatible with the range of values
tails). This method is a computationally very fast approadion L = 55+ 25 MeV deduced by Centelles et al. (2009) and Warda
to the full Hartree-Fock equations. In order to further reglthe et al. (2009) from measurements of the neutron-skin thiskie
computations, nuclear clusters were assumed to be spharida nuclei. ThelL codficients obtained with BSk20 and BSk21 are
parametrized nucleon distributions were introduced. Iiindoe  also in agreement with the values 36 MeV < 55 MeV found
electrostatic energy was calculated using the WignezS3git by Steiner & Gandolfi (2012) combining quantum Monte Carlo
proximation, and pairingféects were neglected. The overall re€alculations with neutron-star mass and radius measursmen
sulting errors in the EoS of the inner crust were found to lmiab Incidentally, this latter constraint would rule out threfétte only
5% at the neutron-drip point. The EoSs of the core, assumedit@ functionals that survive the analysis of Dutra et al.1(2D
consist of homogeneous beta-equilibrated matter madeabénu Various other constraints od and L obtained from the analy-
ons and leptons (electrons and muons), were calculated-essis of diferent experiments (Tsang et al. 2012; Lattimer & Lim
tially analytically from the adopted EDF (Goriely etal. Z)1 ~ 2013) have been summarized in Fig. 1. The figure shows the con-
In a recent paper, Dutra et al. (2012) analyzed 240 Skyrratraint deduced by Tsang et al. (2009) from heavy-ion dotis
parametrizations, including BSk EDFs, by comparing theirp (HIC), that derived by Chen et al. (2010) from measurement
dicted properties of symmetric nuclear matter and pure NauMof the neutron skin thickness in tin isotopes, and that olethi
some empirical constraints. On this basis, these authjgsteel from the analysis of giant dipole resonance (GDR) (Trippa et
BSk19-21 EDFs (along with all but five of the 240 parametrizal. 2008; Lattimer & Lim 2013) and the electric dipole potari
tions that they considered). We now argue that this rejadso ability (Piekarewicz et al. 2012) if®Pb. For comparison, the
unjustified. In the first place, BSk19-21 EDFs are claimed twnstraint obtained from our HFB nuclear mass models BSk9-
be incompatible with the constraint labeled “SM3” by Dutta e26 (Goriely et al. 2013; Pearson et al. 2009, and references
al. (2012), a constraint on the EoS of symmetric nuclear maberein) as well as unpublished ones are also shown. Values o
ter obtained from the analysis of particle-flow measuremént JandL have also been extracted from pygmy dipole resonances
Au-Au collisions (Danielewicz et al. 2002) that can be repr€Carbone et al. 2010) and isobaric analogue states (Daiézle
sented by a band in the plot of pressure vs. density. Now t&d_ee 2009). However, we have not included them in the figure
pressures calculated with the EDFs BSk19-21 fall withis thbecause of large experimental and theoretical uncertsifgiee,
band over 80% of the density range and never deviate by merg., Reinhard & Nazarewicz 2010; Daoutidis & Goriely 2Q11)
than about 20% from those inferred by Danielewicz et al. @00The HFB mass model not only agrees with GDR, neutron skin
(see, e.g., Fig. 3 of Chamel et al. 2011). Nevertheless,abaitr and dipole polarizability data, but also provides reldnarict
al. (2012) reject these functionals on the grounds that #he cconstraints on thd anL values.
culated EoSs do not fall within the band of Danielewicz et al.
(2002) over 95% of the density range. This criterion is gaite
bitrary, and without any sound statistical foundation.didigion, T - T - T T 1
it has to be noted that the interpretation by Danielewiczlet a 100[
(2002) of the raw experimental data is subject to unceitsntf i
two different kinds of model dependence: i) the transport model 80
that determines the particle flow in a given collision expemt; N
i) extrapolation from the charge-asymmetric AuAu system Z
((N - Z2)/A = 20%) to symmetric nuclear matter. As demon- S
~

60}

T

strated by Gale et al. (1990), the flow is generated during the 40
early nonequilibrium stages of the collision, whereas titert
pretation in terms of the EoS by Danielewicz et al. (2002) is
an equilibrium version of a simplified momentum-dependent i 0
teraction. Viewed in this light, the deviations of the prass
obtained with BSk19-21 from the values of Danielewicz et al. -20
(2002) are altogether insignificant.

The EDFs BSk19-21 are also found to violate the NeuM
constraint “PNM2” by Dutra et al. (2012). However, this con-
straint was actually obtained by Danielewicz et al. (200a@yf Fig. 1. Experimental constraints on the symmetry energy paraseter
the Symmetric nuclear matter constraint “SM3” using a Signp(see text for details), takerj from I._attimer &.Li.m (2013).. THashed
parametrization for the symmetry energy. For this reasbe, tline represents the constraint obtained from fitting experital nuclear

P wi ; :masses using the Brussels-Montreal HFB models with a rearm
‘(‘:é);;l/ls?'f,ryalnt PNM2"is even less meaningful than the ConEmalsquare deviation below 0.84 MeV (best fits are Jox 30 MeV). Star

mbols correspond to the models BSk19, BSk20, and BSk21.

20}

26 28 30 32 34 36

Dutra et al. (2012) also studied the density dependenceof i
symmetry energy. In particular, they found that thefGoeentL
obtained with BSk19 and BSk20 EDFs falls outside the range of
empirical values determined by Chen et al. (2010) thus tdola Dutra et al. (2012) also point out that the valueskgfob-
ing the constraints labeled “MIX2" and “MIX5”. However, thetained for the EDFs BSk19, BSk20, and BSk21 are incompatible
situation regarding the symmetry energy still remains atenat with the range-760 MeV< K, < —-372 MeV that they extract
of debate, dierent experiments ajm theoretical calculations from experimental data using a liquid-drop like approadte (t
leading to diterent and sometimes contradicting predictions, a®nstraint labeled “MIX3"). On the other hand, the value&of
shown e.g. in Fig. 12 of Lattimer (2012) (see also Tsang et abtained with BSk19, BSk20, and BSk21 are all compatiblé wit
2012; Goriely et al. 2010, Sect. I1IB). Berent Skyrme EDFs the range of values370+ 120 MeV inferred from isospin diu-
can thus be selected depending on the experiments or masign in heavy-ion collisions by Chen et al. (2009). Just astfe
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L codficient, the uncertainties iK; still remain very large (see Table 2. Parameters of Eq. (3).

e.g. Sect. llIC in Goriely et al. 2010, for a thorough discos}

Thus the rejection of BSk19-21 EDFs by Dutra et al. (2012) : a
is ungrounded. On the contrary, these EDFs are well adapted t
a unified treatment of all parts of neutron stars: the outestcr BSk19 BSk20 BSk21
the inner crust and the core. The relevance of these EDF&to th 1| 3916 4.078 4.857
core of neutron stars arises not only from their fit to the EoS 2| 7.701 7.587 6.981
of NeuM but also from the good agreement between their pre- 3| 0.00858 0.00839  0.00706
dicted EoS of symmetric nuclear matter and realistic calcul g 052561534 Oézng?S 0410983551
tions, which implies that they take correct account of thespr 6| 11964  11.942 12 065
ence of protons. Since these EDFs were fitted to nuclear siasse 7 | 13349 13751 10521
they also take account of inhomogeneities, and thus areoappr 8| 13683 13373  1.5905
priate for the calculation of the inner crust of neutron stas 9| 3254 3.606 4.104
for the outer crust, its properties are determined entibglythe 10 | -12953 -22996 -28726
mass tables that have been generated for the appropriate EDF 11 | 0.9237 1.6229  2.0845
by Pearson et al. (2011). 12| 6.20 4.88 4.89
13 | 14.383 14.274 14.302
14 | 16.693 23.560 22.881
3. Analytical representations of the EoS 151 -1.0514 -1.5564 -1.7690
16 2.486 2.095 0.989
3.1. Preliminary remarks 17 | 15.362 15.294 15.313
. i . . . 18 0.085 0.084 0.091
The first law of thermodynamics for a barotropic EoS implies 19| 6.23 6.36 4.68
the relation (see, e.g., Haensel & Proszynski 198@),) = 20| 11.68 11.67 11.65
ngczd(p/nb)/dnb, which can be also used in the integral forms: 21| -0.029 -0042 -0.086
22 20.1 14.8 10.0
" P(n’ P / 23 14.19 14.18 14.15
Ae) _ s, f ) g, in (@) = f s L
o Ns  Jn n?c? Ns)  Jp, Pp') +p'C

whereps andns are the values op andn, at the neutron-star The Ia_ltter quantity is a convenient var!ablefor models Mtl_og
surface. In the present paper we pytequal to the density of stars in General Relativity (see Stergioulas 2003, forawyi
6Fe at zero pressure and zero temperatoges 7.86 g cntS.

Qne of_the advantages of. an analytipal represen;ation @O 35 pressure as a function of density

is that it allows one to fulfill the relations (1) precisely.

There are three qualitatively fierent domains of the inte- We introduce the variableg = log(o/gcnt®) and ¢ =
rior of a neutron star: the outer crust, which consists ot-elelog(P/dyn cnm?). Here and hereafter, log denotes jggwhile
trons and atomic nuclei; the inner crust, which consistdeée the natural logarithm is denoted by In. Our parametrizatén
trons, neutron-proton clusters, and “free” neutrons; dreccore, P(p) reads
which contains electrons, neutrons, protons, muons, asdipo
bly other particles (see, e.g., Haensel et al. 2007 for veeied
references). In addition, there can be density discorttesiat
the interfaces between layers containinffatient nuclei in the
crust. An approximation of the EoS by a fully analytical func 1
tion neglects these small discontinuities. However, ttieedint +(@10 + a18) {explasz(ais - £)] + 1
character of the EoS in the three major domains is reflected by  +(ay4 + a1s¢) {explaws(arr — )] + 1)
the complexity of our fit, which consists of several fracabn arg ar,
(peglinf)ﬂial parts, matched together with the use of the fonct + 1+ [a19 (£ — a0)]2 + 1+ [Ag2 (€ — a9)]2"

Forp < 10° g cn3 the BSk EoSs are inadequate, primarfhe parameters; are given in Table 2. The typical fit error of
ily because atoms are not completely ionized, and thermal & is ~ 1% for¢ > 6. The maximum error is 3.7% &t= 9.51;
fects become non-negligible. The temperature dependearce & is determined by the jumps at the interfaces between sayer
be roughly described as (Haensel & Potekhin 2004) Py + Py,  containing diferent nuclides in the tabulated EoS. The fit (3)
wherePy; is given by the fitting function presented below, angmoothly interpolates across these jumps.

Po = A(T)p provides a low-density continuation. For exam- Compared to Eq. (14) of Haensel & Potekhin (2004), Eq. (3)
ple, if the outer envelope consists of fully ionized ironeth contains additional terms in the last line with ddeientsa;g—

A(T) ~ 4x10° T K1 (cnys). Partial ionization decreas@¢T): a23. These terms improve the fit near the boundaries between
for example, aff = 10’ K the best interpolation to the OPAL the outer and inner crust and between the crust and the core,
EoS (Rogers et al. 1996) is given By= 3.5x 10'* (cnysy (that where the slope dP(p) sharply changes. In SLy4 the analogous
is, 14% smaller than for the fully ionized ideal gas). changes were less abrupt. In the case of BSk models, however,

We constructed analytical parametrizations for pres$re the residuals of the fit without these additional terms maghe
gravitational mass densiy, and baryon number density as about 10% (Fantina et al. 2012).
functions ofp, ny, or pseudo-enthalpy In Fig. 2 we compare the EoSs BSk19, BSk20, and BSk21

with their analytical representations. Symbols on the uppeel
H_tfp dP’ )
o p(P)c+P"

_ ai + azf + a3_53
T l+aé
+(ay + agé) {explas(as — &)] + 1}

{explas(é — ag)] + 1)

®3)

show the data, and lines show the fit. For comparison, the addi
tional dotted line represents SLy4 EoS according to the fit of
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- ‘ ‘ ‘ ‘ ‘ " T1 Table3. Parameters of Eq. (6).
14.5 Il : b
i BSk19 BSk20 BSk21
T 1 0.259 0.632 3.85
Q b 2 2.30 2.71 3.19
w 14 = 3 0.0339 0.0352 0.0436
- - 4 0.1527 0.383 1.99
j- e 5| 1.085x10° 1.087x10° 1.075x 10°
| - 6 3.50 3.51 3.44
o, g 7 0.6165 0.6167 0.6154
2 185 Y ; _ 8 3.487 3.4815 3.531
—e—e o o BSK1O | Table4. Parameters of Eq. (7).
| -o--0—0—0 BSk20 i
Lo Sly4 - BSk19 BSk20 BSk21
. ey e e e ey ey ey 1 1 0.378 0.152 0.085
0.04 2 1.28 1.02 0.802
T 0.02 3 17.20 10.26 16.35
o ' 4 3.844 3.691 3.634
“: 0 5 3.778 2.586 2.931
a _0.02 6 | 1.071x10° 1.067x10° 1.050x 10°°
0.04 7 3.287 3.255 3.187
e 8 0.6130 0.6123 0.6110
6 7 8 9 10 11 12 13 14 15 16
_ 9 12.0741 12.0570 12.0190
log p (g cm™)

Fig. 2. Comparison of the data and fits for the pressure as a functi8a|CUIateH () using Egs. (2) and (3), and then refine the values

of mass density for the EoS models BSk19, BSk20, and BSk2fietJp 0? np using Eq. (5). Ourfit to the result is

panel: rarefied tabular data (symbols) and the fit (3) (lirles)er panel: bin®z + bs v n
relative diference between the data and fit. Filled dots and dashed lingg: = (1 — f1) > 1 = (6)
BSk19; open circles and dot-dashed lines: BSk20; fillechtfies and (1 +ban) bs + bgn®

solid lines: BSk21. For comparison, the dotted line in thparpanel

- -1 -3
reproduces the fit to the EoS SLy4 (Haensel & Potekhin 2004). wheref, = [e_xp(l_l logn +Dg) + 1] 7, n= np/fm™, and param-
etersb; are given in Table 3. The typical error of Eq. (6) 3

is (1-2)%, and the maximum relative error of 4.2% is at the low
end of the fitted density range, min(= 10° g cnt3 (but at such
Haensel & Potekhin (2004). In order to make th&atences low densitiesh,, is itself negligible).
between dierent EoSs visible, we plot the functigh— 1.4¢ The inverse fiy(p) is given by the formula
(cf. Fig. 4 of Haensel & Potekhin 2004). The data points in the Cri2 4 Cas ~
figure are rarefied, i.e., we show only a small fractionof @i n = = 1+ (1 - ) 0 fps + p -
merical data used for the fitting. The lower panel of Fig. 20 N (1 +csp) Cs + C7 %
the diference between the tabulated and fitted EoSs and thugj;o e f, = [expE — co) + 1]%, the dimensionless argument is

lustrates the accuracy of Eq. (3). defined ap = (p/my) fm3 = p/(1.66 x 1015 g cnr3), and pa-
rametersc; are given in Table 4. As well as Eq. (6), the fit (7)

3.3. Mass density versus number density also minimizes\,, and its residuals are similar: the average er-
ror is less than 2%, and the maximum relative error is 3.8% at

In some applications, it may be convenient to mseas inde- the lower end of the fitted density range.

pendent variable, and treatand P as functions ofy,. For this

purpose we construct a fit to the deviation from the linear law ) .

0 = NyMy, Wherem, = 1.66 x 1024 g is the atomic mass unit: 3.4. Density as a function of pseudo-enthalpy

f, (7)

As noted in Sect. 3.1, analytical expressiong ehdP as func-
A=P_ _1 (4) tions of the pseudo-enthalgy are expected to be useful for
7 npmy numerical simulations of rotating stars. In order to achidéve
maximal consistency of our parametrizations, we first dakeu
In view of the relation (see, e.g., Haensel & Potekhin 2004) H(p) using Egs. (2) and (3), and then parametrize the result
(cf. Sect. 3.3). The best fit reads

H = In(h/hy), (5)

0.1843
¢ = 23674 224 Ty,
whereh = (oc? + P)/ny is the zeroT enthalpy per baryon arig 1+0.7m
is the value oh at the stellar surfacey, must be consistent with dh + d2logy + (ds + da log)(dsi) o
Eq. (3). In order to fulfill Eq. (5) as closely as possible, wstfi + 1 + dgn + (dszp)to (1-T3)
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Table 5. Parameters of Eq. (8). [ B A
! d 17 |
BSk19 BSk20 BSk21 |
1| 93.650 81.631 63.150 = L
2 | 36.893 31.583 23.484 I |
3| 15450 15.310 15.226 &
4| 0672 0594 0571 = I
5| 61.240 58.890 54.174 w 16
6| 68.97 56.74 37.15 2 L
7] 0292 0449 0.596 o |
8| 5.2 4.5 3.6 !
9| 048 058 051 o T
10 6.8 7.5 10.4 ) r
15
L o— o —e— e BSk19
Table 6. Parameters of Eq. (9). | -&-——-6-—0- BSk20
~+—a—+ o BSKk21
i Bsklg Bskzo Bskzl l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1
(e) 006 { T T T T { T T T T { T T T T { T T T T { T T
q; _, 004
1| -0.0157 -0.0078 0.00575 I 0.02
2 | 0.9063 0.745 0.4983 < 0 )
3 0 0.508 9.673 & -0.02 i
4| 26.97 22.888 16.31 -0.04 ' -
5| 1065 0.449 38.364 70'06k111111111111111111111117
6 4.82 0.00323 0 -4 -3 -2 -1 0
qi(#) log (h/h,—1)
1| -00315 -0.0364 -0.0365
g 0625 gzzggg flzig Fi_g. 3. Mass densi_ty as a function of ps_eudo-e_nthalpy. Upper pearel:
4 12.42 12.99 2455 efied data to be fitted, calculatgd by integration accordingds. (2)
5 724 0.0767 48.544 a_md 3) _(symbols), compared with the f|t_(8) (lines). Lowenqalaf_rac-
6 195 0.00413 0 tional difference between the data and fit. The symbols and line styles
for BSk19, BSk20, and BSk21 are the same as in Fig. 2.
4.1. Nucleons and leptons in the core
+d7 {exp[ds(do — logn)] + 1)7*,

The core of a neutron star contains free neutrons, protées; e
trons, and muons, whose number fractions relative to tted tot

wheren = € - 1, f3 = [exp(84logy + 167.2)+ 1] %, and the number of nucleons are, respectively; Y,, Yp, Ye, andY,. The
parameters); are given in Table 5. condition of electric neutrality requires th¥ = Ye + Y. For
A comparison of the fit and the data is presented in Fig. ¥e andY,, shown in Fig. 4, we obtained the following fitting
The typical fit error ofp is about 1% in the interval & 10°° < expression:
n < 4, which corresponds to the considered mass density range
10° g cnt® < p < 10' g cnT3. The maximum fit errors of (3 -
5)% occur, as expected, near physical discontinuitiesyevtiee  'ex
slope of the functio® () quickly changes: a ~ 0.01, where
the fit goes smoothly through a break at the neutron-driptpoin . .
and atr?~ 0.03—0.1,ynear thge crust-core interface. i wheren = ny/fm”?, a_nd parametgrq(e”") are given in Table 6.
Whenever Eq. (9) gives a negative value, it must be replaced
by zero. At the densities in the core, this can occur for myons
when the muon chemical potential is smaller than the elactro
rest energy. The fit residuals are typically (13 with a
maximum of 7x 1074, Here, unlike in the preceding section,
we quote absolute (not fractional) errors, because théidrza
The physical input for numerical simulations of neutroarst error loses its sense for a quantity that may be zerd,,a3he
thermal evolution includes the heat capacity, neutrinossiwi deviations of the fit from the data are displayed in the bottom
ity, and thermal conductivity tensors in the crust and theecopanel of Fig. 4.
(see Yakovlev & Pethick 2004; Page et al. 2006, for reviews). As well known, fractional abundances of leptons in the
The evolution of the magnetic field is coupled to the thermalkutron-star core directlyfi@ect the thermal evolution of a neu-
evolution and depends on the electrical conductivity te(sg., tron star at the neutrino cooling stage (e.g., Yakovlev Shidt
Pons et al. 2009, and references therein). For calculafittese 2004; Page et al. 2006). In the region of a neutron-star core
quantities, it is important to know the nucleon distribusan the where the Fermi momenta of protoryg¢), neutrons pr,), and
crust and the composition of the core. electrons pre) satisfy the triangle inequalityor, — prel < Prn <

q(le,/t) + q(zaﬂ)n + q(3e,ﬂ)n4

- 14+ qge,ﬂ)ns/z + qé&y)n4

exp(_qée#) n5) , (9)

4. Particle number fractions and density
distributions
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025 T T T T T T T spherical Wigner-Seitz cell is assumed, with the neutrahgn-
ton density distributions parametrized according to

Ng(r) = Nog fq(r) + Noutgs (10)

e
N
T

wherer is the distance to the center of the Wigner-Seitz cell,
g = n for neutrons and| = p for protons,nouq represents a
constant background term, whilig(r) is a damped version of
the usual Fermi profile. Specifically, we write it as

Yu

©

=

o
T

-1
, (11)

NIRRT ST S ST S S HA VR O

fq(r) =

e
—_
T

1+ Dg(r) exp(r _Cq)
! %

whereCy is the width of fy(r) at half maximum andy is the
diffuseness parameter, whilg(r) is a damping factor given by

2
Dq(r) = exp{(m) - 1}, (12)

r—RWS

lepton fractions Ye R

A R

whereRys is the Wigner-Seitz cell radius The purpose of this
factor is to ensure thaly(r) and all its derivatives will vanish
at the surface of the cell, a necessary condition for thedirgli
of the semi-classical approximations that underlie the F&IT
method.

But whether we include this damping factor, or set it equal
to unity, leaving us with a simple Fermi profile, the pararizatr
tion of Eq. (10) eliminates an arbitrary separation intaldjand
gaseous phases within the Wigner-Seitz cell, and, strigtak-
Fig. 4. Upper panel: Number fractions of electroris(solid lines) and jng, makes it illegitimate to draw a distinction between a&tin
muonsY, (dashed lines) in the core of a neutron star, relative to theyp, gas” and “nuclei”. Nevertheless, if we denoteythe total

b o Pucleons, s uncons of nucleon e dengts e numberof neutons n the celat a given densiy s coroe
: p to define the number of cluster neutrons as

the fit (9) and numerically computed tables #arandY,,, plotted against
ny. The vertical dotted lines show the position of the boundsatyveen
the crust and the cor@; in Table 7).

N=N - nouthWS, (13)

whereVys = 471%3/3 is the volume of the Wigner-Seitz cell,

with a similar expression for the number of cluster prot@ns
Prp + Pre, the direct Urca (durca) process of neutrino emisActually, aimost everywhere in the inner crumt,, = 0, so that
sion overpowers the more common modified Urca process afé Z’, the total number of protons in the cell. However, near the
greatly accelerates the cooling of the star (Lattimer e1@81; transition to the core some protons tend to spread over tfireen
Haensel 1995). As discussed by Chamel et al. (2011), the trell, so thatZ < Z’. This spreading corresponds to a smooth
angle inequality is never satisfied in the BSk19 model, bat tlisecond or higher order) phase transition between the angt
models BSk20 and BSk21 allow it atfEgiently high densities the core suggested by Pearson et al. (2012).
Ny > Ngurca T he fitting expressions (9) allow us to reproduce the It turns out that for all three models considered here the-num
thresholdgurca = 1.49 fm~3 for BSk20 andhgyrca = 0.45 fm™3  ber of protonsZ’ in the Wigner-Seitz cell is equal to 40 for all
for BSk21 (Chamel et al. 2011) with discrepancies of 0.08% anlensities. However, the number of neutrdisn the cell varies
0.3%, respectively. considerably with density, and, in fact, will be nonintdgra
general since itis taken in the TETFSI method as one of the var
ables with respect to which the energy is minimized. Theamoti
of a fractional number of neutrons per cell corresponds & th
The outer crust consists of separate shells ffedint isotopes. Physical reality of delocalized neutrons. On the other haimte
The nuclear mass numbefsand charge numbei® are con- the TETFSI method calculates proton (but not neutron) sfell
stant within each shell andféér from one shell to another. Thefects,Z” cannot be allowed to become nonintegral, even when
nuclei are embedded in the sea of degenerate electronsis_aj@e protons become delocalized. _
of diffusive mixing between adjacent shells are very narrow (see With N, Z, andA” = N’+Z’ varying smoothly with,, we ob-
Hameury et al. 1983) and, therefore, unimportant for moptiap tained the following parametrizations over the inner ciustte
cations. In particular, Pearson et al. (2011) have preddatses thatZ’ =40 everywhere):
of Z andA in the outer crust for the models BSk19, BSk20, and

4.2. Nucleon numbers in the crust

35

BSk21. A—z = PrtPelogx+ (pslogn™, (. oo (14)
In the case of the inner crust, the EoS of Pearson et al. 1+ (pslog x)Ps [ “ ]

(2012) is based on the TETFSI (temperature-dependent ex- 7 - 7’ exp(_(nb/ncc)p’l’)[l_(nb/ncc)p’o’], (15)

tended Thomas-Fermi Strutinsky integral) method of Onsi et L ) 5
al. (2008). This is a semi-classical approximation to the8HF  ,, _ Pi+ P logx + p;(logx)

/ 7 \2
method, with proton shell corrections added perturbaivAl - 1+ (p,logx)* (1+PsX) [1_ (PsX) ] (16)
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Table 7. Fitting parameters for Egs. (14), (15), and (16). The last tw L
lines list the number densities of baryons at the neutrop isint, ng, outer crust:  inner crust
and at the crugtore boundaryp. (in fm=3) (Pearson et al. 2012). :
BSk19 BSk20 BSk21
[ Pi
0 8.40 9.30 10.8
1 93.0 92.8 92.3
2 11.90 12.95 13.80 N
3 1.490 1.493 1.625 <
4 0.334 0.354 0.3874 -
5 5.05 7.57 13.8 =
i o
1 134.7 134.7 132.6
2 183.7 188.2 187.6
3 308.7 275.6 229.2
4 0.3814 0.4346 0.5202
5 -58x 10" 0.00163 0.00637
6 49x10* 0.00149 0.00151
I pl/, llllllll lillllllll 1 llllllll 1 lllll:il
O 16 20 27 \\\\\H‘ \:\\\\\H‘ T \\\\\H‘ T \\\\\:H
1 19 19 17 or : Bk 5
na | 2.63464x 10* 2.62873x 10 257541x 10 8 T eke0 ‘
o - 0 0—0—
Nec 0.0885 0.0854 0.0809 g 7
el P e
At
5 —
Here,x = np/ng, Ng is the baryon number density at the neutron- =3 ey T SR R B i1
drip point, andh is the density of the transition to the homoge- 0.0001 0.001 0.01 0.1
neous core. The parametggs p;, p;’ are listed in Table 7 along ny (fm-3)

with the densitiesy andn... The square brackets with the large
power indicegy in Eq. (14) andoy in Eq. (15) ensure the quick _ ) , ,
decrease oA andZ to zero in a narrow density interval at theFi9. 5. Effective nuclear parameters in the neutron-star crust, dzggr

transition from the crust to the core; they almost do ritetet the © different models, as functions of baryon number densjtyn the
fits in the bulk of the crust ’ crust of a neutron star. Top panel: nuclear mass nurlgne middle

) group of curves), the number of protons in a clu®éthe lower curves),
In the upper panel of Fig. 5 we show the numb&fsA, and  and the &ective Wigner-Seitz cell mass numbf (the upper curves).
Z as functions ofy, in the outer and inner crust of a neutron staBottom panel: rms charge radius of the nucleus. The restdtstown

In the lower panel we show the rms radius of the charge distribfor the models BSk19 (dashed lines and filled dots), BSk26ddshed
tion, Ren. The values obtained in the models BSk19, BSk20, atides and open circles), BSk21 (solid lines and filled triasyy and, for
BSk21 are compared with the smooth-composition (SC) mod@mparison, the smooth-composition model (the dottedes)rvThe
(Appendix B.2 of Haensel et al. 2007; see the next sectidm. T!eft vertical dotted line shows the position of the boundaeyvveen the
vertical dotted lines mark the position of the neutron-gugnt, - FEECATE UL e 20 (8 18 28 BN eSS B U SR e

1 1 H 'CCy
mg'%r;j;ﬂir?geesggfelnlr:]etrhaeni?] r?g:ecrrﬁrslisihaenf(ijtggg g:mg:g) core, in the BSk models. Between these boundaries, thestapessent

X ' . ' nalytical fits, and the symbols show some of the numeridal. da

are compared with the numerical results (symbols) for th& B§
models. The numerical data are rarefied, in order to avoiddro
ing of the symbols. The agreement between the data and theji
are typically within a fraction of percent, except for a viei
ity of the boundary with the core. Near the latter boundaty, én applications one sometimes needs a more detailed informa
0.065 fnT3 < Ny < nee, the neutron and proton distributions betion about microscopic distributions of nucleons than gibgy
come rather flat (see Fig. 6 below), which hampers an accurgte numbersA, A, Z, andZ’ considered in Sect. 4.2. For ex-
determination of the shape parameters. Therefore the ricaherample, cross sections of scattering of charged particlps i
data stfer a significant scatter in this density interval, but then the charge distribution in a nucleus. Previous caloniasti
fits show an acceptable qualitative agreement with thenhén tof neutrino bremsstrahlung (e.g., Kaminker et al. 1999) and
outer crust (ah, < ng) we use the elemental compositirand electron heat conduction (e.g., Gnedin et al. 2001) in thistcr
Z from Pearson et al. (2011) amy, from srusuie. From Fig. 5 of a neutron star employed nuclear form factors provided by
we see that the SC model predicts a considerable jumfy ofthe SC model based on the parametrization (10) Vig(n) =
at the neutron-drip point, while in the BSk modé{sis almost [1_(r/rmaxq)bq]3 (Oyamatsu 1993). Note thag,., is effectively
continuous. The latter continuity is equivalent to the diqyaf  zero, andnoun = (A — A)/Vws. Kaminker et al. (1999) fitted

¥ Nuclear shapes and sizes in the crust

Rws at both sides of the drip boundary. Rws, Nogs fmaxq, @andbyg as functions of, by interpolating the
Oyamatsu (1993) values of these parameters through the inne
1 The Brussels Nuclear Library for Astrophysics Application crust and making use of the Haensel & Pichon (1994) data for
httpy/www.astro.ulb.ac.herusliy the outer crust.
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Y =——— 1, £ 00003 fm-3 | Table8. Parameters; of Eq. (17) forCq anday.
i — _ __ BSk19 ]
E En R ———.- BSK20 1
€ 005 SR i | BSk19 BSk20 Bsk21 BSk19 BSk20 BSk21
< r 4
ok ‘ o 5 ] s(Cp) s(ap)
C \ LA L ] 1| 5.500 5.493 5.457| 0.4377 0.4353 0.4316
= %1 n, W 7] 2 11.7 12.8 14.2 | 4.360 4.440 4.704
£ r ] 3| 0.643 0.636 0.601 1 1 1
= 0.05 i . 4 472 484 566 1084 1154 1253
: i ] s(Cn) s(an)
1| 5714 5.714 5.728| 0.639 0.632 0.636
2| 14.05 16.3 222 1.461 1.98 5.32
o 3| 0.642 0.645 0.663| 0.457 0.514 0.739
g 4 182 175 144 1137 1122 624
:D"
Table 9. Parameters of Egs. (19) and (20).
7 @ o
f; BSk19 BSk20 BSk21| BSk19 BSk20 BSk21
= 0.05509 0.05382 0.0527380.10336 0.10283 0.10085
0.1589 0.1400 0.1107 0.0772 0.0825 0.0942

0 0.01715 0.02218 1.129 1.189 1.279
0.4917 0.566 0.6872 - - -

AWN R |-

Fig. 6. Neutron (,) and proton if,) density profiles at the values of the

average baryon density, = 3 x 10 fm3 (near the top of the inner 1able10. Parameters; of Eq. (17) forxuc andauen-
crust), 0.01 fm?, 0.06 fnT3, and 0.075 fm® (near the bottom of the
inner crust), according to the models BSk19, BSk20, and BSKhe S (Xoud) S (Xauen)

SC model (Haensel et al. 2007) is also shown for comparison. i | Bsk19 BSk20 BSk21 BSk19 BSk20 BSk21

1] 0.1120 0.1094 0.104% 0.122 0.119 0.114

In Fig. 6 we show neutron and proton density distributions 2 | 2.06 204 209| 227 230 256
near the center of a Wigner-Seitz cell as given by Pearson et 3 | 0.633 ~ 0.613 0586/ 0.618  0.603  0.595
al. (2012), i.e., as described by Egs. (11) and (12) for thd-mo 4] 507 509 513 193 182 107
els BSk19, BSk20, and BSk21. The four panels correspond to
four different values of the mean baryon densigyin the inner
crust. The neutron and proton density profiles predictechigy t5. Conductivity in the neutron-star crust
SC model are also shown for comparison. We present the pargm-
etersCy, ag, andngg that enter Egs. (10) and (11) as functions oé
n = ny/fm=3,

an example of application of our fitting formulae, we con-
ider the electron conductivities in the crust of a neutriam. s
Practical formulae for calculation of the electron elextiand
S+ SN thermal conductivities of fully ionized plasmas have beevet-
=1 e (17)  oped by Potekhin et al. (1999) in the approximation of péiatl
nuclei (see references therein for earlier works) and elddn
wherey = Cp, ap, Cp, or a,, with numerical parametes listed by Gnedin et al. (2001) to the case where the finite nuclear siz
in Table 8. The decreasing denominator ensures the actler@annot be neglected. The latter authors considengerdnt nu-
increase of the size andffiliseness of the nuclei when the denelear shape models and concluded that theat on electrical
sity approaches that of the uniform nuclear matter nearth&tc conductivityo is mainly governed by the ratig,,c = Reg/Rws,
core interface. The values ofq are related to the other fittedwhereRer = V5/3Ren is the dfective radius of the uniformly

parameters via charged sphere that has the same rms radius of the charge dis-
Ru tribution, Rc_h, as the considered nucleus. The same parameter
47 Nog f fo(r) r2dr = { A-Z forg=n, (18) Xnuc dete_rr_‘mnes theffect of nuclear form factors on the thermal
o 1 Z forg=p. conductivityk, except at low temperatures where quantum lat-

tice dfects violate the Wiedemann-Franz relation in a nontrivial
way (Gnedin et al. 2001). Under the assumption that the eharg
distribution is proportional to the proton distribution,

Nevertheless we find it convenient for applications to hage s
arate simple fits

® o' n 9 Rus 4
Nop = 0" - 55 1= (o/ned)?]. 9) , 5 [ Cfr)rédr oy
+ N = ,
") q(?1) ) 16 i Ré/s fOR\NS fo(r) ra2dr
Mon = (0 + a5’ v - a5 n) [1 - (no/ncd)*®], (20)

we obtained a direct fit to this quantity, which facilitatedau-
with parameters]i(p) and qi(”) listed in Table 9. The agreementlation of the conductivities. In addition, we calculatediditted
between the data and the fits are typicallf% or better, except the analogous size parametetcn = Rern/Rws for the neu-
for a bottom crust layer, as explained in the previous sactio tron distribution f,(r). The fitting was done for the quantities
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' tire neutron-star crust despite the existence of competargs-

port channels. Radiative conduction is negligible at thestcr
densities (Potekhin & Yakovlev 2001; Pérez-Azorin et 80&),

the heat transport by phonons is generally weaker than #re el
tron transport (Pérez-Azorin et al. 2006; Chugunov & Habns
2007), and the heat transport by superfluid neutrons in the in
ner crust (Bisnovatyi-Kogan & Romanova 1982; Aguilera et al
2009) may be suppressed because of the strong coupling of the
neutron superfluid to the nuclei due to nondissipative émtra
ment d@fects (Chamel 2012). We have found that th@edlence
between the BSk and SC models for the electron heat conduc-
tivity « is smaller than the correspondingidrence foro. The
smaller diterence is explained by the large contribution of the
electron-electron scattering into the thermal resistigitthe in-

ner crust (Shternin & Yakovlev 2006).

log ¢ (CGS units)

6. Neutron star configurations

In order to estimate the errors introduced in the fitting farm
5 L T lae described in Sect. 3 on global neutron-star propenies,
105 11 115 12 125 13 135 14 have computed the mass and radius of a neutron star from the
log p (g cm-9) tabul_ated EoSs and their _anaIyticaI representations. Frama
rotating neutron star, we integrated the Tolman-Oppenaeim

\Volkoff (TOV) equation from the center, with the central mass

Fig.7. Electrical conductivityo of the neutron-star crust with nucleardensityp. as a free parameter, outwardgdg using the fourth-

parameters given by the models BSk19 (dashed lines), BS#@O ( order Runge-Kutta method with an adaptive step and coattoll

dashed lines), BSk21 (solid lines), and the smooth-cortipas{SC) = accyracy. We avoided arffikment of an integration step to the

model (dotted curves) as functions of mass densifyr T = 10°K,  a10)jated points using either linear or cubic spline iptation

10°5 K, and ;G K. The vertical dotted lines show the boundarigs in the tabulated EoSs. The neutron-star maséestained using

andn of the inner crust according to the three BSk models (Tahle 7ihese two types of interpolation agree4d 04 M. The radiiR

agree typically to- 0.1%, if M > 0.3 M.

. ) ] Figure 8 shows the mass-radius relation of nonrotating neu-
obtained from Egs. (21) and (11) with calculated (not fitteal)  tron stars for the EoSs BSk19, BSk20, and BSk21. The neutron-
ues ofCq, ag, andRws at each density. The fits have the formstar configurations obtained with the original EoSs and whietir
of Eq. (17) with the parameters listed in Table 10. The resislu analytical representations are drawn as dots and lineecesp
are similar, with maxima of several percent near the end ef tfyely. The maximum neutron-star masses ®tg., = 1.86 M,

Ny range and an order of magnitude smaller typical values.  at p. = 3.48 x 10' g cnr3 for BSk19, Mmax = 2.16 M, at
Figure 7 displays electrical conductivitiescalculated with p. = 2.69 x 10'®> g cnT3 for BSk20, andMpax = 2.27 M, at
the fittedA’, A, Z, and x,,c at temperatures and densities chap, = 2.27 x 10'® g cnT2 for BSk21, in close agreement with
acteristic of the outer and inner crusts of neutron starseHeChamel et al. (2011) and Fantina et al. (2012). THEedgnces
the calculations are performed for a body-centered culiicéa betweenM,.x Obtained using the original data and the fit are
of the nuclei without impurities. The crystalline struatwf the about 0.09%, 0.09%, and 0.17%, and th@edences for corre-
crust is favored by recent results of molecular-dynamiegsa- spondingo. values are about 0.03%, 0.02%, and 0.7%, respec-
tions (Hughto et a. 2011) and supported by comparison ofrebsgvely. At higherp. the condition of hydrostatic stabilityM/do.
vations of X-ray transients in quiescence with simulatiofthe s violated; the unstable configurations are shown by the dot
cooling of their crust (Shternin et al. 2007; Cackett et 8l1Q). ted parts of the curves to the left of the maxima in Fig. 8. The
We have removed switching from Umklapp to normal processegosses in Fig. 8 correspond to the largest valugs &dr which
of electron-phonon scattering at Iofrom the previously de- dP/dp < ¢? (2.18 x 10'® g cnm? for BSk19 and BSk20, and
veloped code (Gnedin et al. 2001), since Chugunov (2012) @33 x 10 g cnt3 for BSk21). At higher densities the EoS be-
shown that the normal processes have ffieat under the condi- comes superluminal. The fit (3) and its first derivative deiae
tions in a neutron-star crust. Figure 7 shows that the BSkeisodthese densities with accuracies within 2%. The correspundi
predict typically 1.5—2 times higher conductivity in the in- stellar masses determined from the fit and from the tableseagr
ner crust, than the SC model. On the other hand, tifsm@ince to ~ 0.1%. Note that the EoS BSk20 becomes superluminal be-
in o can be removed by allowing a modest impurity parametésre the limit of hydrostatic stability is reached. Configtions
Zimp = ((Z - (2))*>)Y? ~ 3. The diference between the BSkwith higher p., corresponding to 24My, < M < Mmay and
and SC models increases near the bottom of the crust, wheereghown by the dashed curve in Fig. 8, cannot be fully trusted, (s
BSk models (unlike SC) provide a continuous transition ® the.g., Haensel et al. 200§5.15, for a discussion)
uniform nuclear matter in the stellar core. The conduaotist The minimum neutron-star masses ar@d3My, 0.090M,,
also almost continuous at the neutron drip density in the BSkd 0087M,, for the models BSk19, BSk20, and BSk21, with
models, at contrast to the SC model where it abruptly deeseasliscrepancies between the original data and the@i7%, 0.1%,
at the drip point. and 0.03%, respectively. The radii of neutron stars withntiaess
Similarly, we have used the analytical fits for calculatingf 1.4 M, areR = 10.74 km, 11.74 km, and 12.57 km, with
thermal conductivity. It has to be noted that electron conduceiscrepancies between the original data and the fit @f.1%,
tion is probably the main mechanism of heat transport in the e~ 0.02%, and~ 0.2%. The discrepancies in the circumferential

10
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Fig.8. Top panels: gravitational mass (in solar masses) versaamferential radius of nonrotating neutron stars for th&S&®Sk19-20-21
(dots) and their analytical representations from Eq. (B)eé). The solid and dotted parts of the lines corresponbdadydrostatically stable and
unstable configurations, respectively. The dashed segméimé middle panel corresponds to superluminal EoS at #iastenter. The crosses
mark the threshold beyond which the EoS becomes superluiritine middle and bottom panels show respectively a zoomratrde maximum
neutron-star mass and the low mass region where the disanegeare the largest.

radii (R=115km, 11.9 km, and 12.4 km) of neutron stars witlquency of PSR J1748446ad, the fastest-spinning pulsar
M = 0.5 M, are also smaller than 0.2% for all three EoSs. known (Hessels et al. 2006). For this purpose we used the

As mentioned in§ 4.1 the triangle condition for the durcal.orene/Codes/Nrotstar/nrotstar code from the public i-
processes can be fulfilled for BSk20 and BSk21 modefs at  braryrorene.” We have generated tables of the analytical EoSs
Ndurca The thresholahy,cacannot be reached in a stable neutrofiom Eq. (8) and used them as an input in thetstar code.
star in frames of the model BSk20, but it is reached for negutrd he results obtained using the original EoSs and their sicaly
stars withM > 1.59M,, in the model BSk21. The latter masgepresentations are shown in Fig. 9. Here we plot only the sta
value, first obtained by Chamel et al. (2011), is reproduged ble steIIa_r conﬁgurauon_s that are c_iescnbed by sublunticds.
the present fit with a discrepancy of 0.3%. Chamel et al. (011he relative diferences in the maximum neutron-star masses are
noted that all three EoSs are compatible with the consttaatt ©Of similar magnitudes to those found for static neutronsstar
no durca process should occur in neutron stars with massesfemely~ 0.03%, ~ 0.08% and~ 0.2% for the EoSs BSK19,
1.5M, (Klahn et al. 2006). On the other hand, according to tH&Sk20, and BSk21. The errors in the radii oML, neutron stars
analysis of Yakovlev et al. (2008), the situation where thestn are~ 0.1%,~ 0.09%, and~ 0.5%, respectively.

massive neutron stars with nucleon superfluidity in the @xe  All in all, the discrepancies lie far below the observatibna

perience enhanced cooling due to the durca processes afipealincertainties and therefore they do ndfeat the comparison

a better agreement with observations than the completee®seyith observational data. In computing the neutron star con-
of such processes in any stars. Thus the model BSk21 may brg@irations, we have checked the violations of the general-
the cooling theory in a better agreement with observatibast relativistic virial identities GRV2 (Bonazzola 1973; Bazala

the other models. The fitting formulae presented aboveifacik Gourgoulhon 1994) and GRV3 (Gourgoulhon & Bonazzola

tate the checks of this kind. In this respect, it is worth ngti 1994). The absolute deviations lie between3and 10° thus

that the @ective nucleon massex, andm,, which are needed confirming the high precision of the analytical represeataof
for cooling simulations, are readily obtained in analyititam the EoSs.

from Eqg. (A10) of Chamel et al. (2009), using the appropriate
parameter set given in Goriely et al. (2010).

Similarly, we have analyzed the structure of a neutron? Langage Objet pour la Relativite Numérique,
star rotating at a frequency of 716 Hz, equal to the fréwtpy/www.lorene.obspm.fr
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Fig. 9. Top panels: gravitational mass (in solar masses) versasmferential radius of rotating neutron stars (rotaticgfrency 716 Hz) for the
EoSs BSk19-20-21 (dots) and their analytical represemtatirom Eq. (8) (solid lines). The middle and bottom panblsnsrespectively a zoom
around the maximum neutron-star mass and the low mass regjiere the discrepancies are the largest.

7. Conclusions 4

We constructed analytical representations, in terms of¢iméin-

uous and dterentiable functions of a single chosen variable, of
three recently developed equations of state BSk19, BSk&D, a 3
BSk21 (Pearson et al. 2011, 2012). We considered two choices
of the independent variable. The first one is the mass depsity
Then Eq. (3) gives functioR®(p), which fits the numerical EoS
tables at 10g cn3 < p < 2 x 10 g cn with a typical er- =4[
ror of ~ 1%. The baryon number density can be calculated
from Eq. (1) to satisfy exactly the first law of thermodynamic
Alternatively,np can be evaluated using our fit (7). A variantis 4|
to choosen, as an independent variable and calcutdtg) from
the fit (6) andP(o(ny)) from Eq. (3). Then, if necessagycan be
corrected using the first integral relation in Eq. (1).

Differentiation ofP(p) then yields analytical representations 95— ‘1*1‘ — *12‘ — *13 — *14 15 16

of the adiabatic index l0gp [g Cm.g]
n, dP P dP
r=_b_=[1+_2]ﬁ—, (22)
P dny pc?| P dp Fig. 10. Adiabatic indexI" for SLy4 and BSk EoSs.

which is included in the computer code that realizes the fit.
Different regions of neutron-star interior are characterized b
distinct behavior of” as discussed, e.g., in Haensel & Potekhiby the continuous and fierentiable function®(H), p(H), and
(2004). This behavior remains qualitatively the same féietdi n(H), wherep(H) is given by Eq. (8) with typical accuracy
ent EoSs, but quantitativefierences can be significant, as illus1%, whileP(H) andny(H) are calculated from the functiop)
trated in Fig. 10. andny(p), respectively.

The other choice of the independent variable is the pseudo- We also obtained analytical representations of number frac
enthalpyH, Eq. (2). This choice is particularly advantageous fdrons of neutrons, protons, electrons and muons in the icnuest
simulations of neutron-star dynamics. We represented 48sE and the core, and nuclear shape parameters in the inner crust
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of a neutron star as functions of. These results can be usedpaensel, P., & Proszynski, M. 1982, ApJ, 258, 306

e.g., for neutron-star cooling simulations. As an appimatwe
calculate electron conductivities in the crust with the akthe

BSk models. Compared to the results of the smooth-compasit

Haensel, P., & Zdunik, J. L. 1990, A&A, 229, 117

Haensel, P., & Zdunik, J. L. 2003, A&A, 404, L33

Haensel, P., Potekhin, A. Y., & Yakovlev, D. G. 2007, Neut8tars 1: Equation
I of State and Structure (New York: Springer)

model (Gnedin et al. 2001), we find that the BSk models yielghmeury, J. M., Heyvaerts, J., & Bonazzola, S. 1983, A&A, 1239

appreciably higher electrical conductivities in the inocaust of
a neutron star.

Hessels, J. W. T., Ransom, S. M., Stairs, I. H., et al. 200ign8e, 311, 1901
Hughto, J., Schneider, A. S., Horowitz, C. J., & Berry, D. K12, Phys. Rev. E,
84, 016401

Finally, we estimated the errors introduced in the fitting fo Kaminker, A. D., Pethick C. J.. Potekhin A. Y., Thorsson V.Yakovlev D. G.

mulae on global neutron-star properties and showed thgtithe
far below the observational uncertainties and therefoeg tio

1999, A&A, 343, 1009
Klahn, T., Blaschke, D., Typel, S., et al. 2006, Phys. Rev4; 035802

not afect the comparison of theoretical models with observaattimer, J. M. 2012, Annu. Rev. Nucl. Particle Sci., 62, 485

tional data.

The present work is mainly aimed at astrophysicists as th

Lattimer, J. M., & Lim, Y. 2013, ApJ, 771, 51
Lattimer, J. M., Pethick, C. J., Prakash, M., & Haensel, B11®hys. Rev. Lett.,
€Ye6, 2701

do not have to perform nuclear physics calculations for &mu Li, z. H., & Schulze, H. J. 2008, Phys. Rev. C, 78, 028801

tions of neutron-star structure and evolution. When resgliithe

same method of constructing analytical approximationshzan
applied to other EoSs (see, e.g., Haensel et al. 2007 aricheatt

2012, for references).
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