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Abstract. The formation, structure, composition, and the equation of state of neutron
star crusts are described. A scenario of formation of the crust in a newly born neutron
star is considered and a model of evolution of the crust composition during the early
neutron star cooling is presented. Structure of the ground state of the crust is studied.
In the case of the outer crust, recent nuclear data on masses of neutron rich nuclei are
used. For the inner crust, results of different many-body calculations are presented,
and dependence on the assumed effective nucleon-nucleon interaction is discussed. Un-
certainties concerning the bottom layers of the crust and crust-liquid interface are
illustrated using results of various many-body calculations based on different effective
nucleon-nucleon interactions. A scenario of formation of a crust of matter-accreting
neutron star is presented, and evolution of the crust-matter element under the in-
creasing pressure of accreted layer is studied. Within a specific dense matter model,
composition of accreted crust is calculated, and is shown to be vastly different from
the ground-state one. Non-equilibrium processes in the crust of mass-accreting neutron
star are studied, heat release due to them is estimated, and their relevance to the prop-
erties of X-ray sources is briefly discussed. Equation of state of the ground-state crust
is presented, and compared with that for accreted crust. Elastic properties of the crust
are reviewed. Possible deviations from idealized models of one-component plasmas are
briefly discussed.

1 Introduction

The crust plays an important role in neutron star evolution and dynamics. Its
properties are crucial for many observational properties, despite the fact that
the crust mass constitutes only ∼ 1% of neutron star mass, and its thickness
is typically less than one tenth of the star radius. The crust separates neutron
star interior from the photosphere, from which X-ray radiation is emitted. The
transport of heat from neutron star core to the star surface is determined by
the thermal conductivity of the outer layers of the crust, which is crucial for
determining the relation between observed X-ray flux and the temperature of
neutron star core.

Electrical resistivity of the crust is expected to be important for the evo-
lution of neutron star magnetic field. Both thermal conductivity and electrical
resistivity depend on the structure of the crust, its nuclear composition, and the
presence and number of crystalline defects and impurities. During some stages
of neutron star cooling, neutrino emission from the crust may significantly con-
tribute to total neutrino losses from stellar interior. The presence of a crystal
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lattice of atomic nuclei in the crust is mandatory for modeling of radio–pulsar
glitches. Presence of solid crust enables excitation of toroidal modes of oscilla-
tions. The toroidal modes in a completely fluid star have all zero frequency, but
the presence of a solid crust gives them nonzero frequencies ∼kHz. Presence of
the crust can also be important for non-radial pulsations excited in the liquid
core, because of specific boundary conditions which are to be imposed at the
solid-liquid boundary. Due to its solid character, neutron star crust can be a site
of elastic stresses, and can build-up elastic strain during star evolution (cooling,
spin-down). In contrast to fluid core, the crust can therefore support deviations
of the stellar shape from the axial symmetry, and make from rapidly rotating
pulsar an interesting source of gravitational waves. Instabilities in the fusion
of light elements, taking place in the outer layers of the crust of an accreting
neutron star, are thought to be responsible for the phenomenon of X-ray bursts.

The present review is devoted to the structure, composition, and equation
of state of neutron star crust. In Sect.2 we briefly describe formation of the
crust of a newly born neutron star. Structure, composition, and equation of
state of the outer crust in the ground state approximation is described in Sect.3.
Theoretical models of the inner crust in the ground state approximation and
with ρ <∼ 1014 g cm−3 are presented in Sect. 4. Section 5 is devoted to the
presentation of theoretical models of the ground state of the bottom layers of
the inner crust, with ρ >∼ 1014 g cm−3, and to determination of the location of
and conditions at the bottom edge of the crust. In Sect. 6 we consider a scenario
of formation of the crust in accreting neutron star. Then, in Sect. 7 we study
non-equilibrium nuclear processes in the crust interior, and derive its structure
and nuclear composition. Sect. 8 is devoted to the equation of state of neutron
star crust, both in the ground state approximation and in the case of an accreted
crust. Elastic properties of the crust are discussed in Sect. 9. Possible deviations
from idealized crust models studied in the preceding sections are briefly reviewed
in Sect.10.

2 Formation of the crust in a newly born neutron star

Neutron star formed in gravitational collapse of a stellar core is initially very hot,
with internal temperature ∼ 1011 K. At such high temperature, the composition
and equation of state of the outer envelope of a newly-born neutron star, with
ρ <∼ 1014 g cm−3 (nb <∼ 0.1 fm−3), is different from that of a one-year old neutron
star. This envelope of a newly-born neutron star will eventually become the crust
of neutron star.

We will restrict ourselves to the case in which matter is transparent to neu-
trinos, a condition satisfied for T <∼ 1010 K (kBT <∼ 1 MeV). Hot envelope is
then a mixture of heavy and light nuclei (mostly α-particles, because of their
large binding energy of 28.3 MeV), neutrons, protons, electrons, positrons, and
photons. At high densities and temperatures the density of nucleons outside
nuclei can be large, and a consistent treatment of both nuclei and nucleons is
required. Nuclei and nucleons outside them should be described using the same
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Fig. 1. Mass fractions of different constituents of the outer envelope of a newly born
neutron star versus matter density, at different temperatures T9 = T/(109 K). Beta
equilibrium assumed. After Haensel et al. [40]. Calculations performed for the Lattimer
and Swesty [53] model, with a specific choice of the compression modulus of cold
symmetric nuclear matter at the saturation density, K0 = 180 MeV.

nucleon interaction (nucleon hamiltonian), and modifications of nuclear surface
properties, and pressure exerted by nucleons on nuclei, have to be calculated in a
consistent way. At high densities, where the distance between nuclei is no longer
much larger than nuclear size, one has to take into account modification of the
nuclear Coulomb energy. Another important complication is that, at tempera-
tures under consideration, excited states of nuclei become populated and must
therefore be considered when calculating thermodynamic quantities.

In what follows, we will describe results, obtained using a version of compress-
ible liquid–drop model of nuclei developed by Lattimer and Swesty [53], with a
specific choice of compression modulus of symmetric nuclear matter at satura-
tion (equilibrium) density, K0 = 180 MeV. We assume nuclear equilibrium, as
well as beta equilibrium of dense hot matter. The assumption of nuclear equilib-
rium is justified by high temperature. Beta equilibrium is adopted for simplicity;



130 P. Haensel

a very rapid cooling of matter at highest temperatures can produce deviations
from beta equilibrium.

In Fig.1 we show the composition of dense, hot matter of neutron star en-
velope for T = 5 × 109 K, 8 × 109 K, and 1.2 × 1010 K. We restrict ourselves
to ρ <∼ 1013 g cm−3, because at higher densities thermal effects on matter com-
position are negligible. At T >∼ 5 × 109 K shell and paring effects, so visible
in the T = 0 approximation where they show up through jumps in the density
dependence of various quantities, are washed out by the thermal effects.

At T = 1.2 × 1010 K nuclei evaporated completely for ρ <∼ 109 g cm−3. This
can be understood within the compressible liquid-drop model of nuclei, which
are treated as droplets of nuclear matter. At ρ <∼ 1011 g cm−3 these droplets
of nuclear matter have to coexist with a vapor of neutrons, protons, and α–
particles. However, coexistence of two different nucleon phases (denser – nuclear
matter liquid, less dense – vapor of nucleons and α–particles) is possible only at
T lower than critical temperature at given density, Tcrit(ρ). For ρ <∼ 109 g cm−3,
one has Tcrit(ρ) < 1.2 × 1010 K.

With decreasing temperature, mass fraction of evaporated nucleons and α–
particles decreases. At T = 8×109 K, α–particles are present below 1010 g cm−3,
while free protons appear below even lower density. Free neutrons are present at
all densities, but their fraction does not exceed one percent for ρ <∼ 1011 g cm−3.

At T = 5×109 K the thermal effects are weak, and imply mainly appearance
of a small fraction of free neutrons (“neutron vapor”) below zero temperature
neutron drip density, ρND; this fraction falls below 10−5 at ρ = 1010 g cm−3. Fur-
ther decrease of T leads to disappearance of neutrons below ρND, and switching–
on of shell effects. Another important effect will be superfluid transition for neu-
trons (both inside and outside nuclei) and for protons. The composition freezes–
out and does not change with further decrease of temperature. A spherical shell
of neutron star envelope solidifies if its temperature decreases below the melting
point corresponding to local density and composition, Tm (see Sect.9).

3 Ground state of the matter in the outer crust

The ground state of matter at the densities and pressures, at which all neutrons
are bound in nuclei (i.e. below the neutron drip point) can be described by a
model formulated in the classical paper of Baym, Pethick, and Sutherland ([4],
hereafter referred to as BPS). An essential input for this model are the ground-
state masses of atomic nuclei, present in the lattice sites of a crystal. At lowest
densities, the relevant nuclei are those whose ground-state masses are determined
with high precision by the laboratory measurements. However, at higher densities
the nuclei in the ground state of matter become more and more neutron rich.
At the time, when the BPS paper was written, the last experimentally studied
nucleus, present in the ground state of dense matter, was 84Se (Z/A = 0.405).
This nucleus is unstable in laboratory, and its beta-decay half-life time is 3.1
min. The maximum density, at which this experimentally studied nucleus was
present, was found to be 8.2 × 109 g cm−3.
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During last two decades significant progress has been made in the ex-
perimental nuclear physics techniques, and masses of many new neutron
rich isotopes have been measured; latest up-to-date results can be found at
http://nucleardata.
nuclear.lund.se. As we will see, the last neutron-rich nucleus studied in labora-
tory, which is expected to be present in the ground state of neutron star crust, is
78Ni, at about 1011 g cm−3 (for first experimental identification of this nuclide,
see Engelmann et al. [32])

We shall assume that matter is in its ground state (complete thermodynamic
equilibrium - cold catalyzed matter) and that it forms a perfect crystal with
a single nuclear species, (number of nucleons A, number of protons Z), at lat-
tice sites. Deviations and exceptions from this rule will be discussed later in the
present review. At given baryon density, nb, the ground state of matter cor-
responds to the minimum energy per nucleon E = E/nb (E is energy density,
which includes rest energy of constituents of matter). However, nb (or ρ = E/c2)
is not a good variable to be used in the neutron star interior because it can suffer
jumps (discontinuities) at some values of pressure. On the contrary, pressure is
strictly monotonic and continuous in the stellar interior, and increases monoton-
ically with decreasing distance from the star center. Therefore, it is convenient
to formulate our problem as that of finding the ground state of cold (T = 0)
matter at given pressure, P . This correspond to minimizing the T = 0 Gibbs
energy per nucleon, g = (E + P )/nb.

Let us start with P = 0, when g = E = E/nb. The minimum energy per
nucleon at zero pressure is reached for a body-centered-cubic (bcc) crystal lattice
of 56Fe, and is E(56Fe) = 930.4 MeV. It corresponds to ρ = 7.86 g cm−3 and
nb = 4.73 × 1024 cm−3 = 4.73 × 10−15 fm−3.

The bcc 56Fe crystal remains the ground state of cold matter up to pressures
∼ 1030 dyn/cm2, at which matter is compressed to ∼ 106 g cm−3 ([81], BPS).
At such a high density, matter is a plasma of nuclei and electrons which form a
nearly uniform Fermi gas. At given pressure, the values of the average electron
density, ne, and the number density of nuclei, nN , are determined from the
relations

ne = ZnN , P = Pe(ne, Z) + PL(nN , Z) , (1)

where Pe is the electron gas pressure, and PL is the “lattice” contribution re-
sulting from the Coulomb interactions (see below).

Let us divide the system into electrically neutral unit (Winger-Seine) cells
containing one nucleus. The number density of nuclei is nN = nb/A, and the
volume of each cell Vc = 1/nN . For a given A,Z nuclide, the Gibbs energy per
one unit cell is given by

Gcell(A,Z) = WN (A,Z) +WL(Z, nN ) + [Ee(ne, Z) + P ]/nN , (2)

where WN is the energy of the nucleus (including rest energy of nucleons), WL

is the lattice energy per cell (BPS), and Ee is the mean electron energy density.
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For a bcc lattice one has

WL = −0.895929
Z2e2

rc
, rc = (4πnN /3)−1/3 . (3)

The lattice contribution to pressure, (1), is thus PL = 1
3WLnN .

The Gibbs energy per nucleon g = Gcell/A is just the baryon chemical po-
tential for a given nuclid, µb(A,Z). To find the ground state at given P , one has
to minimize µb(A,Z) with respect to A and Z.

At not too high density, the lattice correction to P and µb is negligibly
small. One can then easily see the reason for matter neutronization using the
approximation µb(A,Z) � WN (A,Z)/A + Zµe/A and P � Pe. Notice that for
ρ � 106 g cm−3, electrons are ultrarelativistic and therefore µe ∝ P 1/4. With
increasing pressure, it is energetically advantageous to replace (A,Z) by (A′, Z ′)
with higher WN but smaller Z ′/A′, because increase in WN /A is more than
compensated by the decrease of the Zµe/A term.

We will follow determination of the ground state of cold dense matter by
Haensel and Pichon [39] (hereafter referred to as HP). There are some small
differences between the approximations used in HP and BPS. In HP, the values
of WN have been obtained from the atomic masses by subtracting not only the
electron rest energies, but also removing the atomic electron binding energies.
Let us mention, that atomic binding energies were kept in the BPS definition
of WN , to simulate the electron screening effects in dense matter. Also, HP
used a better approximation for the electron screening effects in dense matter.
Their expression for Ee takes into account deviations of the electron density from
uniformity, which result from the electron screening effects. They include also
the exchange term in Ee, which was neglected in BPS.

At the pressure Pi at which optimal values A,Z change into A′, Z ′, matter
undergoes a density jump, ∆ρ, ∆nb, which to a very good approximation is
given by the formula

∆ρ

ρ
∼= ∆nb

nb
∼= Z

A

A′

Z ′ − 1 . (4)

The above equation results from the continuity of pressure, which in the outer
crust is to a very good approximation equal to the electron pressure, P � Pe.

Actually, sharp discontinuity in ρ and nb is a consequence of the assumed
one-component plasma model. Detailed calculations of the ground state of dense
matter by Jog and Smith [45] have shown, that the transition between the A, Z
and A′, Z ′ shells takes places through a very thin layer of a mixed lattice of these
two species. However, since the pressure interval within which the mixed phase
exists is typically ∼ 10−4Pi, the approximation of a sharp density jump is quite
a good representation of a nuclear composition of the ground state of matter.

Experimental masses of nuclei in HP were taken from nuclear masses tables
of Audi (1992, 1993, private communication) 1 Because of the pairing effect, only
1 Some of masses of unstable nuclei, given in the tables of Audi (1992,1993), were

actually semi-empirical evaluations based on the knowledge of masses of neighboring
isotopes.
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even-even nuclei are relevant for the ground state problem. For the remaining
isotopes, up to the last one stable with respect to emission of a neutron pair,
HP used theoretical masses obtained using a mass formula of Möller [59] (the
description of the formalism can be found in Möller and Nix [60]).

The equilibrium nuclides present in the cold catalyzed matter are listed in
Table 1. Only even-even nuclides are present, which results from additional bind-
ing due to nucleon pairing (see, e.g., [74]). In the fifth column of this table one
finds the maximum density at which a given nuclide is present, ρmax. The value
of the electron chemical potential, µe, at the density ρmax, is given in the sixth
column. The transition to the next nuclide has a character of a first order phase
transition and is accompanied by a density jump. The corresponding fractional
increase of density, ∆ρ/ρ, is shown in the last column of Table 1. The last row
above the horizontal line, dividing the table into two parts, corresponds to the
maximum density, at which the ground state of dense matter contains a nucleus
observed in laboratory. The last line of Table 1 corresponds to the neutron drip
point in the ground state of dense cold matter. This limiting density can be
determined exclusively by the theoretical calculation.

Single-particle energy levels in nuclei are discrete, with large energy gaps
between “major shells”. The local maxima in the binding energies of nuclei
with “magic numbers” Z = 28 and N = 50, 82 are associated with filling up
these major shells (see, e.g., Preston and Bhaduri [74]). The effect of the closed
proton and neutron shells on the composition of the ground state of matter is

Table 1. Nuclei in the ground state of cold dense matter. Upper part: experimental
nuclear masses. Lower part: from mass mass formula of Möller [59]. Last line corre-
sponds to the neutron drip point. After Haensel and Pichon [39].

element Z N Z/A ρmax µe ∆ρ/ρ

(g cm−3) (MeV) (%)
56Fe 26 30 0.4643 7.96 106 0.95 2.9
62Ni 28 34 0.4516 2.71 108 2.61 3.1
64Ni 28 36 0.4375 1.30 109 4.31 3.1
66Ni 28 38 0.4242 1.48 109 4.45 2.0
86Kr 36 50 0.4186 3.12 109 5.66 3.3
84Se 34 50 0.4048 1.10 1010 8.49 3.6
82Ge 32 50 0.3902 2.80 1010 11.44 3.9
80Zn 30 50 0.3750 5.44 1010 14.08 4.3
78Ni 28 50 0.3590 9.64 1010 16.78 4.0
126Ru 44 82 0.3492 1.29 1011 18.34 3.0
124Mo 42 82 0.3387 1.88 1011 20.56 3.2
122Zr 40 82 0.3279 2.67 1011 22.86 3.4
120Sr 38 82 0.3167 3.79 1011 25.38 3.6
118Kr 36 82 0.3051 (4.33 1011) (26.19)
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very strong; except for the 56Fe nucleus, present in the ground state at lowest
densities, all nuclides are those with a closed proton or neutron shell (Table
1). A sequence of three increasingly neutron rich isotopes of nickel Z = 28 is
followed by a sequence of N = 50 isotopes of decreasing Z, ending at the last
experimentally identified 78Ni. This last nuclid is doubly magic (N = 50, Z =
28).

At the densities 1011 g cm−3 <∼ ρ < ρND HP get a sequence of N = 82 iso-
topes, of decreasing proton number, from Z = 44 down to Z = 36, with neutron
drip at ρND = 4.3 1011 g cm−3 (Table 1). As shown by HP, results obtained
using different mass formula, that of Pearson and collaborators (Pearson, 1993,
private communication quoted in [39]) are quite similar to those obtained using
the mass formula of Möller [59].

While the persistence of the N = 50 and/or Z = 28 nuclei in the ground
state of the outer crust may be treated as an experimental fact, the strong effect
of the N = 82, dominating at 1011 g cm−3 <∼ ρ < ρND, might – in principle – be
an artifact of the extrapolation via the semiempirical mass formulae. It should
be mentioned, that some many-body calculations of the masses of very neutron
rich nuclei suggest, that the effect of the closed N = 82 shell might be much
weaker, and could be replaced by the strong effect of the closure of the Z = 40
subshell [36]. Clearly, there is a need for better understanding of shell effects in
nuclei close to the neutron drip.

4 Ground state of the matter in the inner crust
for ρ <∼ 1014 g cm−3

The existence of the inner neutron-star crust, in which very neutron rich nu-
clei are immersed in a gas of dripped neutrons, has been realized long before
the discovery of pulsars (in 1958, [41]). First approach to describe this layer
of neutron star envelope consisted in employing a semiempirical mass formula
to calculate (or rather estimate) the masses of nuclei, combined with an ex-
pression for the energy of neutron gas [41],[42],[88], [51],[6]. It is worth to be
mentioned that as early as in 1965 neutron drip density and the density at the
bottom edge of the inner crust were estimated as ρND � 3 × 1011 g cm−3 and
ρedge � 8×1013 g cm−3 [88], surprisingly close to the presently accepted values of
these densities. Further work concentrated on a consistent (unified) description
of nuclear matter inside neutron rich nuclei, and of neutron gas outside them,
using a single expression for the energy density of nuclear matter as a function
of neutron and proton densities and of their gradients [3],[18],[19], [1]. The most
ambitious early attempt to calculate the ground state of the inner crust was the
Hartree-Fock calculation of Negele and Vautherin [62]. Later work focused on the
consistent description of the bottom layers of the crust and included up-dated
treatment of both pure neutron matter and effective nucleon-nucleon interaction
[43],[66],[67],[55], [87],[28],[31],[30].

In general, calculations of the structure, composition, and equation of state
of the inner crust can be divided into three groups, according to the many-body
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technique used. Full quantum mechanical treatment can be carried out within
the Hartree-Fock approximation with an effective nucleon-nucleon interaction.
Further approximation of the many-body wave function can be done using semi-
classical Extended Thomas-Fermi (ETF) approximation. Basic quantities within
the ETF are neutron and proton densities and their spatial gradients. Finally,
investigations belonging to the third group use Compressible Liquid Drop Model
(CLDM) parameterization for the description of nuclei, with parameters derived
within a microscopic nuclear many-body theory (HF or ETF) based on an effec-
tive nucleon-nucleon interaction.

4.1 Hartree-Fock calculations
with effective nucleon-nucleon interaction

Matter is divided into unit cells, which are electrically neutral and contain one
nucleus, with cell volume Vc = 1/nN . Let us assume that a unit cell contains N
neutrons and Z protons. The nuclear effective hamiltonian for such a system of
A = N + Z nucleons is

Heff
N =

A∑
j=1

tj +
1
2

A∑
j,k=1,j �=k

veffjk , (5)

where tj is the kinetic energy operator of j-th nucleon, while veffjk is an operator of
effective two-body interaction between the jk nucleon pair. Usually, veffjk contains
a component which is an effective two-body representation of the three-body
forces, important in dense nucleon medium.

Effective nuclear hamiltonian Heff
N has to reproduce - as well as possible,

and within the Hartree-Fock approximation - relevant properties of the ground
state of the many-nucleon system, and in particular - ground state energy, E0.
This last condition can be written as

〈
Φ0|Heff

N |Φ0
〉 � 〈Ψ0|HN|Ψ0〉, where Φ0, Ψ0,

and HN are Hartree- Fock wave function, real wave function, and real nuclear
Hamiltonian, respectively.

The complete hamiltonian of a unit cell is Heff
cell = Heff

N + VCoul +He, where
Vcoul and He are the components corresponding to Coulomb interaction between
charged constituents of matter (protons and electrons), and that of a uniform
electron gas, respectively. The Hartree-Fock approximation for the many-body
nucleon wave function is

ΦNZ = CNZ det
[
ϕ(p)

αi
(ξk)

]
det
[
ϕ
(n)
βj

(ζl)
]
, (6)

where ϕ(n)
βj

(ζl) and ϕ
(p)
αi (ξk) are single-particle wave functions (orbitals) for neu-

trons (j, l = 1, ..., N) and protons (i, k = 1, ..., Z), respectively, and CNZ is
normalization constant. The space and spin coordinates of k-th proton and j-th
neutron are represented by ξk and ζl, while {αi} and {βj} are sets of quantum
numbers of occupied single-particle states for protons and neutrons, respectively.
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Further approximation, used by Negele and Vautherin [62], consisted in im-
posing the spherical symmetry. Unit cell was approximated by a sphere, and
quantum numbers of single-particle states were therefore nlj. The Hartree-Fock
equations for ϕ(p) and ϕ(n) were derived from the minimization of the HF energy
functional, at fixed volume of the unit cell, Vc,

Ecell

[
ϕ(p)

α , ϕ
(n)
β

]
= 〈ΦNZΦe

∣∣Heff
cell

∣∣ΦNZΦe〉 = minimum , (7)

where Φe is the plane-wave Slater determinant for the ultrarelativistic elec-
tron gas of constant density ne = Z/Vc. Minimization, performed at fixed
Vc, corresponds to fixed average neutron and proton densities, nn = N/Vc,
np = Z/Vc = nNZ. For details concerning actual calculational procedure the
reader is referred to the original paper of Negele and Vautherin [62].

Having calculated the HF orbitals, ϕ(n)
β , ϕ(p)

α , one determines the minimum
(ground state) value of Ecell(N,Z), filling lowest N neutron states and Z proton
states. Then, the absolute ground state configuration is found by minimizing
Ecell(N,Z) at fixed A = N + Z. Let us notice, that αZ and βN correspond
then to the “Fermi level” for protons and neutrons, respectively. In terms of
the single-nucleon orbitals, the neutron drip point corresponds to the threshold
density, at which neutron Fermi level becomes unbound, i.e., φ(n)βN

extends over
the whole unit cell. Even at highest densities considered, no proton drip occurs.
As the matter density increases, the neutron gas density outside nuclei increases,
and the density of protons within nuclei decreases. As Negele and Vautherin [62]
find, at ρ >∼ 8 × 1013 g cm−3 the differences in energy between various local
minima of Ecell(N,Z) become so small, that it is not meaningful to proceed
with their calculational scheme to higher density.

One of the most interesting results of Negele and Vautherin [62] was predic-
tion of strong shell effect for protons: it is visualized by persistence of Z = 40
(closed proton subshell) from neutron drip point to about 3 × 1012 g cm−3, and
Z = 50 (closed major proton shell) for 3 × 1012 g cm−3 <∼ ρ <∼ 3 × 1013 g cm−3,
Fig.2.

Alas, apart from the work of Negele and Vautherin [62], no other attempt of
a Hartree-Fock calculation of nuclear structures in the ground state of the inner
crust was carried out. This might result from an unsolved problem of correct
treatment of the boundary conditions at the unit cell edge, accompanied by
difficulties in finding absolute minimum of the Hartree-Fock energy functional.
These problems did not prevent carrying-out Hartree-Fock unit-cell calculations
of nuclear structures in hot dense matter, relevant for the equation of state in
the gravitational collapse of stellar cores [14], [91]. This seems to be due to the
fact that thermal averaging at kBT >∼ 1 MeV, as well as much less important
role of the nucleon gas outside nuclei, in the relevant case of entropy per nucleon
∼ 1−2 kB, makes the calculation less dependent on a somewhat arbitrary choice
of the boundary condition at the unit cell edge.



Neutron star crusts 137

Fig. 2. Numbers of protons per nucleus in the ground state of the inner crust, obtained
by various authors. Solid lines: RBP - Ravenhall et al. [76]; FPS - as quoted in [72];
DH - Douchin and Haensel [30]. Crosses - Negele and Vautherin [62].

4.2 Extended Thomas-Fermi calculations

Above neutron drip, the number of nucleons in the unit cell grows rapidly with
increasing density. At ∼ 1013 g cm−3 one has Acell ∼ 1000 [62], and implementa-
tion of the self-consistent HF scheme requires an enormous amount of work and
computer time. Large size of nuclei suggests further simplifications of the HF
model via semiclassical approximation, in which relevant quantities are repre-
sented “on the average”, with quantum fluctuations (oscillations) being averaged
out. The energy of a unit cell is a sum of a nuclear energy EN (which includes
nucleon rest energies), Coulomb energy Ecoul, and energy of electron gas, Ee.
In the Extended TF approximation (see, e.g., [79],[16]), nuclear energy of a unit
cell is expressed in terms of energy density functional EN as

EN =
∫
cell

{EN [nn(r), np(r),∇nn(r),∇np(r)]} d3r

+
∫
cell

[
mnc

2nn(r) +mpc
2np(r)

]
d3r . (8)

The nuclear energy density functional has a non-local character, as it depends
on the density gradients. For the ETF approximation to be valid, characteristic
length over which density nn or np changes significantly has to be much larger
than the mean internucleon distance. One can then restrict to keeping only
quadratic gradient terms in EN. To a very good approximation, electron gas is
uniform, with ne = Z/Vc, and therefore Coulomb energy of a unit cell is given
by

ECoul =
1
2

∫
cell

e [np(r) − ne]φ(r)d3r , (9)

where φ(r) is the electrostatic potential, to be calculated from the Poisons equa-
tion,

∇2φ(r) = −4πe [np(r) − ne] , (10)
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and e is the elementary charge. To calculate the ground state at a given nb, one
has to find nn(r), np(r), which minimize Ecell/Vc, under the constraints

Vcnb =
∫
cell

[nn(r) + np(r)] d3r ,
∫
cell

[np(r) − ne] d3r = 0 . (11)

The unit cell is approximated by a sphere of radius rc = (3Vc/4π)1/3, which
simplifies the problem due to spherical symmetry. The boundary conditions are
such that far from the nuclear surface (i.e., from the neutron gas–nuclear matter
interface) nucleon densities are uniform. This requires that nuclear radius be
significantly smaller than rc. The ETF method was first applied to the calcu-
lation of the structure of the inner crust by Buchler and Barkat ([18], see also
[19] and [2]). In the 1980s the main effort was concentrated on the case of dense
and hot matter, relevant for the gravitational collapse of stellar cores and for
modeling of type II supernova explosions An exception from this rule is the
paper of Ogasawara and Sato [63], who devote Sect.3.1 of their paper to the case
of cold catalyzed matter. Their calculational scheme was similar to that used by
Barkat et al. [2]. However, Ogasawara and Sato used different models of poten-
tial energy of asymmetric nuclear matter. They obtained neutron drip density
3 − 4 × 1011 g cm−3 and the values of Z = 35 − 45, higher than those of [2];
this difference resulted from different nuclear energy functional models. Results
of Ogasawara and Sato were in good agreement with HF results of Negele and
Vautherin [62].

Significant progress in the 1980s was achieved in the calculations of the prop-
erties of asymmetric nuclear matter and pure neutron matter with realistic bare
nucleon-nucleon interactions (see, [33],[90]). On the other hand, calculations
using the HF method and its semi-classical simplifications, with new models of
effective nucleon-nucleon interaction, reached a high degree of precision in repro-
ducing the properties of atomic nuclei. The ETF calculation in the 1990s focused
on detailed investigation of the possibility of appearance of non-spherical nuclei
in the densest layer of the crust, which will be described in detail in Sect.5.
Oyamatsu [67] studied the ground state of the inner crust within the ETF ap-
proximation, with four different energy density functionals EN. These functionals
were constructed so as to reproduce gross properties of laboratory nuclei, and
to be consistent with the equation of state of pure neutron matter obtained by
Friedman and Pandharipande [33] for realistic bare nucleon-nucleon interaction.
Oyamatsu performed explicit minimization of the TF energy functional within a
family of parameterized nn and np density profiles. Between neutron drip, which
takes place at 4×1011 g cm−3, and 1014 g cm−3, Oyamatsu obtained for all four
of his models Z � 40, in good agreement with HF calculations of Negele and
Vautherin [62].

Simultaneously with application of the relativistic Brueckner-Hartree-Fock
(RBHF) approach to neutron star matter at supranuclear densities, semi-
classical ETF approximation based on the RBHF model was applied for the
calculation of the properties of the inner crust. Starting from the RBHF re-
sults for bulk asymmetric nuclear matter, Sumiyoshi et al. [87] applied the ETF
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scheme of Oyamatsu [67], with his parameterization of the nucleon density pro-
files. The quadratic gradient term in the energy density functional was deter-
mined by fitting the properties of terrestrial nuclei. They found neutron drip
at 2.4 × 1011 g cm−3. Their values of Z in the inner crust were systematically
lower than those obtained in older work, with Z � 35 near neutron drip, de-
creasing down to about 20 at ρ � 1014 g cm−3. This may be attributed to the
fact that Coulomb energy of nuclei in their model is relatively large, due to
smaller nuclear radii. It should be mentioned that their RBHF value of satura-
tion density for symmetric nuclear matter, 0.185 fm−3, was significantly larger
than the experimental value of 0.16 fm−3 and this may explain compactness of
their nuclei.

Relativistic Hartree approximation of the ground-state energy functional, cal-
culated in the non-linear relativistic mean field model of dense nucleon matter,
can be simplified using the relativistic extended Thomas-Fermi (RETF) approx-
imation proposed by Centelles et al. [24],[25]. In the RETF approximation, one
gets EN functional containing terms quadratic in ∇nn, ∇np, which are com-
pletely determined within the model. The RETF model was applied by Cheng
et al. [28] for the calculations of the structure of the ground state of the inner
crust, starting from the Boguta and Bodmer [13] nonlinear σ − ω − ρ model
Lagrangian. Three sets of the Lagrangian parameters were used in actual calcu-
lations. Cheng et al. [28] solved the Euler-Lagrange equations for nn(r), np(r) in
the spherical unit cell exactly. They did not give explicitly values of Z as func-
tion of the matter density. However, analysis of their figures and tables leads
to conclusion that, similarly as Sumiyoshi et al. [87], they get nuclei which are
relatively small, and their values of Z are significantly lower than those obtained
in non-relativistic calculations.

4.3 Compressible liquid drop model

The nature of the HF and ETF calculations does not permit to study separate
physical contributions and effects, whose interplay leads to a particular structure
of the inner crust. The compressible liquid drop model (CLDM) enables one to
separate various terms in Ecell, so that their role and mutual interaction can be
identified.

There are also practical advantages of using the CLDM. On the one hand,
it can be considered as suitable and economical parameterization of results of
microscopic calculations of the HF or ETF type. On the other hand, CLDM
model avoids technical complications related to the choice of boundary condi-
tions at the edge of the unit cell, plaguing HF approach at highest inner crust
densities. Finally, CLDM description allows for thermodynamically consistent
and systematic treatment of bulk and finite-size effects, and is particularly con-
venient for studying phase transitions between different phases of neutron star
matter (see Sect.5). In particular, CLDM treats two major effects of the outer
neutron gas on nuclei: 1) decrease of the surface tension with growing density,
due to increasing similarity of nucleon matter inside and outside nuclei; 2) com-
pression of nuclear matter within nuclei due to the pressure of outer neutron gas.



140 P. Haensel

However, we should stress that all these attractive features of the CLDM model
are valid only when finite-size contributions were calculated, in a microscopic
HF or ETF approach, from the same effective nucleon hamiltonian as that used
for the calculation of the bulk (volume) terms. In particular, only in such a case
decrease of the surface tension due to the presence of the outer neutron gas is
treated in a correct way.

Within the CLDM, one divides nuclear contribution EN (which excludes
Coulomb interactions) to Ecell into bulk, EN,bulk and surface, EN,surf , terms.
Coulomb contributions to the energy of a unit cell are denoted by ECoul. Elec-
trons are assumed to form an uniform Fermi gas, and yield the rest and kinetic
energy contribution, denoted by Ee. Total energy of a unit cell is therefore given
by

Ecell = EN,bulk + EN,surf + ECoul + Ee . (12)

Here, EN,bulk is the bulk contribution of nucleons, which does not depend on the
size and shape of nuclear structures. However, both EN,surf and ECoul, which
vanish for uniform npe matter, do depend on the size and shape of nuclear
structures, formed by denser nuclear matter and the less dense neutron gas.
From the point of view of thermodynamics, nucleons are distributed between

Fig. 3. Proton and neutron number density distributions within a spherical unit cell
in the inner neutron star crust. Solid lines are actual density profiles, dashed lines
correspond to those of the Compressible Liquid Drop Model. Rn, Rp are equivalent
neutron and proton radii, denoted in the text as rn, rp.

three subsystems: denser nucleon fluid, which will be labeled by “i”, less dense
neutron fluid, labeled by “o”, and nuclear surface (i.e., “i-o” phase interface),
labeled by “s”. One requires mechanical and chemical equilibrium between these
subsystems. Far from the nuclear surface, nucleon densities are constant, and
equal to nn,i, np,i in the denser “i” phase and nn,o in the less dense neutron
gas. The definition of the surface term is subject to an ambiguity. In the case
of spherical nuclei in the inner crust it is convenient to identify it with a sphere
of reference proton radius rp, such that 4π

3 r
3
pnp,i is equal to the actual Z. Such

a definition is convenient because of the presence of the Coulomb term in Ecell,
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which involves solely proton density distribution. Similarly, neutron radius rn is
defined by 4π

3 [r3n(nn,i−nn,o)+r3cnn,o] = Ncell (see Fig.3). In view of a significant
neutron excess, the interface includes neutron skin, of thickness sn = rn − rp,
formed by neutrons adsorbed onto the nuclear matter surface.

The nuclear bulk energy of a cell is

EN,bulk = Vc [wEN,i + (1 − w)En,o] , (13)

where the volume of the cell Vc = 4πr3p/3, EN,i is energy density of nuclear matter
far from nuclear surface, and En,o is the corresponding quantity for outer neutron
gas. The volume fraction occupied by the phase “i” is w = Vp/Vc = (rp/rc)3.

The nuclear surface energy term, EN,surf , gives the contribution of the inter-
face between neutron gas and nuclear matter; it includes contribution of neutron
skin ([52],[72],[54]),

EN,surf = Aσ +Nsµn,s , (14)

where σ is the surface thermodynamic potential per unit area, A is the area of
nuclear surface (in the case of spherical nuclei A = 4πr2p), Ns is the number
of neutrons in neutron skin, and µn,s is the chemical potential of the neutrons
adsorbed onto reference proton surface. In the simplest approximation, in which
curvature contributions to EN,surf , proportional to A/rp, are neglected, σ is ap-
proximated by the surface tension σs, and Ns � (nn,i − nn,o)snA. More precise
expression for EN,surf may be obtained including curvature corrections, which
take into account the curvature of the nuclear surface ([54],[29]). In view of the
possibility of nuclear structures with infinite volumes (see Sect.5) it is conve-
nient to introduce contribution of neutrons in neutron skin to the total (overall)
nucleon density, ns = Ns/Vc [54].

In order to calculate ECoul, one uses the Winger-Seine approximation. Ne-
glecting diffuseness of the proton distribution one gets

ECoul =
16
15
π2 (np,ie)

2
r5pf3(w) , f3(w) =

(
1 − 3

2
w1/3 +

1
2
w

)
. (15)

At T = 0, equilibrium can be determined by minimizing total energy den-
sity, E = Ecell/Vc, at fixed value of nb. The quantity E is a function of seven
independent variables. A convenient set of variables is: nn,i, np,i, ns, nn,o, rp,
rn, rc; in this way all independent variables will be finite even in the case of
infinite nuclear structures, considered in Sect. 5. Imposing fixed nb, and requir-
ing charge neutrality of the cell, we reduce the number of independent variables
to five. Therefore, there will be five conditions of equilibrium resulting from the
stationarity of E with respect to variations of thermodynamic variables. Each of
these conditions has well defined physical meaning. First condition requires that
the neutron chemical potential in the nucleus and in the outer neutron gas be the
same. Neglecting curvature corrections, it implies equality of neutron chemical
potentials in the bulk phases of nucleon matter, µbulkn,i = µbulkn,o . Second equation
results from minimization with respect to the number of protons, and yields the
beta equilibrium condition between neutrons, protons, and electrons. Neglecting
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curvature corrections, it reads

µbulkn,i − µbulkp,i − µe =
8π
5
e2np,ir

2
pf3(w) . (16)

We also need a condition on the number of surface neutrons. It results from
the requirement of stationarity with respect to transfer of a neutron from the
nucleus interior to the surface, all other particle numbers being fixed. Neglect-
ing curvature corrections, this condition implies that the chemical potential
of surface neutrons is equal to the bulk chemical potentials in both phases,
µn,s = µbulkn,i = µbulkn,o .

To these three conditions, expressing chemical equilibrium within the sys-
tem, we have to add two equations corresponding to mechanical equilibrium.
Condition number four results from the requirement of stationarity with respect
to change of rp, and expresses the equalities of pressures inside and outside the
nucleus. Neglecting curvature corrections, condition number four reads

P bulk
i − P bulk

o =
2σs
rp

− 4π
15
e2n2p,ir

2
p(1 − w) , (17)

where P bulk
j = n2j ∂(Ebulk

j /nj)/∂nj.
The last fifth equation determines the equilibrium size of the cell. It results

from the condition of stationarity with respect to the variation spatial scale of
the cell, while w and all densities including ns are kept constant. Notice, that
because w is kept constant, this condition involves only the finite-size terms in
Ecell. Within our approximation (no curvature corrections), the last condition
can be written as

EN,surf = 2ECoul . (18)

This the “virial theorem” of the simplified Compressible Liquid Drop Model
with no curvature corrections (Baym, Bethe, and Pethick [3], hereafter referred
to as BBP), which enables one to express rp in terms of remaining variables.
Generalization of “virial theorem” to the case of nonstandard nuclear shapes
will be discussed in Sect.5.

Let us write an explicit expression for nuclear component of the energy den-
sity, neglecting for simplicity curvature corrections in EN,surf . Both surface ten-
sion, σ � σs, and thickness of neutron skin, sn = rn − rp, are calculated under
the condition of thermodynamic and mechanical equilibrium of the semi-infinite
“i” and “o” phases, separated by a plane interface. Therefore, σ and sn depend
on only one thermodynamic variable, e.g., proton fraction in the bulk “i” phase,
xi = np,i/ni, where ni = nn,i +np,i. The formula for the energy density EN reads
then

EN = wEN,i + (1 − w) En,o +
3w
rp

[σs + (nn,i − nn,o)snµn] . (19)

Let us remind, that in equilibrium chemical potential of neutrons adsorbed onto
nuclear surface is equal to the common value of µn in both bulk phases. Possi-
bility of non-spherical shapes of nuclei will be considered in the next Section.
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Historically, first CLDM calculations of the structure of the inner crust were
performed in the classical paper of Baym, Bethe, and Pethick [3](BBP). The
BBP paper formulated the foundations of the subsequent CLDM calculations of
the structure of the inner neutron star crust. Unfortunately, BBP used oversim-
plified estimates of the reduction of σ with increasing density, based on dimen-
sional arguments; this resulted in rapid increase of Z with increasing density,
corrected in subsequent calculations [76]. Most recent CLDM calculation of the
ground state structure of the inner crust were performed by Lorenz [54] and
by Douchin and Haensel ([29], [31],[30]). These calculations were based of effec-
tive nucleon-nucleon interactions, which were particularly suitable for strongly
asymmetric nuclear systems. Lorenz used FPS model (Friedman Pandharipande
Skyrme [70]), consistent with results of many-body calculations of dense asym-
metric nuclear matter with realistic bare nucleon-nucleon interaction and a phe-
nomenological three-nucleon force, performed by Friedman and Pandharipande
[33]. Douchin and Haensel used the SLy (Skyrme Lyon, [26],[27]) effective forces,
adjusted to the properties of neutron-rich nuclei, and adjusted also, at ρ > ρ0,
to the results of many-body dense asymmetric nuclear matter calculations of
Wiringa et al. [90], which were based on bare two-nucleon interaction AV14 and
phenomenological UVII three-nucleon interaction.

Fig. 4. Radius of spherical unit (Winger-Seine) cell, rc, the proton radius of spherical
nuclei, rp, and fraction of volume filled by protons, w (in percent), versus matter density
ρ. Based on Douchin and Haensel [30].

In what follows, we will illustrate CLDM results for spherical nuclei by those
of Douchin and Haensel [30]. Geometrical parameters characterizing nuclei in
the inner crust, up to 1014 g cm−3, are shown in Fig. 4. Here, w is the fraction
of volume occupied by nuclear matter (with our definition of nuclear matter
volume equal to that occupied by protons).

More detailed information on neutron-rich nuclei, present in the ground state
of the inner crust at ρ < 1014 g cm−3, can be found in Fig.5. Number of nucleons
in a nucleus, A, grows monotonically, and reaches about 300 at 1014 g cm−3,
where Acell � 1000. However, the number of protons changes rather weakly,
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Fig. 5. Mass number of spherical nuclei, A, and their proton number, Z, versus av-
erage matter density ρ. Dotted line corresponds to number of nucleons after deducing
neutrons belonging to neutron skin (Nsurf corresponds to Ns in the text). Based on
Douchin and Haensel [30].

increasing slightly from Z � 40 near neutron drip to somewhat above forty
at 1013 g cm−3, and then decreasing to Z � 40 at 1014 g cm−3. Results for
Z of spherical nuclei are quite similar to those obtained in ([67],[76]), but are
somewhat higher than those obtained using a relativistic mean-field model in
([87],[28]). An interesting quantity is the number of neutrons forming neutron
skin, Ns. As one can see from Fig.5, for ρ >∼ 1

3ρ0 the value of Ns decreases with
increasing density; this is due to the fact that nn,i and nn,o become more and
more alike.

For ρ � 1014 g cm−3, spherical nuclei are very heavy, A � 300, and doubts
concerning their stability with respect to deformation and fission arise.

Originally, the Bohr-Wheeler condition for fission has been derived for iso-
lated nuclei, which were treated as drops of incompressible, charged nuclear mat-
ter (see, e.g., [74]). Let us denote the Coulomb and surface energy of a spherical
nucleus in vacuum by E

(0)
Coul and E

(0)
surf , respectively. The Bohr-Wheeler condi-

tions states that for E(0)
Coul ≥ 2E(0)

surf a spherical nucleus is unstable with respect
to small quadrupolar deformations, and is therefore expected to deform spon-
taneously and fission into smaller drops (fragments). In the case of nuclei in
the neutron-star crust one has to include corrections to the Bohr-Wheeler con-
dition, resulting from the presence of electron background and of other nuclei.
Such corrections were calculated by Brandt (1985; quoted in [72]). The leading
corrections were found to be of the order of (rp/rc)3. This is to be contrasted
with corrections in ECoul, where the leading correction term is linear in rp/rc
[see (15)]. Keeping only leading correction to Coulomb energy, one can rewrite
the equilibrium condition, (18), in an approximate form

Esurf � 2E(0)
Coul

(
1 − 3

2
rp

rc

)
. (20)
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Within the linear approximation, E(0)
Coul is the Coulomb energy of the the nu-

cleus itself (self-energy). The quantity E
(0)
Coul is larger than the actual ECoul,

which is equal to the half of Esurf . As the density increases, E(0)
Coul can become

sufficiently large for the Bohr-Wheeler condition to be satisfied. Within linear
approximation, this would happen for rp/rc > 1/2, i.e., when nuclei fill more
than (1/2)3 = 1/8 of space. As one sees from Fig.4, this does not happen for
spherical nuclei at ρ < 1014 g cm−3 for the particular Douchin and Haensel [30]
model of the inner crust. However, at 1014 g cm−3 the value of w = (rp/rc)3 is
rather close to the critical value of 1/8.

5 Ground state of the matter
in the bottom layers of the crust

For ρ <∼ 1014 g cm−3 ground state of the inner crust contains spherical nuclei;
as we will see in the present section, such a structure is stable with respect to
transition into different nuclear shapes, or into a uniform npe matter. Of course,
as long as rp � rc, we expect nuclei in the ground state of dense cold matter to be
spherical (or quasispherical). This is particularly clear within the CLDM, where
for rp � rc it is the spherical shape which minimizes the shape-dependent (finite-
size) contribution EN,surf + ECoul. However, the situation at ρ >∼ 1014 g cm−3,
where rp/rc >∼ 0.5, is far from being obvious.

In the present section we will study, in the ground state approximation,
the structure and equation of state of the inner crust at ρ >∼ 1014 g cm−3. In
particular, we will discuss possible unusual (exotic) shapes of nuclei present in
the bottom layers of the crust. We will also study transition between the crust
and the liquid neutron star core.

5.1 Unusual nuclear shapes

Long ago it has been pointed out that when the fraction of volume occupied by
nuclear matter exceeds 50%, nuclei will turn “inside-out”, and spherical bubbles
of neutron gas in nuclear matter will become energetically preferred (BBP). 2

Generally, in the process of minimization of energy, nuclear shape has to be
treated as a thermodynamic variable: the actual shape of nuclei in the ground
state of the bottom layer of the inner crust has to correspond to the minimum
of E at a given nb. Historically, first studies along these lines were connected
with structure of matter in gravitational collapse of massive stellar cores. Calcu-
lations performed within the CLDM for dense hot matter, with T > 1010 K and
entropy per nucleon 1 − 2 kB indicated, that before the transition into uniform
plasma, matter undergoes a series of phase transitions, accompanied by a change
of nuclear shape [77]. These authors considered a basic set of spherical, cylin-
drical, and planar geometries, corresponding to dimensionality d = 3, 2, 1. For
2 This result of BBP was obtained within the Liquid Drop Model, neglecting curvature

contribution to the surface thermodynamical potential.
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Fig. 6. Unit cells for a set of nuclear shapes (spheres, rods, plates) in the inner crust.
The radius of the unit cell is denoted by Rc (notation in the text: rc). Hatched regions
correspond to nuclear matter, blank to neutron gas. In the case of the “bubbular phase”
(tubes, spherical bubbles) one has to exchange the roles of the blank and hatched
regions.

each dimensionality, they restricted to simplest shapes with a single curvature
radius (i.e., maximal symmetry). So, for d = 3 Ravenhall et al. [77] considered
spherical nuclei in nucleon gas and spherical bubbles in denser nuclear matter,
referred to as 3N and 3B, respectively. In the case of d = 2, nuclear structures
were cylindrical nuclei (rods, 2N), and cylindrical holes in nuclear matter, filled
with nucleon gas (tubes, 2B). Finally, for d = 1 they considered parallel plates of
nuclear matter separated by nucleon gas; in this case “bubbular” and “nuclear”
phases coincide, and were denoted by 1N. 3 Ravenhall et al. [77] found a se-
quence of phase transitions 3N −→ 2N −→ 1N −→ 2B −→ 3B, which preceded
transition into uniform plasma. These transitions were accompanied by increase
of the fraction of volume occupied by denser (nuclear matter) phase.

One of the virtues of the CLDM is its flexibility as far as the shape of nuclei
is concerned. The terms EN,bulk and Ee are shape independent. The surface and
Coulomb terms do depend on the shape of nuclei, but can easily be calculated
if one neglects the curvature corrections. In what follows we will describe the
formulae for EN,surf and ECoul within this simple approximation. For the sake of
completeness, we will include also previously considered case of spherical nuclei
(phase 3N). Using elementary considerations, one may show that the general
formula for the surface energy contribution is

EN,surf =
wd

rp
[(nn,i − nn,o)µnsn + σs] , (21)

3 For obvious reasons, culinary terms are also frequently used to denote various phases.
So, 3B, 2N, and 1N are referred to as swiss cheese, spaghetti, and lasagna phases,
respectively.
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where dimensionality the d = 3 for 3N, 3B phases, d = 2 for the 2N, 2B phases,
and d = 1 for the 1N phase. The filling factor w is given by a simple formula
w = (rp/rc)d.

The case of the Coulomb contribution is more complicated, but the result can
be also represented by a universal expression, obtained in [77]. The calculation is
based on the Winger-Seine approximation. The unit cells for the 3N, 2N and 1N
phases are visualized in Fig. 6. In the case of rods, the unit cell is approximated
by a cylinder, coaxial with the rod, of radius rc. The number of rods per unit
area of the plane perpendicular to rods is 1/(πrc)2. In the case of plates, the
boundary of the unit cell consists of two planes parallel to the nuclear matter
slab, at distance rc from the slab symmetry plane. For the phases of spherical
nuclei (3N), nuclear matter rods (2N) and plates (1N) one obtains then

EC =
4π
5

(np,ierp)
2
fd(w) , (22)

where

fd(w) =
5

(d+ 2)

[
1

d− 2

(
1 − 1

2
dw1−2/d

)
+

1
2
w

]
. (23)

In the case of d = 2 (rods) one has to take the limit of d −→ 2, in order to get
a more familiar expression

f2(w) =
5
8

(
ln

1
w

− 1 + w

)
. (24)

These formulae hold also in the case of the neutron gas tubes (2B) and neutron
gas bubbles (3B) but one has then to replace w by 1 − w. Of course, rp is then
the radius of the tubes or the bubbles.

The virial theorem, which states that in equilibrium EN,surf = 2ECoul, remains
valid for any phase. It is a consequence of scaling of the Coulomb and surface
energy density with respect to the value of rp (EN,surf ∝ r−1

p , EC ∝ r2p), and
simultaneous invariance in the case of d = 2 and d = 1 with respect to the change
of the scale in the remaining one and two dimensions. In the case of bubbular
phases (bubbles, tubes), one has to replace w by 1 − w.

Beautiful simplicity of the formulae is lost when one introduces “curvature
corrections” to the finite-size terms. In the case of the surface terms, they result
from the fact that the energy of the nuclear surface depends on its curvature,
which in the case of the five nuclear shapes under consideration is given by
κ = (d− 1)/rp for the phases 3N, 2N and κ = −(d− 1)/rp for the 3B, 2B ones,
respectively. Surface thermodynamic potential, calculated including lowest order
curvature correction, is then given by σ = σs + κσc. It should be stressed, that
in contrast to surface tension σs, the curvature tension σc does depend on the
choice of the “reference surface”, which in our case is taken at r = rp (see, e.g.,
[48], [30]). In the case of the Coulomb energy, curvature corrections appear when
we include the diffuseness of the proton surface. These corrections were studied
in detail by Lorenz [54](see also [29]).



148 P. Haensel

Fig. 7. Energy density of a given phase of inner-crust matter minus that of the bulk
two-phase nuclear matter-neutron gas-electron gas system, as a function of the average
baryon density nb. Label “uniform” corresponds to the case of the uniform npe matter.
Calculations performed for the FPS and SkM effective nucleon-nucleon interactions.
After [55].

First detailed calculations of the structure of the inner crust at
ρ >∼ 1014 g cm−3, performed within the CLDM by Lorenz et al. [55], indicated
that the presence or absence of unusual nuclear shapes before transition to uni-
form npe matter depends on the assumed model of effective nucleon-nucleon
interaction. For the FPS model of effective N-N interaction, they found a se-
quence of 3N −→ 2N −→ 1N −→ 2B −→ 3B phase transition, which started
at 0.064 fm−3 � 1

3n0 (1.1 × 1014 g cm−3), and ended at nedge = 0.096 fm−3

(ρedge = 1.6 × 1014 g cm−3) with a transition from the 3B phase to uni-
form npe matter. All phase transitions were very weakly first-order, with rel-
ative density jump below 1%. It should be stressed that in the relevant den-
sity region the differences between E(nb) for various shapes is very small and
amounts typically to less than 0.001 MeV/fm3. This is to be compared with
E(crust; shape) − E(uniform) � 0.01 − 0.02 MeV/fm3 (see Fig.7).

As Lorenz et al. [55] have shown, the very presence of unusual shapes depends
on the assumed model of veffNN. In the case of the SkM force (used by Bonche
and Vautherin [14],[15] in their dense and hot matter studies) spherical nuclei
were energetically preferred down to the bottom edge of the crust, found at
significantly lower density nedge = 0.074 fm−3 (ρedge = 1.2 × 1014 g cm−3).

Further calculations confirmed this unfortunate ambiguity, resulting from de-
pendence on veffNN. Using parameterized density profiles in the ETF energy density
functional, Oyamatsu [67] found complete sequence of phase transitions in the
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density range 1.0− 1.5× 1014 g cm−3. Similar sequence of phase transitions was
found by Sumiyoshi et al. [87], with however a much narrower range of existence
of unusual nuclear shapes, 0.050−0.058 fm−3 (0.83−0.97×1014 g cm−3), before
final transition to uniform npe matter. On the contrary, Cheng et al. [28], using
unconstrained relativistic ETF approach, found that spherical nuclei persist in
the ground state of the crust down to nedge, which depending on the parameters
of their relativistic σ−ω−ρ Lagrangian ranged from 0.058 fm−3 to 0.073 fm−3.
Similarly, calculations performed by Douchin and Haensel [30] with SLy4 effec-
tive N-N force indicated absence of unusual nuclear shapes. They found transi-
tion to uniform npe matter at nedge = 0.078 fm−3 (ρedge = 1.3 × 1014 g cm−3).

While the presence of unusual nuclear shapes for ρ <∼ ρedge depends on effec-
tive nuclear interaction model used, some general qualitative statements, based
on existing calculations, can still be made. The very phenomenon of phase tran-
sitions between various shapes results from the interplay of three quantities:
finite-size (surface and Coulomb) term in Ecell, the dominating bulk energy term,
and the volume fraction of the denser nucleon fluid, w. If finite-size terms are
small, then ρedge is reached at relatively low value of w. However, unusual (non-
spherical) shapes become energetically advantageous only at sufficiently large
value of w. Therefore, small surface tension may prohibit the appearance of un-
usual shapes before ρedge is reached (this is the case of the SLy4 and SkM forces.
It should be stressed, however, that phase transitions themselves result from
very small energy differences (see Fig. 7) of energy densities: finite-size terms in
the relevant density range are very small compared to Ebulk = EN,bulk + Ee.

In the case of the CLDM, one should stress very important role of the cur-
vature term in EN,surf , which should therefore be included in any CLDM calcu-
lations of the crust-liquid core transition. As we already mentioned, introducing
curvature corrections in the finite-size terms complicates the analysis of the un-
usual shape problem. In the absence of the curvature correction to EN,surf , it
is possible to show that the 3N−→2N transition has to occur at w = 0.2 [66].
However, in the presence of the curvature correction the 3N phase can persist
at larger values of w.

In actual CLDM or ETF calculations, the change of nuclear shape in the
ground state of the inner crust is accompanied by a very small (less than one
percent) density jump; it has therefore the character of a very weak first-order
phase transition [55],[67],[87]. The equation of state in the region in which the
nuclear shape transitions occur is obtained using Maxwell construction at the
transition pressures.

The CLDM model is par excellence classical. Also, the ETF scheme is a
semiclassical approximation to a quantum-mechanical many-body problem. As
the differences of energy densities between phases with different nuclear shapes
are very small, one may worry about possible importance of neglected quantum
effects. In the case of terrestrial nuclear physics, there exists a systematic pro-
cedure of adding quantum (shell) corrections to the smooth liquid drop model
energies of nuclei (Strutinsky method, see, e.g., [74]). Energy correction, result-
ing from the quantum shell effects for protons, and for various nuclear shapes,
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has been calculated by Oyamatsu and Yamada [68]. They found, that with in-
clusion of proton shell effects changes of nuclear shapes occur at higher densities
than those obtained using semiclassical ETF calculation.

Another quantum effect neglected in the CLD or ETF model is pairing of
nucleons. However, because of large numbers of nucleons in a unit cell, pairing
contribution to the energy is negligible. Larger effects, which clearly need a
careful investigation, may result from using the Winger-Seine approximation at
ρ � 1014 g cm−3.

5.2 Reaching the bottom edge of the crust from the denser side

The method of the determination of the bottom edge of the crust, based on the
CLDM of nuclei, requires a very high precision of the calculation of the finite-size
contribution term, EN,surf +Ecoul, in Ecell. One has to construct a CLDM model
of the ground state of the inner crust, and then find the density of the crust–liquid
core transition from the condition of the thermodynamic phase equilibrium. This
method requires that one uses the same nuclear hamiltonian for the crust and for
the liquid core phase. It requires also very precise many–body method for the
description of nuclear structures within the bottom layers of the crust, which
is a rather difficult task (see Fig. 7). Luckily enough, calculations described
in the previous subsection show that the crust–liquid core phase transition is
very weakly first–order (i.e., the relative density jump at the crust-liquid core
interface is very small). Therefore, one can locate the crust-core interface using
completely different method, which is based on a well known technique used in
the theory of phase transitions in condensed matter. This can be an independent
test of precision of the CLDM calculation of ρedge, described in the previous
subsection. We will locate the edge of the crust by checking the stability of the
uniform npe matter, starting from the higher density side where we know that
the homogeneous phase is indeed stable with respect to formation of spatial
inhomogeneities (BBP, Pethick et al. [71]). By lowering the density, we will
eventually find the threshold density, at which the uniform npe matter becomes
unstable for the first time. As we will see, this threshold density gives a very
good approximation of the actual density of the crust edge density, ρedge.

At a given nb, the ground state of a homogeneous npe matter corresponds
to the minimum of the energy density E(nn, np, ne) = E0, under the constraints
of fixed baryon density and electric charge neutrality, np + nn = nb and ne =
np, respectively. This implies beta equilibrium between the matter constituents
and ensures vanishing of the first variation of E due to small perturbations
δnj(r) (where j = n, p, e) of the equilibrium solution (under the constraints of
constant total nucleon number and global charge neutrality within the volume
V of the system). However, this does not guarantee the stability of the spatially
homogeneous state of the npe matter, which requires that the second variation
of E (quadratic in δnj) be positive.

The expression for the energy functional of slightly inhomogeneous neutron-
star matter can be calculated using the semi-classical ETF treatment of the
kinetic and the spin-gradient terms in nucleon contribution to E [16]. Assuming
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that the spatial gradients are small, we keep only the quadratic gradient terms
in the ETF expressions. This approximation is justified by the fact that char-
acteristic wavelengths of periodic perturbations will turn out to be much larger
than the internucleon distance. With these approximations, the change of the
energy (per unit volume) implied by the density perturbations can be expressed,
keeping only second order terms (BBP, [71]),

E − E0 =
1
2

∫
dq

(2π)3
∑
j,k

Fjk(q)δnj(q)δnk(q)∗ , (25)

where we used the Fourier representation

δnj(r) =
∫

dq
(2π)3

δnj(q)eiqr . (26)

The Hermitian Fik(q) matrix determines the stability of the uniform state of
equilibrium of the npe matter with respect to the spatially periodic pertur-
bations of wavevector q. Due to the isotropy of the homogeneous equilibrium
state of the npe matter, Fik depends only on |q| = q. The matrix elements Fik

are calculated from the second variation of the microscopic energy functional
E [nn, np, ne,∇nn,∇np,∇ne] (BBP, [71]).

The condition for the Fij matrix to be positive-definite is equivalent to the
requirement that the determinant of the Fij matrix be positive (Pethick et al.
1995). At each density nb, one has thus to check whether det[Fij(q)] > 0. Let us
start with some nb, at which det[Fij(q)] > 0 for any q. By decreasing nb, we find
eventually a wavenumber Q at which stability condition is violated for the first
time; this happens at some density nQ. For nb < nQ the homogeneous state is
no longer the ground state of the npe matter since it is unstable with respect to
small periodic density modulations.

Calculations performed with several effective nuclear Hamiltonians indicate
that nQ � nedge, within a percent or better [71],[30]. For the ETF approxima-
tion to be correct, the value of the characteristic wavelength of critical density
perturbations, λQ = 2π/Q, must be significantly larger than the mean internu-
cleon distance. The critical wavenumbers Q are typically ∼ 0.3 fm−1. Therefore,
despite a small proton fraction (about 3–4% at nQ), λQ ∼ 20 fm is typically four
times higher than the mean distance between protons rpp = (4πnp/3)−1/3; for
neutrons this ratio is typically about eight.

The instability at nQ signals a phase transition with a loss of translational
symmetry of the npe matter, and appearance of nuclear structures. The agree-
ment of nQ and nedge is a good test of the precision of determination of nedge.
It implies also that the spherical unit cell approximation for 3N or 3B phases
is valid even close to ρedge. This agreement means also that restriction to linear
curvature correction in σ within the CLDM is sufficiently precise. Finally, it is a
convincing argument for the validity of the CLDM at very large neutron excess.
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6 Formation of accreted crust and crustal
non-equilibrium processes

While a newly born neutron star is clearly made of hot matter in nuclear equilib-
rium, its subsequent evolution can lead to formation of regions in which matter is
far from it. Such a situation may take place in the neutron star crust, where the
reshuffling of nucleons necessary for the formation of large nuclei characteristic of
cold catalyzed matter may be prohibited due to the high Coulomb barriers. This
is the case of an old accreting neutron star. For the accretion rate of the order
of 10−10M�/y typical temperature in the neutron star interior does not exceed
108 K [34]. Let us consider standard scenario connected with phenomenon of
X-ray bursts. Explosive burning of the helium layer leads to formation of matter
consisting mainly of 56Ni, which transforms into 56Fe. The growing layer of pro-
cessed accreted matter pushes down the original crust. The original catalyzed
(ground state) outer crust, which consisted of nuclei embedded in electron gas,
is replaced by a new, non-catalyzed one in ∼ 105 y. In view of low temperature
(T <∼ 108K) the only processes which can take place in crystallized matter when
it sinks inwards are: electron captures, neutron emission or absorption and, at
sufficiently high density, pycnonuclear fusion. Detailed study of the processes
taking place in the crust of an accreting neutron star has been done by Sato
[83], who considered several scenarios with different initial composition of mat-
ter, and by Haensel and Zdunik [37] (see also Bisnovatyi-Kogan and Chechetkin
[8], and references therein).

Non-catalyzed neutron star crust represents a source of energy. The energy
release takes place due to the non-equilibrium processes in the crust of an ac-
creting neutron star. Some aspects of this problem have been considered by
Vartanyan and Ovakimova [89] using an unrealistic model of neutron star mat-
ter. Detailed study of non-equilibrium processes, and resulting crustal heating
was presented by Haensel and Zdunik [37].

The non-equilibrium processes lead to the appearance of spherical (or more
generally - quasi-spherical) surfaces, on which heat is produced at a rate propor-
tional to accretion rate. As Haensel and Zdunik [37] have shown, the resulting
total heat release in the solid crust can be larger than the original inward heat
flow resulting from the steady hydrogen burning between the helium flashes [34].

6.1 A model of accreted neutron star crust

We assume that at a given pressure, P , the neutron star crust is a body-centered
cubic crystal lattice of a single species of atomic nucleus (A,Z), immersed in an
electron gas, and, above neutron drip point, also in a neutron gas. The maxi-
mum temperature in the crust of accreting neutron star can be as high as 108K
[34]. Therefore, we can expect that some part of the neutron star crust will be
in a liquid phase. While the transport properties of dense matter such as heat
conductivity depend sensitively on whether matter is in a liquid or a crystal-
lized phase, melting of the crust introduces only minor corrections to thermody-
namic potentials. The latent heat of crystallization is of the order of less than
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0.1 keV per one accreted nucleon (c.f.,[49]) and thus negligible. Generally, for
ρ >∼ 108 g cm−3 and T <∼ 108 K thermal contributions to thermodynamic poten-
tials can be safely neglected and the composition and equation of state of dense
matter can be calculated using the T = 0 K approximation.

In the case of neutron star matter below the helium layer we have
ρ >∼ 107 g cm−3 and T <∼ 108 K and we may therefore calculate all the thermody-
namic potentials in the T = 0 K approximation. Before the pycnonuclear fusion
becomes possible, the unit (W-S) cell contains a fixed number of nucleons, Acell,
equal to the mass number of the nucleus produced by explosive helium burning.
In other words, the number of nuclei in an evolving neutron star matter element
is then fixed.

In what follows, we will describe a scenario developed by Haensel and Zdunik
[37],[38]. Before the neutron drip point Acell = A. At given pressure the equilib-
rium value of Z is determined from the condition that the Gibbs energy of the
unit cell, (2), be minimum. Experimental values of WN (A,Z) are used whenever
they were available. For the nuclei for which no experimental data exist Haensel
and Zdunik [37] used a theoretical compressible liquid drop model (CLDM) of
Mackie and Baym [56]. A few phenomenological parameters of this model have
been fitted to the experimental masses of the atomic nuclei without introduc-
ing any shell correction term. Haensel and Zdunik [37], [38] used this model in
its original form, which gives the best fit to nuclear masses. Thus, the CLDM
formula for WN (A,Z) includes the phenomenological even - odd pairing term,
which makes even-even nuclei more bound, and odd-odd nuclei less bound than
the odd-even ones.

Above neutron drip point, P > PND ≡ P (ρND), neutrons are present in two
phases: bound in nuclei and as a neutron gas outside nuclei. In what follows, we
use the formalism and notation applied previously for the determination of the
neutron drip point in Sect. 3. The Gibbs energy of the W-S cell is then written
in the form

Gcell(A,Z) = WN (A,Z, nn) +WL(nN , Z)
+[Ee(ne) + (1 − nNVN ) En(nn) + P ]/nN , (27)

where En is the energy density of neutron gas (including neutron rest energy)
and VN is the volume of the nucleus. At given (A,Z) the values of nN , ne, nn

are determined from the system of three equations,

P = Pe(ne) + PL(nN , Z) + Pn(nn) , ne = ZnN
Acell = A+ nn(1/nN − VN ) , (28)

supplemented by the condition of mechanical equilibrium of the surface of the
nucleus under the external pressure of neutron gas. This last condition, applied
to the compressible liquid drop model of Mackie and Baym [56] for WN which
takes into account the influence of the neutron gas on the nuclear surface energy
and on the nuclear radius, yields the equilibrium value of VN .

The model described above enables one to calculate, at a given pressure,
the ground state of a matter element under an additional constraint of a fixed
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number of nuclei. However, we should remind that our task is to follow the ground
state of a matter element as it descends deeper and deeper into the neutron star
interior under the pressure of accreted matter. This process is taking place at
rather low temperature. In practice, this means that matter element sits at the
local minimum of Gcell, and that this local ground state can change only after the
corresponding energy barrier vanishes. 4 In view of the characteristic behavior
of WN as a function of A and Z, resulting from the pairing of nucleons in nuclei,
this leads to non-equilibrium character of processes which change Z (and A)
during the evolution of the neutron star crust.

6.2 Evolution of matter element

In what follows we will study evolution of a matter element with initial density
∼ 108 g cm−3, under a gradual compression up to the density ∼ 1013 g cm−3,
the temperature of matter not exceeding significantly 108 K. In order to estimate
the timescales for such a compression process, let us consider a 1.4 M� neutron
star, with a medium-stiff EOS of the liquid core. Calculation of the density
profile of such a neutron star shows, that in order to compress a matter element,
initially at ρ = 108 g cm−3, to the density ρ = 6 × 1011 g cm−3, which as we
will see corresponds to the neutron drip point for our specific scenario, the star
should accrete a mass of 3 × 10−5M�. This would take 3 × 105/Ṁ−10 years,
where Ṁ−10 is the accretion rate in the units of 10−10M�/y. Compression up to
1.2×1013 g cm−3 (this is maximum density which we will consider) would require
accretion of ∼ 5×10−4M� and thus would take ∼ 5×106/Ṁ−10 years. After such
a time the whole outer part of the neutron star crust with ρ < 1.2×1013 g cm−3

would consist of non-catalyzed matter, studied in the present section.
Let us follow the evolution of an element of matter produced in the explosive

helium burning, as it undergoes compression due to accretion of matter onto
stellar surface. Let us start with a pressure close to that just below the helium
layer. We have there A=56, Z=26. We shall follow possible transformations
taking place in the unit cell during its travel to the deep layers of the neutron
star crust. For pressures corresponding to ρ < ρ1 = 5.852 × 108 g cm−3 the
minimum of Gcell corresponds to 56Fe. For pressure just above P1 = P (ρ1)
the minimum is obtained for 56Cr. However, direct transition 56Fe→56Cr would
require an extremely slow double electron capture.

In view of the extreme slowness of the ee capture 2e− +56Fe −→56 Cr+2νe,
reaction

56Fe + e− −→56 Mn + νe (29)

must proceed first. With increasing P , the two-step electron capture reactions
occur each time when the threshold for a single electron capture is reached,
4 Strictly speaking, even at T = 0 quantum tunneling through energy barrier is pos-

sible. Therefore, strict condition for the possibility of leaving the local minimum is
that the energy barrier becomes sufficiently low (or thin) so that the timescale for
tunneling is short compared to matter element compression timescale.
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according to a general scheme

(A,Z) + e− −→ (A,Z − 1) + νe ,
(A,Z − 1) + e− −→ (A,Z − 2) + νe . (30)

Usually, the first step takes place very (infinitesimally) close to the threshold and
therefore is accompanied by a very small (infinitesimal) energy release (quasi-
equilibrium process). An exception from this rule is the case in which, due to
the selection rules, first electron capture must proceed into an excited state of
the daughter nucleus. This is the case of reaction (29). Notice, that because
of low temperature, the nucleus undergoing an electron capture should always
be considered as being in its ground state. If the daughter nucleus is produced
in an excited state, then it de-excites by gamma emission before next electron
capture. This leads to the heat release Q1 = Eexc per cell. Second electron
capture proceeds always in a non-equilibrium way, because P2 is significantly
above the threshold pressure for the electron capture on the odd-odd (A,Z − 1)
nucleus. Mechanical equilibrium requires that this process takes place at constant
pressure, P2. On the other hand, because of very high thermal conductivity of
matter, resulting from the presence of degenerate electrons, and a very slow
accretion rate, reactions occur at constant temperature, T . Thus, the total heat
release per one W-S cell, accompanying second capture, (30), is given by the
change of the Gibbs energy of the cell (chemical potential of the cell), Q2 =
Gcell(A,Z − 1) −Gcell(A,Z − 2) (see, e.g., Prigogine [75]). On average, most of
the released heat is radiated away by neutrinos, Eν = 5

6 (µe −∆), where ∆ is the
threshold energy for the second (non-equilibrium) electron capture [7].

The effective deposited in matter heat release per one unit cell is thus esti-
mated as

Qcell � Q1 +
1
6
Q2 . (31)

Generally, Q1 � Qcell.
At ρND = 6.11×1011 g cm−3 neutrons drip out of the nuclei, which are then

56Ar. This process, occurring at constant pressure PND, proceeds in five steps,
and is initiated by an electron capture,

56Ar + e− −→ 56Cl + νe ,
56Cl −→ 55Cl + n ,
55Cl + e− −→ 55S + νe ,
55S −→ 54S + n ,
54S −→ 52S + 2n . (32)

The whole chain of reactions (which we will call non-equilibrium process) can be
symbolically written as 56Ar −→52 S + 4n− 2e− + 2νe.

For P > PND electron captures induce non-equilibrium neutron emissions,
the general rule being that an even number of electron captures is accompanied
by emission of an even total number of neutrons. When determining the path
the system follows during nuclear transformations one uses a simple rule: if
both electron capture and neutron emission are energetically possible, neutron
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emission - which is more rapid - goes first. However, in order to calculate the
effective heat release we have to consider a detailed sequence of reactions, taking
place at the threshold pressure for the first “trigger” reaction of electron capture.

As the element of matter moves deeper and deeper into the neutron star
interior, each time the threshold density for the electron capture is crossed, a
chain of electron captures and neutron emission follows. While the “trigger”
reaction produces virtually no (or very little) energy release, subsequent non-
equilibrium transformations lead to a significant heat production, due mainly
to the downscattering of neutrons and de-excitation of nuclei. This is possible
because emitted neutrons have energies well above the Fermi surface of superfluid
neutron liquid.

Due to electron captures, the value of Z systematically decreases. In con-
sequence, the lowering of the Coulomb barrier for the nucleus-nucleus reaction,
combined with decrease of the separation between nuclei and a simultaneous
increase of the energy of the quantum zero-point vibrations around the lattice
sites opens a possibility of pycnonuclear reactions (for an introduction, see [85]).

In their calculation of the pycnonuclear reaction rate per unit volume, rpyc,
Haensel and Zdunik [37] used the formulae of Salpeter and Van Horn [82] (see
[37] for details). The pycnonuclear timescale is defined as

τpyc =
nN
rpyc

. (33)

The quantity τpyc is a sensitive function of Z and of the density, so that the
pressure at which pycnonuclear fusion starts can be quite easily pointed out.

The electron capture on 40Mg nucleus, taking place at ρ = 1.45 ×
1012 g cm−3, initiates the reaction

40Mg −→34 Ne + 6n− 2e− + 2νe . (34)

The subsequent pycnonuclear fusion of the 34Ne nuclei (Z = 10) takes place
on a timescale of months, much shorter than the time needed for a significant
compression due to accretion. The fusion reaction can be written symbolically
as

34Ne +34 Ne −→68 Ca . (35)

After the pycnonuclear fusion has been completed, the number of nuclei is
decreased by a factor of two. Further evolution of the element of matter takes
place at a fixed number of nucleons in the unit cell, doubled with respect to
the initial one, Acell = 112. Pycnonuclear fusion is accompanied by a significant
energy release in the form of the excitation energy of the final nucleus. The energy
release resulting from pycnonuclear fusion represents an important source of heat
within the crust. Results concerning the energy release will be presented in the
next subsection.
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Table 2. Non-equilibrium processes in the outer crust. Temperature effects are ne-
glected. P and ρ are the threshold pressure and density for reactions initiated by the
electron capture. Relative density jump at the threshold pressure is denoted by ∆ρ/ρ.
Last two columns give the total energy release, qtot, and heat deposited in matter, q,
both per one accreted nucleon, accompanying non-equilibrium reactions. After [37].

P ρ process ∆ρ/ρ qtot q

(dyn cm−2) (g cm−3) (MeV) (MeV)
7.23 1026 1.49 109 56Fe →56 Cr − 2e− + 2νe 0.08 0.04 0.01
9.57 1027 1.11 1010 56Cr →56 Ti − 2e− + 2νe 0.09 0.04 0.01
1.15 1029 7.85 1010 56Ti →56 Ca − 2e− + 2νe 0.10 0.05 0.01
4.78 1029 2.50 1011 56Ca →56 Ar − 2e− + 2νe 0.11 0.05 0.01
1.36 1030 6.11 1011 56Ar →52 S + 4n − 2e− + 2νe 0.12 0.06 0.05

Table 3. Non-equilibrium processes in the inner crust. Notation as in Table 2. Neutron
fraction in the total number of nucleons, in the layer just above the reaction surface,
is denoted by Xn. After [37].

P ρ process Xn ∆ρ/ρ q

(dyn cm−2) (g cm−3) (MeV)
1.980 1030 9.075 1011 52S →46 Si + 6n − 2e− + 2νe 0.07 0.13 0.09
2.253 1030 1.131 1012 46Si →40 Mg + 6n − 2e− + 2νe 0.18 0.14 0.10
2.637 1030 1.455 1012 40Mg →34 Ne + 6n − 2e− + 2νe 0.39 0.16 0.12
3.204 1030 1.951 1012 34Ne +34 Ne →68 Ca

68Ca →62 Ar + 6n − 2e− + 2νe 0.39 0.09 0.40
3.216 1030 2.134 1012 62Ar →56 S + 6n − 2e− + 2νe 0.45 0.09 0.05
3.825 1030 2.634 1012 56S →50 Si + 6n − 2e− + 2νe 0.50 0.09 0.06
4.699 1030 3.338 1012 50Si →44 Mg + 6n − 2e− + 2νe 0.55 0.09 0.07
6.044 1030 4.379 1012 44Mg →36 Ne + 8n − 2e− + 2νe

36Ne +36 Ne →72 Ca
72Ca →66 Ar + 6n − 2e− + 2νe 0.61 0.14 0.28

7.233 1030 5.665 1012 66Ar →60 S + 6n − 2e− + 2νe 0.70 0.04 0.02
9.238 1030 7.041 1012 60S →54 Si + 6n − 2e− + 2νe 0.73 0.04 0.02
1.228 1031 8.980 1012 54Si →48 Mg + 6n − 2e− + 2νe 0.76 0.04 0.03
1.602 1031 1.127 1013 48Mg +48 Mg →96 Cr 0.79 0.04 0.11
1.613 1031 1.137 1013 96Cr →88 Ti + 8n − 2e− + 2νe 0.80 0.02 0.01

6.3 Non-equilibrium processes and crustal heating

Detailed results describing the non-equilibrium reactions in the crust of an ac-
creting neutron star are shown in Tables 2, 3. In Table 2 we show results for the
outer neutron star crust, where matter consists of nuclei immersed in electron
gas. Non-equilibrium electron captures generate heat on the spherical surfaces
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(actually: in very thin shells) at pressures indicated in the first column of Table
2. The density of matter just above the reaction surface is given in the second
column. Density of matter undergoes a jump at the reaction surface. This results
from the fact that reactions take place at a constant pressure, P � Pe, which is
determined mainly by the electron density ne = ZnN . At constant pressure, a
decrease in Z, implied by the double electron capture, is thus necessarily accom-
panied by the baryon density and mass density increase, with ∆ρ/ρ � 2/(Z−2).

In the fifth column of Table 2 we give the total heat release in a unit cell,
accompanying a non-equilibrium reaction, divided by the number of nucleons in
the cell. As we have shown in the previous subsection, on average only ∼ 1

6 of
this heat is deposited in matter, the remaining part being radiated away with
neutrinos. In the last column we give the effective (deposited in matter) heat
per nucleon in a non-equilibrium process, q. In the steady thermal state of an
accreting neutron star, effective heat release per unit time on the i-th reaction
surface, Qi, is proportional to the mass accretion rate, Ṁ . This relation can be
written in a suitable form

Qi = 6.03 ·
(

Ṁ

10−10M�/y

)
·
( qi

1 MeV

)
1033 erg/s . (36)

Let us notice that the heat release on the neutron drip surface exceeds the
total remaining heat release in the outer crust. This is due to the fact that
non-equilibrium neutron emission represents a very efficient channel of matter
heating.

In Table 3 we collected results referring to the inner crust of accreting
neutron star. The fraction of nucleons in the neutron gas phase is denoted by Xn

and refers to the crust shell laying just above the reaction surface. For the sake
of simplicity, the description of non-equilibrium processes is largely symbolic.

Results presented in Table 3 show that when a chain of non-equilibrium
processes includes pycnonuclear fusion, heat production may be more than an
order of magnitude larger than in the case involving only electron captures and
neutron emission.

For ρ > 1.2 1013 g cm−3 the energy release per nucleon, due to non-
equilibrium processes, is rather small compared to that in the ρND < ρ <
1.2 1013g cm−3 layer. To some extent this is due to the fact that atomic nu-
clei immersed in a dense neutron gas contain then only a small fraction of the
total number of nucleons. On the other hand, being more and more neutron rich,
these nuclei become less and less dense and less and less bound.

The validity of the Haensel and Zdunik [37],[38] model becomes question-
able at the densities a few times 1013g cm−3. However, one may expect that at
such a high density properties of non-catalyzed matter become rather simple.
Calculation shows, that if a matter element produced originally in a helium flash
could reach a density ∼ 1014g cm−3, we should expect it to contain only ∼ 10%
of nucleons bound in atomic nuclei. In view of this, pressure of matter in the
shells of constant (A,Z) (as well as many other properties) at this (and higher)
density may be expected to be dominated by non-relativistic neutrons.
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6.4 Astrophysical consequences

Non-catalyzed matter in the crust of an accreting neutron stars turns out to be
an important reservoir of energy, which is partly released in the non-equilibrium
reactions involving electron captures, neutron emissions and pycnonuclear fu-
sion. The total heat release due to non-equilibrium reactions in the neutron
star crust is larger than a typical inward heat flow produced by the steady
thermonuclear burning of accreted matter between the helium flashes. Detailed
calculations of the steady thermal state of neutron stars, accreting at rates
10−11 <∼ Ṁ/(M�/y) <∼ 10−9, taking due account of non-equilibrium heat sources
in the crust, and with various models of neutron star core, were performed in
[58].

Many neutron stars in close X-ray binaries are transient accretors (tran-
sients). Such neutron stars exhibit X-ray outbursts separated by long periods
(months or even years) of quiescence. It is believed that quiescence corresponds
to a low-level, or in extreme case halted, accretion onto neutron star. During
high-accretion episodes, heat is deposited by non-equilibrium processes in the
deep layers (1012 − 1013 g cm−3) of accreted crust. This has been shown to be
possible mechanism to maintain temperature of neutron star interior sufficiently
high to explain thermal X-ray radiation in quiescence [17],[80].

7 Composition of accreted crust

Many neutron stars may have accreted crust. For example, consider the millisec-
ond pulsars. They are thought to be old neutron stars, spun up by the accretion,
via an accretion disk, of ∼ 0.1M� from their companion in a close binary system
(see, e.g., [44]). Clearly, if such scenario is correct, the whole crust of a typical
millisecond pulsar is built of accreted, non-catalyzed matter.

Composition of accreted crust in the “single nucleus” approximation, dis-
cussed in detail in the preceding section, was calculated by Haensel and Zdunik
[38]. These authors used the same compressible liquid drop model of nuclei as
that applied in their study of non-equilibrium processes in accreting crust. In
Table 4 we list the nuclides present in the crust of an accreting neutron star. In
the third, fourth and fifth columns we give the maximum pressure, Pmax, mass
density, ρmax, and baryon density, nb,max, at which the nuclide is present. In the
sixth column we give the value of the electron chemical potential (including rest
energy), µe, at this density. The fraction of nucleons in the neutron gas phase
within the layer ending at Pmax, denoted by Xn, is shown in the seventh column.
Transition to the next nuclide is accompanied by a density jump. In the last col-
umn of Table 4 we give the corresponding relative density increase, ∆ρ/ρ. To a
very good approximation we have ∆nb/nb � ∆ρ/ρ. Relative density jumps are
significantly larger than those in the case of cold catalyzed matter, and exceed
10% above neutron drip point.

As one sees from Table 4, composition of the crust of an accreting neutron
star is vastly different from that of a standard neutron star composed of the
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catalyzed matter. In the case of an accreting neutron star the value of Z is
typically <∼ 20, to be compared with Z = 40 − 50 for the cold catalyzed matter
above the neutron drip point. At ρ � 1013 g cm−3 the mass number of nuclei in
the accreted crust is about 60, to be compared with about 200 in cold catalyzed
matter of the same density. The neutron drip occurs at a similar density as in the
cold catalyzed matter. At the highest density considered, ρ � 1.2 1013 g cm−3,
more than 80% of nucleons form neutron gas outside nuclei. The neutron gas
gives there a dominating contribution to the pressure. Another remark to be
made is that composition given in Table 4 corresponds to an idealized scenario
of formation of accreted crust. Possible deviations from this idealized picture are
discussed in Sec.10.

An important remark concerns the values of Z. The mean charge of nuclei
in the crust of an accreting neutron star turns out to be less than half of that
characteristic of the cold catalyzed matter. As pointed out by Sato [83], this will
result in a significant reduction of the shear modulus of the crust (see Sect. 9).

8 Equation of state of the neutron star crust

The equation of state (EOS) constitutes an essential input for the calculation
of the neutron star models. In the present Section, we discuss the EOS of the
outer and inner neutron star crust. Two basic models, corresponding to different
idealized scenarios of crust formation, will be considered. First model will be
based on the ground state approximation, in which the crust is assumed to be
built of cold catalyzed matter (structure of the crust in this approximation was
discussed in Sections 3, 4, 5). Then we will describe the EOS of accreted crust,
assuming formation scenario described in Sect.6, where the structure of the outer
and inner crust was derived within the “single nucleus” approximation.

Fig. 8. Comparison of the SLy and FPS EOS.
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8.1 Ground state approximation

The EOS of the outer crust in the ground state approximation is rather well
established. Generally, the EOS of Haensel and Pichon [39] is quite similar to
the more than two decades older BPS EOS [4]. In some pressure intervals one
notices a few percent difference between densities, resulting from the difference
in the nuclides present at the same pressures.

As soon as one leaves the region of experimentally known nuclei, the EOS
of cold catalyzed matter becomes uncertain. This uncertainty rises above the
neutron drip density, where only theoretical models can be used. The properties
of nuclei become influenced by the outside neutron gas, which contributes more
and more to the total pressure. Therefore, the problem of correct modelling of
equation of state of pure neutron gas at subnuclear densities becomes important.
The real EOS of cold catalyzed matter stems from a real nucleon Hamiltonian,
which is expected to describe nucleon interactions at ρ <∼ 2ρ0 (at higher densities,
non-nucleon degrees of freedom, such as hyperons, quarks (?), meson condensates
(?), etc., may become relevant). In practice, in order to make the solution of the
many-body problem feasible, the task was reduced to that of finding an effective
nucleon Hamiltonian, which would enable one to calculate reliably the EOS of
cold catalyzed matter for 1011 g cm−3 <∼ ρ <∼ ρ0, including therefore the crust-
liquid core transition.

Of course, for ρ <∼ 4×1011 g cm−3 one can use EOS based on experimental,
or semi-empirical nuclear masses, but it is reassuring to check that this EOS
is nicely reproduced by a “theoretical EOS”, based on an effective nucleon-
nucleon interactions FPS and SLy. As one can see in Fig.8, significant differences
between the SLy and FPS EOS are restricted to the density interval 4×1011−4×
1012 g cm−3. They result mainly from the fact that ρND(SLy) � 4×1011 g cm−3

Fig. 9. Comparison of the SLy and FPS EOS near the crust-liquid core transition.
Thick solid line: inner crust with spherical nuclei. Dashed line corresponds to “exotic
nuclear shapes”. Thin solid line: uniform npe matter.
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Table 4. Composition of the crust of an accreting neutron star. After [38]. For further
explanation see the text.

Z A Pmax ρmax nb,max µe Xn ∆ρ/ρ

(dyn cm−2) (g cm−3) (cm−3) MeV (%)
26 56 7.235 1026 1.494 109 8.994 1032 4.59 0.00 8.2
24 56 9.569 1027 1.1145 1010 6.701 1033 8.69 0.00 8.9
22 56 1.152 1029 7.848 1010 4.708 1034 16.15 0.00 9.8
20 56 4.747 1029 2.496 1011 1.494 1035 22.99 0.00 10.9
18 56 1.361 1030 6.110 1011 3.651 1035 29.89 0.00 12.1
16 52 1.980 1030 9.075 1011 5.418 1035 32.78 0.07 13.1
14 46 2.253 1030 1.131 1012 6.748 1035 33.73 0.18 14.4
12 40 2.637 1030 1.455 1012 8.682 1035 34.85 0.29 17.0
20 68 2.771 1030 1.766 1012 1.054 1036 34.98 0.39 8.3
18 62 3.216 1030 2.134 1012 1.273 1036 35.98 0.45 8.6
16 56 3.825 1030 2.634 1012 1.571 1036 37.10 0.50 9.0
14 50 4.699 1030 3.338 1012 1.990 1036 38.40 0.55 9.3
12 44 6.044 1030 4.379 1012 2.610 1036 39.92 0.61 13.8
18 66 7.233 1030 5.665 1012 3.377 1036 39.52 0.70 4.4
16 60 9.2385 1030 7.041 1012 4.196 1036 40.85 0.73 4.3
14 54 1.228 1031 8.980 1012 5.349 1036 42.37 0.76 4.0
12 48 1.602 1031 1.127 1013 6.712 1036 43.41 0.79 3.5
24 96 1.613 1031 1.137 1013 6.769 1036 43.55 0.79 1.5
22 88 1.816 1031 1.253 1013 7.464 1036 43.69 0.80 ....

(in good agreement with the “empirical EOS” of [39]), while ρND(FPS) � 6 ×
1011 g cm−3. For 4 × 1012 g cm−3 <∼ ρ <∼ 1014 g cm−3 the SLy and FPS EOS
are very similar, with the FPS EOS being a little softer at highest densities.
Detailed behavior of two EOS near crust-liquid core transition can be seen in
Fig.9. The FPS EOS is softer than the SLy one.

In the case of the SLy EOS the crust-liquid core transition takes place as
a very weak first-order phase transition, with relative density jump of the order
of a percent. Let us remind that for this model spherical nuclei persist down
to the bottom edge of the crust. As one can see in Fig.9, crust-core transition
is accompanied by a noticeable jump of the slope (stiffening) of the EOS. For
the FPS EOS, the crust-core transition takes place through a sequence of phase
transitions with changes of nuclear shapes. These phase transitions make the
crust-core transition smoother than in the SLy case, with a gradual increase of
stiffness, which nevertheless suffers a visible jump at the bottom of the bubble-
layer edge. All in all, while presence of exotic nuclear shapes is expected to
have dramatic consequences for the transport, neutrino emission, and elastic
properties of neutron star matter, their effect on the EOS is rather small.
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The SLy EOS of the crust, calculated including adjacent segments of the
liquid core and the outer crust, is shown in Fig.10. In the outer crust segment, the
SLy EOS cannot be graphically distinguished from that of Haensel and Pichon
[39], which was based on experimental nuclear masses.

8.2 Accreted crust

Equation of state of accreted crust was calculated by Haensel and Zdunik [38],
within the “single nucleus” scenario, described in preceding subsection. This EOS
is compared with SLy model of cold catalyzed matter in Fig. 11. Up to neutron
drip point, both equations of state are quite similar. This is easily understood:
for ρ < ρND we have P � Pe, which in turn depends only the ratio Z/A, quite
similar for both accreted and ground state EOS.

Significant differences appear for ρND <∼ ρ <∼ 10ρND, where EOS of ac-
creted matter is stiffer than that of cold catalyzed matter. Also, one notices
well pronounced constant-pressure density jumps in EOS of accreted matter,
which are due to discontinuous changes in nuclear composition. These density
jumps, accompanying first order phase transitions, are particularly large for
ρND <∼ ρ <∼ 10ρND, and lead to an overall softening of the EOS of accreted
crust. For ρ >∼ 1013 g cm−3 EOS for accreted crust becomes very similar to that
of cold catalyzed matter. The EOS of accreted crust is given in the density inter-
val from ∼ 108 g cm−3 to ρ � 1.5×1013 g cm−3. The lower limit corresponds to

Fig. 10. The SLy EOS. Dotted vertical lines correspond to the neutron drip and crust
bottom edge.
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the minimum density of the processed accreted matter, just below the bottom of
the helium layer (matter is there assumed to be composed of 56Fe). The choice of
the upper limit is based on two arguments. Firstly, for ρ > 1013 g cm−3 our equa-
tion of state becomes very similar that of the cold catalyzed matter. Secondly,
the validity of the Haensel and Zdunik [38] model of dense matter and, in par-
ticular, of the Mackie and Baym [56] model for nuclei, used in their calculations,
becomes questionable for the densities much higher than ∼ 1013 g cm−3.

It is therefore fortunate, that the difference between the cold catalyzed
matter and accreted crust equations of state decreases for large density and for
ρ > 1013 g cm−3 both curves are very close to each other. This is due to the fact
that for such a high density the equation of state in both cases is determined
mainly by the properties of neutron gas. In view of this, the use of the equation
of state of the catalyzed matter for the calculation of the hydrostatic equilibrium
of the high density (ρ > 1013 g cm−3) interior layer of the crust of an accreting
neutron star should give a rather good approximation, as far as the density
profile is concerned.

9 Elastic properties of neutron star crust

In contrast to the liquid core, solid crust can sustain an elastic strain. As neutron
stars are relativistic objects, a relativistic theory of elastic media in a curved
space-time should in principle be used to describe elastic effects in neutron
star structure and dynamics. Such a theory of elasticity has been developed
by Carter and Quintana [21] and applied by them to rotating neutron star mod-
els in [22],[23]. However, in view of the smallness of elastic forces compared to
those of gravity and pressure, we will restrict ourselves, for the sake of simplicity,
to the Newtonian version of the theory of elasticity [50].

The state of thermodynamic equilibrium of an element of neutron-star
crust corresponds to specific equilibrium positions of nuclei, which will be de-

Fig. 11. Comparison of the SLy EOS for cold catalyzed matter (dotted line) and the
EOS of accreted crust.
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Fig. 12. Melting temperature of neutron star crust versus density. Solid line: Melting
temperature for the ground state composition of the crust (Haensel and Pichon [39]
for the outer crust and Negele and Vautherin [62] for the inner crust). Jumps at some
densities correspond to change of the nuclide. Dash-dotted line: melting temperature of
the ground state inner crust, based on the compressible liquid drop model calculation
of Douchin and Haensel [30]; its smooth behavior results from dense matter model
nature. Dotted line corresponds to the accreted crust model of [38].

noted by r. For pure nuclear composition (one-component plasma) at T = 0
and ρ < 1014 g cm−3, r points to the lattice sites of the bcc lattice of nuclei.
(Strictly speaking, r corresponds to mean positions of nuclei, which suffer both
quantum zero-point, as well as thermal, oscillations.) Neutron star evolution
(e.g., spin-down of rotation, cooling) or some outer influence (tidal forces from a
close massive body, accretion of matter, electromagnetic strains associated with
strong internal magnetic fields) may lead to deformation of the crust. In what
follows, we will neglect the thermal contributions to thermodynamic quantities
and restrict to the T = 0 approximation.

Deformation of a crust element with respect to the ground state configura-
tion implies a displacement of nuclei into their new positions r′ = r + u, where
u = u(r) is the displacement vector. In the continuum limit, relevant for macro-
scopic phenomena, both r and u are treated as continuous fields. Non-zero u is
accompanied by the appearance of elastic strain (i.e., forces which tend to return
the matter element to the equilibrium state of minimum energy density E0), and
yields deformation energy density Edef = E(u) − E0. 5 Uniform translation, de-
scribed by an r-independent displacement field, does not contribute to Edef , and
the real (genuine) deformation is described by the (symmetric) strain tensor

uik = uki =
1
2

(
∂ui

∂xk
+
∂uk

∂xi

)
, (37)

5 In this section, by “energy” we will always mean energy of a unit volume of matter
(i.e., energy density)
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where i, j = 1, 2, 3, and x1 = x, x2 = y, x3 = z. The above form of uik is valid
when all components of u are small, and terms quadratic in the components of
u can be neglected compared to the linear ones [50].

Each deformation can be split into compression and shear components,

uik = ucomp
ik + ushearik , (38)

where
ucomp

ik =
1
3
divu δik , ushearik = uik − 1

3
divu δik . (39)

After a deformation, the volume of a matter element changes according to dV ′ =
(1 + divu)dV . Pure compression, which does not influence a shape of matter
element, is described by uik = aδik. Pure shear deformation keeps the volume of
matter element constant, so that div u = 0.

To lowest order, deformation energy is quadratic in the deformation tensor,

Edef =
1
2
λiklmuikulm , (40)

where summation is assumed over repeated indices. Since deformation energy
Edef is a scalar, λiklm are components of a rank fourth tensor. While the total
number of components λiklm is 81, general symmetry relations reduce the max-
imum number of linearly independent components (elastic moduli) to 21. The
number of independent elastic moduli decreases with increasing symmetry of
elastic medium, and becomes as small as three in the case of a bcc crystal, and
two in the case of an isotropic solid. Elastic stress tensor, σik, is derived from
from the deformation energy via σik = ∂Edef/∂uik.

9.1 From bcc lattice to isotropic solid

While microscopically the ground state of neutron star crust at ρ <∼ 1014 g cm−3

corresponds to a bcc lattice, one usually assumes that its macroscopic prop-
erties, relevant for the neutron star calculations, are those of an isotropic bcc
polycrystal. Such an assumption is made, because it seems quite probable that
neutron star crust is better approximated by a polycrystal than by a monocrys-
tal (see, however, [10]), and also for the sake of simplicity. Elastic properties
of an isotropic solid are described by two elastic moduli, and the deformation
energy can be expressed as

Edef =
1
2
K(div u)2 + µ

(
uik − 1

3
δikdiv u

)2

. (41)

Here, µ is the shear modulus and K is the compression modulus of isotropic solid.
The stress tensor is then calculated as

σik =
∂Edef
∂uik

= Kdiv u δik + 2µ
(
uik − 1

3
div u δik

)
. (42)



Neutron star crusts 167

Considering pure uniform compression one finds that

K = nb
∂P

∂nb
= γP , (43)

where γ is the adiabatic index, γ ≡ (nb/P )dP/dnb .
Detailed calculations of directionally averaged effective shear modulus of a

bcc Coulomb solid, appropriate for the polycrystalline crusts of neutron stars,
were performed by Ogata and Ichimaru [65]. These authors considered a one com-
ponent bcc Coulomb crystal, neglecting screening by the degenerate electrons as
well as the quantum zero-point motion of the ions about their equilibrium lattice
sites. The deformation energy, resulting from the application of a specific strain
uik, was evaluated directly through the Monte Carlo sampling.

In the case of an ideal bcc lattice there are only three independent elastic
moduli, denoted traditionally as c11, c12 and c44 (see, e.g., [47]). When the
crystal is deformed without changing (to lowest order in uik) the volume of
matter element, only two independent elastic moduli are relevant, because

Edef = b11(u2xx + u2yy + u2zz) + c44(u2xy + u2xz + u2yz), for divu = 0 , (44)

with b11 = 1
2 (c11 − c12). At T = 0, Ogata and Ichimaru (1990) find b11 =

0.0245nN (Ze)2/rc, c44 = 0.1827nN (Ze)2/rc. Significant difference between b11
and c44 indicates high degree of elastic anisotropy of an ideal bcc monocrystal.

While treating neutron star crust as an isotropic solid is a reasonable ap-
proximation (ideal long-range order does not exist there, and we are most prob-

Fig. 13. Effective shear modulus µ versus neutron star matter density, assuming bcc
crystal lattice. Solid line - cold catalyzed matter (Haensel and Pichon [39] model for the
outer crust, and that of Negele and Vautherin [62] for the inner crust). Dash-dotted line
- cold catalyzed matter calculated by Douchin and Haensel [30] (compressible liquid
drop model, based on SLy4 effective N-N interaction). Dotted line - accreted crust
model of Haensel and Zdunik [38].
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ably dealing with a bcc polycrystal), the choice of an “effective” shear modulus
deserves a comment. In numerous papers treating the elastic aspects of neu-
tron star dynamics, a standard choice was µ = c44 ([5],[69], [57] and references
therein). It is clear, that replacing µ by a single maximal elastic modulus of
strongly anisotropic bcc lattice is not appropriate. Correct value of µ was cal-
culated by Ogata and Ichimaru [65], who performed directional averages over
rotations of the Cartesian axes. At T = 0, they obtained (neglecting quantum
zero-point oscillations of nuclei)

µ =
1
5

(2b11 + 3c44) = 0.1194
nN (Ze)2

rc
, (45)

nearly two times smaller than µ = c44 used in ([5],[69],[57]). Dependence of
µ on temperature was studied, using the Monte Carlo sampling method, by
Strohmayer et al. [86]. These authors found that their results can be represented
via a simple analytic formula

µ(T ) =
µ(0)

1 + 1.781 (100/Γ )2
, (46)

where the ion-coupling parameter Γ = Z2e2/(rckBT ), and quantum zero-point
motion of nuclei has been neglected. Formula (46) fits their numerical results
within the estimated numerical error of the Monte Carlo scheme, and reproduces
correct T = 0 (i.e., Γ = ∞) limit. As expected, effective shear modulus decreases
with increasing temperature.

Let us discuss now qualitative properties of the isotropic neutron star crust.
One can easily show, that µ � K. This means that neutron star crust is much
more susceptible to shear than to compression; its Poisons coefficient σ � 1/2,
while its Young modulus E � 3µ (for definitions, see [50]).

Strictly speaking, the formulae given in the present subsection hold for the
outer crust, where rN � rc. They neglect also the effect of the quantum zero-
point vibrations of nuclei around their lattice sites. Therefore, in the case of the
inner crust these formulae give only an approximation of the actual values of µ.

9.2 Exotic nuclei

Some models of neutron-star matter predict existence of unusual nuclei (rods,
plates, tubes, bubbles) in the bottom layer of the crust with ρ >∼ 1014 g cm−3.
Possible structure of this bottom layer was discussed in Sect. 5. In what follows
we will concentrate on two specific unusual shapes, namely rods and plates, which
are expected to fill most of the bottom crust layer. The properties of matter
containing rods and plates are intermediate between those of solids and liquids.
For example, displacement of an element of plate matter parallel to the plate
plane or rod matter in the direction of rods, is not opposed by restoring forces:
this is typical property of a liquid. However, elastic strain opposes any bending
of planes or rods, a property specific of a solid. Being intermediate between solids
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and liquids, these kinds of matter are usually referred to as mesomorphic phases,
or liquid crystals (see, e.g., [50],[35]). Elastic properties of rod and plate phases
of neutron star matter were studied by Pethick and Potekhin [73] (see also [72]).

10 Deviations from idealized models

The ground state crust and accreted crust, described in preceding sections of
the present review correspond to idealized perfect one-component plasmas. The
real neutron-star crust may be expected to deviate from these idealized mod-
els. The practical question to be a asked (and to be answered) is: how much
the matter of a real neutron-star crust deviates from a one-component plasma?
The knowledge of “imperfections” of the crust is particularly important for its
transport properties. The motion of electrons in a significantly disordered ion
lattice is qualitatively different from that in a perfect crystal. In the case of a
perfect crystal, electrons move in a strictly periodic field, and scatter only on
the elementary excitations of the ion lattice - phonons. Disordered ions act as
individual scattering centers, strongly limiting electron transport of heat and
charge.

10.1 Impurities in a crust of a newly-born neutron star

Initial temperature of the outer layers of a newly born neutron star exceeds
1010 K. Under such conditions, nuclear composition of the matter is character-
ized by some statistical distribution of (A,Z) nuclei in a hot plasma. Initially,
the spread in (A,Z) is rather wide [20]. After solidification of the crust its com-
position is practically frozen, so that it may be expected to reflect the situa-
tion at crystallization point rather than in the ground state. In contrast to the
ground state composition of the outer crust, at T � Tm transitions between
shells (A1, Z1) and (A2, Z2) will be continuous, via a transition layer consist-
ing of a mixture of both nuclides. Only sufficiently far from the transition layer
one is dealing with a one-component plasma. Two-component transition layers
were studied by De Blasio [11],[12]. The radial width of the transition layers in
the outer crust, calculated in [12] for the density range 109 − 1011 g cm−3, was
4 − 12 m.

10.2 Non-equilibrium neutrons

Higher temperatures are characterized by larger fraction of evaporated nucleons.
The most sensitive region is that around the neutron drip point in cold catalyzed
matter, ρND � 4 × 1011 g cm−3. At T � 5 × 109 K, there is a non-negligible
fraction of free neutrons for 1011 g cm−3 <∼ ρ <∼ ρND (see lower panel of Fig.1).
In general, one notices a significant excess of free neutrons for the densities
1011 g cm−3 <∼ ρ <∼ 1012 g cm−3 as compared to the ground-state composition
of the crust. With further cooling, there will be a tendency to absorb these excess
neutrons by nuclei, which in turn will increase their A, and modify their Z due
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to weak-interaction processes. However, the temperature may be expected to
be too low to reach full nuclear equilibrium, mainly because of high Coulomb
barriers, and the lack of free protons and α-particles. Therefore, one may expect
deviations from the ground-state composition (excess of dripped neutrons) in
the cooled crust at 1011 g cm−3 <∼ ρ <∼ 1012 g cm−3 [8].

10.3 Thermal fluctuations and impurities in the inner crust

General problem of thermal fluctuations of the values of Z and Ncell in the in-
ner crust, at T � Tm >∼ 109 K, was studied by Jones [46]. Detailed calculations
[46], performed within the Compressible Liquid Drop Model, and combined with
consideration of the shell and pairing effects, suggest a high degree of hetero-
geneity in Z to be frozen as the temperature falls below Tm, with substantial
population of two closed Z-shells (Z = 40 and Z = 50). It should be mentioned
that high value of Tm (large thermal energies) and large fraction of neutrons
(with large fraction of them unbound) in the inner crust are both favorable for
impurity fractions higher than those in the outer crust. One has to keep in mind,
however, that the kinetics of phase transitions is notoriously difficult for theoret-
ical modelling, especially if approximations used cannot be tested in laboratory.
Fortunately, while the “purity” of the crust is of crucial importance for its trans-
port properties, the equation of state is not very sensitive to deviations from the
one-nucleus model.

10.4 Impurities in accreted crust

If the ashes of this explosive burning are well approximated by pure 56Fe,
then “single-nucleus scenario” described in Sect. 6 may be a valid descrip-
tion. Actually, this is only an approximation; the problem of the detailed out-
come of the time-dependent nucleosynthesis during X-ray bursts is very compli-
cated and should be considered as not completely resolved (see, e.g. [78],[84])
The nature of the unstable thermonuclear burning at higher accretion rates
10−8 M�/y <∼ Ṁ <∼ 10−9 M�/y is not well understood. The ashes from such
a burning might contain some admixture of nuclei beyond the iron group, with
A � 60 − 100 [84]. Of course, even replacing pure 56Fe by a mix of the iron
group elements would substantially complicate the description of the evolution,
and would lead to deviation of resulting accreted crust from an idealized model
of Sects. 6, 7.

If the starting composition is a mix with significant fractions of different
nuclides, one may expect that further evolution will keep heterogeneity of the
matter. The thermal and electrical conductivity of such a heterogeneous accreted
crust would therefore be drastically lower than that of a perfect crystal. The
equation of state would be rather smooth, in contrast to the extreme case of a
one-nucleus model with significant density jumps. The values of average Z and
A will still be much lower than those characteristic of the ground state of the
crust. The number of shells of nonequilibrium processes triggered by electron
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captures will be much larger, but the total heat release may be expected to be
similar to that estimated in Sect. 6.

10.5 Other scenarios for accreted crust

Up to now, it has been assumed that neutron star accreted baryon mass Mb,acc
larger than that of initial “primordial crust” composed of catalyzed matter,
M0

b,crust. In view of the fact that M0
b,crust ∼ 0.01 M�, to reach such a situation

at constant accretion rate takes 108 years at Ṁ = 10−10 M�/y, with required
accretion time ∝ (Ṁ)−1. At earlier times, the crust is composed of an outer layer
of accreted and processed matter, of baryon mass Mb,acc, and an inner layer of
baryon mass Mb,old � M0

b,crust − Mb,acc, composed of compressed, processed
primordial matter. Evolution of primordial crust under compression due to the
weight of accreted layer can be followed shell by shell, with initial ground state
composition of the shell. Such a study for a set of several shells with initial
density ranging from 108.9 g cm−3 to 1013.6 g cm−3 was performed by Sato [83].

10.6 Density inversions in accreted crust

They might appear during the evolution of the composition of a “primordial
crust” under the weight of accreted layer of matter. In particular, let us focus
our attention on the case of the interface between the 56Fe and 62Ni layers. Let us
denote the ratio of the density of the upper layer to that of the lower one (at the
interface) by ru/l. This ratio is initially ru/l = 0.97 (see Sect. 3). With increasing
pressure, first electron capture take place on 56Fe, 56Fe + e− −→56 Mn + νe,
followed by 56Mn+e− −→56 Cr+νe. The interface 56Cr/62Ni is now characterized
by the density inversion with ru/l = 1.05 [9]. In general, density inversions are
expected to appear and disappear at various interfaces during compression of
primordial crust (Zdunik 2000, unpublished).

Even more significant density inversions may be expected in the case when
accretion is very slow, 10−16 M�/y <∼ Ṁ <∼ 10−12 M�/y (e.g., accretion of
interstellar medium). Under such conditions, temperature within the accreted
envelope is so low that helium burning takes place in pycnonuclear regime. It
starts with 3α fusion and typically terminates with 12C(α, γ)16O reaction [92].
Further compression of the 16O/56Fe interface, accompanied by electron cap-
tures, leads to significant density inversions at the evolving interface. However,
the timescales needed to reach such situations might exceed 1010 yr [9].

If both layers with ru/l > 1 were fluid, the interface would be unstable
with respect to the Rayleigh-Taylor overturn. However, under typical conditions
prevailing at moderate and low accretion rates, T < Tm and both layers are
solid. In view of this, when analyzing the stability of the interface with respect
to perturbations of its shape, one has to include, an addition to pressure and
gravity forces, also elastic forces which are opposing the deformation, and might
stabilize the interface [9].
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