
JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES
Vol. 3, No. 2, 2008

ELASTIC CONSTANTS AND THERMAL EXPANSION AVERAGES OF A
NONTEXTURED POLYCRYSTAL

ROLAND DEWIT

This paper gives expressions for the overall average elastic constants and thermal expansion coefficients

of a polycrystal in terms of its single crystal components. The polycrystal is assumed to be statistically

homogeneous, isotropic, and perfectly disordered. Upper and lower bounds for the averages are easily

found by assuming a uniform strain or stress. The upper bound follows from Voigt’s assumption that

the total strain is uniform within the polycrystal while the lower bound follows from Reuss’ original

assumption that the stress is uniform. A self-consistent estimate for the averages can be found if it is

assumed that the overall response of the polycrystal is the same as the average response of each crystallite.

The derivation method is based on Eshelby’s theory of inclusions and inhomogeneities. We define an

equivalent inclusion, which gives an expression for the strain disturbance of the inhomogeneity when

external fields are applied. The equivalent inclusion is then used to represent the crystallites. For the

self-consistent model the average response of the grains has to be the same as the overall response of the

material, or the average strain disturbance must vanish. The result is an implicit equation for the average

polycrystal elastic constants and an explicit equation for the average thermal expansion coefficients.

For the particular case of cubic symmetry the results can be reduced to a cubic equation for the self-

consistent shear modulus. For lower symmetry crystals it is best to calculate the self-consistent bulk and

shear modulus numerically.

Introduction

A polycrystal, whose properties vary in a complicated fashion from point to point over a small micro-

scopic length scale, may appear on average to be uniform or perhaps, more generally, its properties appear

to vary smoothly. The determination of such overall properties from the properties and geometrical

arrangement of the constituent monocrystal grains is our aim. In the simplest case the polycrystal is

assumed to be statistically homogeneous, isotropic, and perfectly disordered. General expressions for

averages can then be derived. Many different properties can be averaged, such as dielectric constants, dif-

fusivity, elastic constants, electrical conductivity, magnetic permeability, magnetostriction, piezoelectric

constants, thermal conductivity, or thermal expansion. In this paper we treat the elastic constants, which

have already received more attention than most other physical properties, and the thermal expansion.
Elastic constants are fundamental physical data needed for the characterization of materials. In ad-

dition to their fundamental importance, elastic constants and properties derived from them are used as

the starting point for the mechanical design of almost all products. Theoretical averaging methods for

the calculation of the isotropic elastic constants of a polycrystal from the single crystal constants of

Keywords: bulk modulus, compliance, cubic, disordered, effective medium, elastic constants, homogeneous, inclusion,
inhomogeneity, isotropic, polycrystal, self-consistent, shear modulus, stiffness, thermal expansion.

195



196 ROLAND DEWIT

its grains go back more than 100 years. Voigt [1887] assumed that the strain is constant throughout

the polycrystal and he obtained a simple approximate solution. Many years later Reuss [1929] found a

solution by assuming that the stress is constant. Hill [1952] showed that these two solutions provided

upper and lower bounds of the possible average constants. In 1958 Kröner proposed a self-consistent

theory and derived the self-consistent shear modulus of a cubic polycrystal, and Tomé [1998] showed

how to incorporate the effect of thermal expansion into these models.
In this paper we develop a consistent intuitive notation to describe the concepts that have arisen in the

field. The above developments are reviewed in this framework and additional results are presented. We

try to keep the notation as clear as possible in the sometimes detailed calculations. Our major aim is to

show how the relevant equations can be used to calculate explicit results; we give only selected results

and refer to the literature for exhaustive listings. In this sense our paper has the character of a primer.
Relations for material properties are frequently expressed in terms of tensor equations, because tensors

have clear rules for coordinate transformations and rotations. However, the relations are also frequently
expressed in terms of matrices, because matrices allow straightforward mathematical calculations. The

two methods can be used in parallel and are related to each other. We use both in this paper and represent

them in symbolic form.
The analysis starts by defining the concept of an effective medium, which is a model that approximates

the average state of the polycrystal and describes its average properties. In terms of this effective medium

we can define effective elastic constants, which relate the average stress to the average strain in the

effective medium. We can also define an effective thermal expansion coefficient. Various theories then

derive effective properties as averages over crystallographic properties. The Voigt and Reuss models

provide special cases of such an effective medium and the resulting effective properties give upper and

lower bounds.
To get explicit scalar expressions for the effective properties from the symbolic equations we use

the linear tensor invariants. The fundamental property of a tensor invariant is that it is independent of

rotation in space and therefore isotropic. Hence the invariant is equal to its average. This method is used

to derive explicit expressions for the effective elastic constants and thermal expansion coefficient in the

simple theories.
Eshelby’s theory of elastic inclusions and inhomogeneities is used to derive a self-consistent model.

This is the method that was first used by Kröner [1958] to solve for the cubic polycrystal. There is,

however, a more powerful and fundamental method to derive self-consistent estimates called statistical

continuum mechanics, which we do not use in this paper. In an applied stress field, the inhomogeneity

looks like an inclusion. We introduce the equivalent inclusion to determine the stress disturbance of the
homogeneity by using the result of the inclusion. This allows us to solve for the strain disturbance of the

inhomogeneity in an applied field.
The self-consistent model lets the equivalent inclusion represent a grain of the polycrystal. The strain

disturbance then occurs because the local elastic and thermal properties of the grain differ from the

average values for the polycrystal. The condition for self-consistency is that the average grain response

is the same as the overall average of the polycrystal, or that the average disturbance vanishes. This leads

to an implicit equation for the self-consistent effective elastic constants and an explicit equation for the

self-consistent effective thermal expansion coefficient.
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We next apply the results to crystals with cubic symmetry. For this case there are only three indepen-

dent components of the single crystal elastic constants. The analysis can then be simplified considerably

by using Walpole’s notation for the decomposition of unity. This approach leads to the logical choice of

the bulk modulus and shear modulus as the basic elastic constants to use in explicit calculations. When

written out explicitly the equation for the self-consistent elastic constants is complicated but straightfor-
ward. The bulk modulus is isotropic. The equation for the self-consistent effective shear modulus can

be reduced to a cubic equation, which was first obtained by Kröner [1958]. Finally, this equation can be

solved explicitly in closed form. It is easy to calculate average numerical results for cubic crystals.
For lower crystal symmetries the solution of the implicit equation leads to high-order equations for

the effective bulk and shear modulus. It is then best to continue the solution numerically. We present

some results of these calculations.

Hooke’s law

We start with a description of the elastic constants. For a single crystal, Hooke’s law can be written as

follows
σi j = ci jklekl, (i, j, k, l = 1, 2, 3), (1)

where repeated indices are summed, σ and e are the stress and strain, both second rank tensors, and c is

the elastic stiffness, a fourth rank tensor. Hooke’s law can also be written in matrix form as

σi = ci j e j , (i, j = 1, . . . , 6), (2)

where σ and e are the (6 × 1) stress and strain vectors and c is the (6 × 6) stiffness matrix. The two

notations, tensors and matrices, are completely equivalent. The relation between them has been discussed

in detail in [Nye 1960] and [Hearmon 1961]. The matrix form of the elastic stiffness or elastic moduli

was introduced by Voigt [1887] and is frequently referred to as the Voigt notation or reduced notation.

As in matrix theory, it is convenient to use the symbolic notation,

σ = ce, (3)

to represent either of the foregoing equations. Equation (3) can be solved for the strain in terms of the

stress:
e = σ

c
= sσ,

where s, the elastic compliance, is the inverse of the stiffness c. We shall frequently use this divide

notation, 1/c, instead of the more common inverse notation, c−1. The elastic properties of stiffness and

compliance are usually referred to as the elastic constants of a material.

The effective medium

On a macroscopic scale a polycrystal may appear homogeneous or uniform, or perhaps, more generally,

its properties appear to vary smoothly. Therefore we shall represent it by an effective medium, which

is a model that approximately describes the overall average properties of the medium to some desired

degree of accuracy. This then represents a gross description of the polycrystal. We also assume that in
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the effective medium the average stress �σ � and average strain �e� are related by the same simple form

as Hooke’s law for the single crystal
�σ � = C�e�, (4)

where C is the effective stiffness. So the effective medium is homogeneous. We also assume that it

is isotropic and perfectly disordered. The latter means that there is no texture, no characteristic grain

shapes, no characteristic grain boundary geometry, no correlations between regions of the medium, such

as periodicity. The effective stiffness thus represents the average stiffness of the polycrystal. The bracket

notation stands for volume averages,

�σ � = 1
V

�

V

σ dV , �e� = 1
V

�

V

e dV ,

and so the average stress or strain can almost be regarded as applied fields or boundary conditions.

Equation (4) can now be solved for the average strain

�e� = �σ �
C

= S�σ �, (5)

where S is the effective compliance. We have used the convention, suggested by Kröner [1958], that upper

case letters are used for isotropic tensors or matrices that are material properties of the homogeneous

effective medium. So upper case letters will represent the average properties of the polycrystal. Lower

case letters are used for tensors or matrices that vary locally through the heterogeneous medium or the

grains of the polycrystal and thus represent properties of the single crystal.
For an isotropic material there are only two independent elastic constants. Since the effective stiffness

is isotropic, its tensor components can be expressed in terms of the two elastic constants as follows

Ci jkl = K δi jδkl + G
�
δikδ jl + δilδ jk − 2

3 δi jδkl

�
, (6)

where K is the effective bulk modulus, G the effective shear modulus, and δ the Kronecker delta defined

as follows

δi j ≡
�

1 if i = j

0 if i �= j
,

δkk ≡ 3.

We can solve Equation (6) for K and G. If we calculate the two linear invariants of C we get

�
Cii j j = 9K

Ci ji j = 3K + 10G
or





K = 1
9 Cii j j

G = 1
10

�
Ci ji j − 1

3 Cii j j

�
.

(7)

Thus we have expressed the two scalar elastic constants K and G in terms of the two linear invariants of

the stiffness tensor C . We can do the same manipulations with the effective compliance tensor

Si jkl = 1
9K

δi j δkl + 1
4G

�
δikδ jl + δilδ jk − 2

3 δi jδkl

�
.
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The linear invariants of S are




Sii j j = 1
K

Si ji j = 1
3K

+ 5
2G

or





1
K

= Sii j j

1
G

= 2
5

�
Si ji j − 1

3
Sii j j

�
.

(8)

So now we have expressed the two elastic constants also in terms of the two linear invariants of the

compliance tensor S.

The Voigt and Reuss models

To get actual expressions for the average elastic constants of a polycrystal in terms of the single crys-

tal elastic constants, the [Voigt 1887] and [Reuss 1929] models are frequently invoked, because they

provide an easy way to derive effective elastic constants. Furthermore, Hill [1952] showed that they

provide bounds on those constants. Voigt assumed that there is a homogeneous or constant strain in the
polycrystal, thus fulfilling compatibility, but not necessarily equilibrium. Reuss assumed a homogeneous

or constant stress, thus fulfilling equilibrium, but not necessarily compatibility. For the Voigt model the

actual strain is then equal to the average strain,

e = �e� = constant, (9)

and therefore we can decompose the average of the product of the stiffness and the strain into the product

of the average stiffness and the average strain �σ � = �ce� = �c��e�. Comparing with Equation (4) we find

that for the Voigt model the effective stiffness is the average crystal stiffness,

CV = �c�, (10)

which provides an upper bound on C . In the Reuss model we have

σ = �σ � = constant, (11)

and so �e� = �sσ � = �s��σ �. Comparing with Equation (5) we find that for the Reuss model the effective

compliance is the average crystal compliance,

SR = �s� or CR = �c−1�−1, (12)

which provides an upper bound on S and a lower bound on C . To proceed further and get more explicit
expressions for Equation (10) and Equation (12), we recall that fourth rank tensors have two linear

invariants, and the fundamental property of invariants is that they are scalars and therefore do not depend

on orientation in space. Therefore, each invariant is equal to its volume average. So we have

cii j j = �cii j j � and ci ji j = �ci ji j �. (13)

Combining Equation (7), (10), and (13) we get for the Voigt model the result

KV = 1
9 cii j j ,

GV = 1
10

�
ci ji j − 1

3 cii j j

�
.

(14)
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In detail, we have both in tensor and matrix notation

9KV = (c1111 + c2222 + c3333) + 2(c1122 + c1133 + c2233) = (c11 + c22 + c33) + 2(c12 + c13 + c23),

15GV = (c1111 + c2222 + c3333) − (c1122 + c1133 + c2233) + 3(c1212 + c1313 + c2323)

= (c11 + c22 + c33) − (c12 + c13 + c23) + 3(c44 + c55 + c66).

(15)
We also have for the compliance

sii j j = �sii j j � and si ji j = �si ji j �. (16)

Combining Equation (8), (12), and (16) we get for the Reuss model the result

1
K R

= sii j j ,
1

G R
= 2

5

�
si ji j − 1

3
sii j j

�
. (17)

In detail, we have

1
K R

= (s1111 + s2222 + s3333) + 2(s1122 + s1133 + s2233) = (s11 + s22 + s33) + 2(s12 + s13 + s23),

15
G R

= 4(s1111 + s2222 + s3333) − 4(s1122 + s1133 + s2233) + 3(s1212 + s1313 + s2323)

= 4(s11 + s22 + s33) − 4(s12 + s13 + s23) + 3(s44 + s55 + s66).

(18)

Hearmon [1961] has also derived these explicit equations, but by a different method. Hill [1952] showed

that the Voigt and Reuss averages formed the least upper bound and the greatest lower bound, respectively,

for the aggregate polycrystal.

Cubic polycrystal. For the special case of a cubic polycrystal, the Voigt relations (15) reduce to

3KV = c11 + 2c12, 5GV = c11 − c12 + 3c44. (19)

and the Reuss relations, Equation (18), become

1
3K R

= s11 + 2s12,
5

G R
= 4(s11 − s12) + 3s44. (20)

The Voigt and Reuss bulk moduli are identical in this case, KV = K R , and also equal to the single

crystal and effective polycrystal bulk modulus. This is only true for cubic symmetry; for other crystal

symmetries, the various estimates of the effective bulk modulus differ from each other.

Thermal expansion

Tomé [1998] showed how thermal expansion can be incorporated into the elastic equations. The stress in

Hooke’s law is related to the elastic strain, so in this case the total strain must be adjusted for the effects

of the thermal expansion in order to get the elastic strain. Equation (3) for the single crystal is therefore

modified to
σ = c(e − αδT ), (21)
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where α is the single crystal thermal expansion coefficient, a second rank tensor or a (6 × 1) vector, and

δT is a small temperature change that takes place uniformly throughout material. Equation (4) for the

effective medium is modified to
�σ � = C(�e� − AδT ), (22)

where A is the average thermal expansion coefficient of the effective medium. We emphasize the fact

that α and A are tensors or (6× 1) vectors by writing them boldface to distinguish them from the scalars

below. Equation (21) can be solved for the local strain in the single crystal,

e = sσ + αδT, (23)

and Equation (22) for the average strain in the effective medium,

�e� = S�σ � + AδT . (24)

The stress or strain and the temperature change in these equations can be applied arbitrarily and therefore

these quantities will be treated as independent variables.

The Voigt model. With Voigt’s assumption of constant strain, Equation (9), Equations (21) and (22) lead

to CV �e� − CV AV δT = �c��e� − �cα�δT . Since this equation holds for an arbitrary average strain �e�
and an arbitrary temperature change δT , we can equate their coefficients. The first equality gives the

relation Equation (10), which we already found without taking the influence of a temperature change

into account. The second equality is

CV AV = �cα� or AV = �cα�
CV

= SV �cα�. (25)

Tomé [1998] also found this result. Since the effective thermal expansion coefficient is isotropic, it can

be expressed as Ai j = Aδi j , where A is the scalar effective thermal expansion coefficient. With the help

of Equation (6), we can derive the relation

A = 1
9K

Ciikl Akl . (26)

We now take the linear invariant of Equation (25) and substitute it into Equation (26), remembering that

the invariant is equal to its average, to get the effective thermal expansion coefficient for the Voigt model

AV = 1
9KV

ciiklαkl . (27)

In detail we have in both tensor and matrix notation

9KV AV = (c1111 + c1122 + c1133)α11 + (c1122 + c2222 + c2233)α22

+(c1133 + c2233 + c3333)α33 + 2(c1112 + c1222 + c1233)α12

+2(c1113 + c1333 + c2213)α13 + 2(c1123 + c2223 + c2333)α23,

= (c11 + c12 + c13)α1 + (c12 + c22 + c23)α2 + (c13 + c23 + c33)α3

+2(c14 + c24 + c34)α4 + 2(c15 + c25 + c35)α5 + 2(c16 + c26 + c36)α6. (28)
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Note that the effective thermal expansion coefficient of a polycrystal is coupled to the elastic constants in

the Voigt model. For crystal structures where the off-diagonal terms of the elastic constant matrix vanish,

such as cubic, hexagonal, tetragonal, and orthorhombic, the second line of Equation (28) vanishes and

the equation simplifies considerably.

The Reuss model. With Reuss’ assumption of constant stress, Equation (11), Equations (23) and (24)

lead to SR�σ � + ARδT = �s��σ � + �α�δT . Since this equation holds for arbitrary average stress �σ � and

arbitrary temperature change δT , we can equate their coefficients. The first equality gives the relation

Equation (12), which we already found without the influence of temperature. The second equality is

AR = �α�. (29)

Tomé [1998] also found this result. The linear invariant of this equation is

AR = 1
3 αi i . (30)

In detail, we have the simple result

AR = 1
3 (α11 + α22 + α33) = 1

3(α1 + α2 + α3). (31)

So in the Reuss model the overall thermal properties are independent of the elastic properties.

Eshelby’s theory

To obtain a self-consistent estimate of the effective properties we use Eshelby’s theory of elastic inclu-

sions and inhomogeneities [Eshelby 1961]. That is the method Kröner [1958] first used to get a solution

for the cubic polycrystal. Kröner [1972] later used statistical continuum mechanics to derive the same as

well as additional results. The subject of inclusions, inhomogeneities, and the equivalent inclusion has

been treated in detail by Mura [1982]. In the present treatment we also include Tomé’s contribution for

thermal expansion [Tomé 1998].

The inclusion. Consider an infinitely extended homogeneous material in domain D with elastic con-

stants C everywhere, containing a domain � with a stress-free strain eP , which is called the transformed

inclusion. This inclusion causes a local stress σ � and strain e�, which are related by Hooke’s law

σ � = C(e� − eP), in �,

σ � = Ce�, in D − �.

If eP is uniform and � is an ellipsoid, then the stress σ � and strain e� are also uniform in � and related

to eP by
e� = EeP , in �, (32)

where E is the Eshelby tensor, which is a constant. Let us apply a stress σ̄ at infinity with a corresponding

strain ē, and a temperature change δT . The bar is used to denote that these quantities will be overall

average values. They are related by Hooke’s law σ̄ = C(ē − AδT ). The resulting total stress σ is then

given by
σ = σ̄ + σ � = C(ē + e� − eP − AδT ), in �,

σ = σ̄ + σ � = C(ē + e� − AδT ), in D − �.
(33)
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The prime represents deviations from the average value.

The inhomogeneity. Consider an infinitely extended material in domain D with the elastic constants C
and thermal expansion A containing a domain � with the elastic constants c and thermal expansion α,

which is called an inhomogeneity. We investigate the disturbance in an applied stress and temperature

increment caused by the presence of this inhomogeneity. Let us again denote the applied stress at infinity

by σ̄ and the corresponding strain by ē, and the temperature increment by δT , while the stress disturbance

and the strain disturbance are denoted by σ � and e�, respectively. The total stress (actual stress) is σ , and

the total strain is e. Hooke’s law is written as

σ = σ̄ + σ � = c(e − αδT ) = c(ē + e� − αδT ), in �,

σ = σ̄ + σ � = C(e − AδT ) = C(ē + e� − AδT ), in D − �.
(34)

The equivalent inclusion. The equivalent inclusion is a method to determine the stress disturbance of

the inhomogeneity using the result of the inclusion. So the inclusion has been introduced arbitrarily in

order to simulate the inhomogeneity problem. In an applied stress or strain field, the inhomogeneity

looks like an inclusion. The necessary and sufficient condition for the equivalency of the stresses and

strains in the above two problems of inhomogeneity and inclusion is

c(ē + e� − αδT ) = C(ē + e� − eP − AδT ), in �. (35)

This equation can solved for e� when the transformed inclusion problem, Equation (32), in the homo-

geneous material is solved for E . After obtaining e�, the stress σ can be found from Equation (34) or

Equation (33). If σ̄ is a uniform stress and δT a uniform temperature change, eP is also uniform in �

and Eshelby’s Equation (32) can be used. Substitution of Equation (32) into Equation (35) gives

c(ē + e� − αδT ) = C
�

ē + e� − e�

E
− AδT

�
, in �.

The solution of this equation for the strain disturbance is

e� = E
−δcē + (cα − C A)δT

δcE + C
, (36)

where we have defined δc ≡ c − C . So Equation (36) represents the local strain disturbance at the

inhomogeneity when a uniform strain ē and temperature change δT is applied to the domain.

The self-consistent model

We now take the equivalent inclusion to represent a grain in the polycrystal. The interpretation of Equa-
tion (36) is then as follows. The applied strain ē and temperature change δT cause a strain disturbance

e� in the grain because the local elastic and thermal properties of the grain differ from the average elastic

and thermal properties of the polycrystal. The condition for self-consistency is that the average grain

response is the same as the overall average for the polycrystal, or that the average disturbance vanishes:
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�e�� = 0. Since ē and δT are independent and E is constant, we then get from Equation (36)
� δc
δcE + C

�
= 0, (37)

�
cα − C A
δcE + C

�
= 0. (38)

These equations are consistent with those of Tomé [1998]. Equation (37) is an implicit equation for

the self-consistent effective elastic stiffness C . For cubic crystal symmetry it leads to a cubic equation

for the self-consistent effective shear modulus, discussed below. It can also be solved for lower crystal

symmetries, but then leads to a pair of high-order coupled equations for the effective bulk and shear

modulus. For example, for hexagonal symmetry it leads to one equation that is quadratic in both K and

G, and another equation that is quadratic in K and sixth order in G. In general, the simpler equation can

be solved for K in terms of G and the result substituted into the other equation. It is then best to solve

this latter equation numerically rather than symbolically. There are many solutions, but usually there is

only one real positive one. The expression Equation (38) can be solved as

A =
� cα
δcE+C

�
� C
δcE+C

� , (39)

once the stiffness C has been obtained. For numerical purposes, this equation is rather tedious and

lengthy. The calculation can be simplified as follows. If we define the (6 × 1) vector

v = cα
δcE + C

,

and the (6 × 6) matrix

M =
� C
δcE + C

�
,

then the scalar effective thermal expansion coefficient is given by

A = v1 + v2 + v3

3(M11 + 2M12)
. (40)

Upper limit. If we assume that the inhomogeneity is very soft, that is, E = 0, then Equations (37) and

(39) reduce to
�c − C� = 0, and A =

�cα
C

�
,

which reduce to the Voigt solutions, Equation (10) and Equation (25).

Lower limit. If we assume the inhomogeneity is very hard, E = I , then Equation (37) and Equation (39)

reduce to �c − C
c

�
= 0, A =

�C
c

�−1�α�, (41)

which reduce to the Reuss solutions, Equation (12) and Equation (29), when we note that from Equation

(41) we have �C
c

�−1 = I . (42)
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The Walpole notation

Walpole [1981] introduced a notation that greatly simplifies symbolic manipulations for isotropic and

cubic materials. A fourth-order tensor will generally have a structure that reflects some underlying

geometric symmetry, like that of a crystal. An appropriate decomposition of the structure of a tensor can

reflect valuable physical insight while offering to simplify greatly the calculation of various inverses and

inner products. Isotropic tensors are the principal ones to be prepared for in detailed calculations and

there is a smaller role for anisotropic tensors that reflect the symmetry of cubic crystals.

Isotropic case. Walpole decomposed unity as I = J + K . In terms of fourth rank tensors these symbols

are defined as

Ii jkl ≡ 1
2(δikδ jl + δilδ jk), Ji jkl ≡ 1

3 δi jδkl,

Ki jkl ≡ 1
2

�
δikδ jl + δilδ jk − 2

3 δi jδkl

�
.

In terms of (6 × 6) matrices we have the definitions

I ≡




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




, J ≡




1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

1
3

1
3

1
3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, K ≡




2
3 −1

3 − 1
3 0 0 0

− 1
3

2
3 − 1

3 0 0 0

− 1
3 −1

3
2
3 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

The decomposition is idempotent and orthogonal:

J J = J, K K = K , J K = K J = 0.

The linear invariants are

Iii j j = 3, Jii j j= 3, Kii j j = 0,

Ii j i j = 6, Ji ji j= 1, Ki ji j = 5. (43)

In the matrix notation the first invariant is the sum of all elements in the upper left quadrant, and the second

invariant is the sum of all the diagonal elements. With this notation the effective stiffness, Equation (6),
can now be written in symbolic notation

C = 3K J + 2G K . (44)

We see that decomposition reflects a split into an isotropic or dilatational part and a deviatoric or shear

part. The Eshelby tensor for a spherical inclusion can be found in many texts [Kröner 1958; Eshelby

1961; Kröner 1972; Walpole 1981; Mura 1982; Tomé 1998] and in this notation it can be written

E = 3K
4G + 3K

J + 6
5

2G + K
4G + 3K

K .
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Cubic symmetry. For a cubic crystal, Walpole further decomposed K as K = K � + K ��. For the tensor

definitions of these symbols see Walpole. In terms of (6 × 6) matrices,

K � ≡




2
3 − 1

3 − 1
3 0 0 0

−1
3

2
3 − 1

3 0 0 0

−1
3 − 1

3
2
3 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, K �� ≡




0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1




.

This decomposition is also idempotent and orthogonal:

K � K � = K �,

K �� K �� = K ��,

K � K �� = K �� K � = 0,

J K � = K � J = 0,

J K �� = K �� J = 0.

(45)

The linear invariants are

K �
i i j j = 0, K ��

i i j j = 0,

K �
i j i j = 2, K ��

i j i j = 3. (46)

With this notation the cubic crystal elastic stiffness can be written in a form that resembles the isotropic

case
c = 3κ J + 2µ� K � + 2µ�� K ��, (47)

where κ is the bulk modulus. Here µ� and µ�� are the {001}�110� and {001}�100� shear resistance of

the crystal, respectively. For cubic crystals these moduli can be regarded as more fundamental elastic

constants than the stiffness and compliance. They are related as follows

κ = 1
3

(c11 + 2c12) = 1
3(s11 + 2s12)

,

µ� = 1
2

(c11 − c12) = 1
2(s11 − s12)

,

µ�� = c44 = 1
s44

.

(48)

The relations Equation (45) make it simple to calculate inverses, such as the elastic compliance

s = 1
c

= J
3κ

+ K �

2µ� + K ��

2µ�� . (49)

To prove this relation, take the matrix product of Equations (47) and (49) and show that it is unity.
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Cubic crystal symmetry

We next apply some of the foregoing equations to the special case of cubic symmetry. For cubic symmetry,

the results are much simpler than for all the lower crystal structures.

Voigt model. We illustrate the application of the concepts first to the Voigt model. From Equations (14),

(47), (43), and (46) we have KV = κ , and

GV = 2
5

µ� + 3
5

µ��. (50)

These results are the same as Equation (19). Furthermore, Equation (50) illustrates a general rule for

averaging the cubic shear components, that is, take two fifths the coefficient of K � plus three fifths the

coefficient of K ��.

Reuss model. For the Reuss model, we have from Equations (49), (43), and (46) K R = κ and

5
G R

= 2
µ� + 3

µ�� . (51)

These results are the same as Equation (20). Equation (51) illustrates the general rule mentioned above.

Self-consistent model. In terms of the Walpole notation we have from Equation (44) and Equation (47)

δc ≡ c − C = 3(κ − K )J + 2(µ� − G)K � + 2(µ�� − G)K ��.

Using this we can also write

C
δc

= K
κ − K

J + G
µ� − G

K � + G
µ�� − G

K ��.

Therefore

δc
δcE + C

= I
E + C

δc

= J
3K

4G+3K + K
κ−K

+ K �
6
5

2G+K
4G+3K + G

µ�−G

+ K ��
6
5

2G+K
4G+3K + G

µ��−G

. (52)

Setting the average equal to zero, Equation (37), we have

J
3K

4G+3K + K
κ−K

+ 2
5

K
6
5

2G+K
4G+3K + G

µ�−G

+ 3
5

K
6
5

2G+K
4G+3K + G

µ��−G

= 0.

Since J and K are independent, their coefficients must vanish separately

1
3K

4G+3K + K
κ−K

= 0,
2

6
5

2G+K
4G+3K + G

µ�−G

+ 3
6
5

2G+K
4G+3K + G

µ��−G

= 0.

The first equation can also be obtained by setting the first invariant of Equation (52) equal to zero, and

has the solution

K = κ. (53)
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The second equation can also be found by setting the second invariant of Equation (52) equal to zero,

and can be reduced to the form

8G3 + (9κ + 4µ�)G2 − 3(κ + 4µ�)µ��G − 6κµ�µ�� = 0. (54)

This is a cubic equation for the self-consistent effective shear modulus G of a cubic polycrystal that is

statistically homogeneous, isotropic, and perfectly disordered. It was first obtained by Kröner [1958].

Hershey [1954] previously obtained a quartic equation that included Equation (54) as a factor.

The solution. There are general closed form solutions for cubic equations. If we write Equation (54) as

follows
γ3G3 + γ2G2 + γ1G + γ0 = 0, (55)

with the coefficients
γ3 ≡ 8, γ2 ≡ 9κ + 4µ�,

γ1 ≡ −3(κ + 4µ�)µ��, γ0 ≡ −6κµ�µ��,
(56)

and define

p ≡
��γ2

3

�2 − γ1γ3

3
, q ≡ −2

�γ2

3

�3 + γ1γ2γ3

3
− γ0γ

2
3 , (57)

then the only nonnegative solution of Equation (55) for the effective self-consistent shear modulus of a

cubic polycrystal is

G = 2
p
γ3

cos
�1

3
arccos

� q
2p3

��
− γ2

3γ3
. (58)

It is now straightforward to calculate the average cubic polycrystal shear modulus from the single crystal

elastic constants. Ledbetter calls this approach the Hershey–Kröner–Eshelby model. He measured elastic

constants for copper [Ledbetter 1981] and stainless steel [Ledbetter 1984] and found that among nine

different averaging models this model works best.

Thermal expansion. For a cubic crystal the thermal expansion coefficient is isotropic: αi j = αδi j . There-

fore all cases, that is the Voigt model Equation (27), the Reuss model Equation (30), and the self-

consistent model Equation (38), reduce to A = α. Since the thermal expansion is isotropic in cubic

crystals there is no difference between the polycrystal and the single crystal.

Some numerical results for cubic crystals. Table 1 shows the single crystal elastic constants of several
cubic crystals at room temperature. The values are obtained from the handbook by Simmons and Wang
[1971] except that those for calcium are from [Ledbetter and Kim 2001].

We have chosen a set of materials covering a wide range of anisotropy, where the Zener anisotropy

factor is given from the formula [Zener 1948]

A = µ��

µ� = 2c44

c11 − c12
= 2(s11 − s12)

s44
.

Table 2 shows values of the average bulk and shear modulus for cubic polycrystals calculated from the

data in Table 1, using Equations (48), (53), (50), (51), (56), (57), and (58). The Voigt and Reuss values
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Material c11 c12 c44 Anisotropy

Aluminum 1.073 0.609 0.283 1.22
Calcium 1.076 0.125 0.5758 1.21
Calcium Fluoride 1.628 0.433 0.334 0.56
Copper 1.684 1.214 0.754 3.21
Diamond 9.5 3.9 4.3 1.54
Gold 1.7893 1.4863 0.4367 2.88
Lead 0.466 0.392 0.1441 3.89
Lithium 0.135 0.1144 0.0878 8.52
Silver 1.24 0.934 0.461 3.01
Silver Chloride 0.601 0.362 0.0625 0.52
Sodium 0.0526 0.0404 0.0426 6.98
Sodium Chloride 0.487 0.124 0.126 0.69

Table 1. Single crystal elastic constants for several cubic crystals in units of Mbar.

Material K GV GR GV RH GS

Aluminum 0.764 0.263 0.260 0.261 0.261
Calcium 0.442 0.536 0.531 0.533 0.533
Calcium Fluoride 0.831 0.439 0.406 0.423 0.422
Copper 1.371 0.546 0.400 0.473 0.482
Diamond 5.767 3.700 3.541 3.621 3.625
Gold 1.587 0.323 0.249 0.286 0.292
Lead 0.416 0.101 0.067 0.084 0.087
Lithium 0.121 0.057 0.022 0.039 0.040
Silver 1.036 0.338 0.255 0.297 0.302
Silver Chloride 0.442 0.085 0.077 0.081 0.081
Sodium 0.045 0.028 0.013 0.020 0.021
Sodium Chloride 0.245 0.148 0.144 0.146 0.146

Table 2. Average elastic constants for several cubic polycrystals in units of Mbar. The

bulk modulus is denoted by K and the shear modulus by G. The subscripts denote Voigt

(V), Reuss (R), Hill (VRH), and self-consistent (S).

always bracket the self-consistent value. The Hill average is defined as the arithmetic mean of the Voigt

and Reuss average [Hill 1952]:
GVRH = 1

2 (GV + G R).

It is often close to the self-consistent value, GS . More exhaustive listings are given in [Kröner 1972] and

[Ledbetter and Kim 2001].
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Other crystal symmetries

For symmetries lower than cubic, Equation (37) is better solved numerically. Tables 3 and 4 give the

single crystal elastic constants and thermal expansion coefficients of several different crystal structures

at room temperature [Simmons and Wang 1971; Krishnan et al. 1979].
The anisotropy factor for these crystal structures is a generalization of the Zener factor and is given by

AI = 2(c44 + c55 + c66)

c11 + c22 + c33 − c12 − c13 − c23
.

To obtain the self-consistent values, Equation (37) is solved simultaneously for the bulk modulus, K , and

the shear modulus, G, which are then denoted by KS and GS . The results are given in Table 5. The Voigt

and Reuss values are given by Equations (15) and (18). As before, the Hill values are the arithmetic

mean of the Voigt and Reuss averages, and lie close to the self-consistent values.

Material Crystal c11 c12 c13 c23 c14 c22

Titanium hexagonal 1.624 0.92 0.69 0.69 0.0 1.624
Zirconium hexagonal 1.434 0.728 0.653 0.653 0.0 1.434
Indium tetragonal 0.445 0.395 0.405 0.405 0.0 0.445
Tin tetragonal 0.86 0.35 0.3 0.3 0.0 0.86
Calcite trigonal 1.4626 0.597 0.5076 0.5076 −0.2076 1.4626
Quartz trigonal 0.8501 0.0696 0.1412 0.1412 0.1678 0.8501
Aragonite orthorhombic 1.5958 0.3663 0.0197 0.1591 0.0 0.8697
Uranium orthorhombic 2.148 0.465 0.218 1.076 0.0 1.986

Table 3. Single crystal elastic constants for several crystals in units of Mbar.

Material c33 c44 c55 c66 Anisotropy α1 α2 α3

Titanium 1.807 0.467 0.467 0.352 0.93 9.55 9.55 10.65
Zirconium 1.648 0.32 0.32 0.353 0.80 5.7 5.7 11.4
Indium 0.444 0.0655 0.0655 0.122 3.92 1.2 1.3 −0.81
Tin 1.33 0.49 0.49 0.53 1.44 14.64 14.64 28.14
Calcite 0.8531 0.3405 0.3405 0.4328 1.03 −5.6 −5.6 25
Quartz 1.0535 0.5722 0.5722 0.39025 1.28 13 13 8
Aragonite 0.8503 0.4132 0.2564 0.4274 0.79 35 17 10
Uranium 2.671 1.244 0.734 0.743 1.08 25.41 0.65 20.65

Table 4. Single crystal elastic constants in units of Mbar and thermal expansion coeffi-

cients in units of 10−6K −1 for several crystals.
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Material K V K R K V RH K S GV G R GV RH GS

Titanium 1.073 1.073 1.073 1.073 0.441 0.426 0.434 0.434
Zirconium 0.954 0.952 0.953 0.953 0.364 0.356 0.360 0.360
Indium 0.416 0.416 0.416 0.416 0.0592 0.0372 0.0482 0.0491
Tin 0.550 0.535 0.543 0.542 0.442 0.410 0.426 0.428
Calcite 0.778 0.716 0.747 0.750 0.367 0.269 0.318 0.315
Quartz 0.384 0.377 0.381 0.381 0.467 0.405 0.436 0.433
Aragonite 0.490 0.447 0.468 0.464 0.404 0.367 0.385 0.383
Uranium 1.147 1.114 1.131 1.128 0.881 0.807 0.844 0.842

Table 5. Average elastic constants for several polycrystals in units of Mbar. The bulk

modulus is denoted by K and the shear modulus by G. The subscripts denote Voigt (V),
Reuss (R), Hill (VRH), and self-consistent (S).

Table 6 shows the effective thermal expansion coefficients calculated from Equations (28), (31), and

(40).

Summary

The concept of effective medium and effective material properties has been described, in particular for

elastic constants and thermal expansion. The effective properties are used to represent the overall average

properties of a polycrystal. The concept is then applied to the particular cases of the Voigt, Reuss, and

self-consistent models to obtain expressions for the overall average properties of a polycrystal in terms

of the single crystal components. The self-consistent model is derived by invoking Eshelby’s theory of

inclusion and inhomogeneities. It gives an implicit equation for the self-consistent elastic constants and
an explicit equation for the self-consistent thermal expansion coefficient. A brief description is given of

the Walpole notation for isotropic and cubic materials. For the particular case of cubic symmetry the

Material AV AR AV RH AS Crystal

Titanium 9.913 9.917 9.915 9.915 hexagonal
Zirconium 7.662 7.600 7.631 7.629 hexagonal
Indium 0.527 0.530 0.528 0.527 tetragonal
Tin 19.90 19.14 19.52 19.52 tetragonal
Calcite 2.564 4.60 3.582 3.440 trigonal
Quartz 11.07 11.33 11.20 11.20 trigonal
Aragonite 23.46 20.67 22.06 21.79 orthorhombic
Uranium 15.12 15.57 15.34 15.39 orthorhombic

Table 6. Average thermal expansion coefficients in units of 10−6K −1 for several poly-

crystals of different crystal symmetries.
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bulk modulus and thermal expansion are isotropic and the self-consistent shear modulus satisfies a cubic

equation, which can be solved explicitly. Some numerical results calculated from the solution are listed.

For lower crystal symmetries, the equations are solved numerically. Results are given for the average bulk

modulus, shear modulus, and thermal expansion coefficients of various hexagonal, tetragonal, trigonal,

and orthorhombic polycrystals. In general, it is found that the Hill average is close to the self-consistent

value.
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